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Abstract It is well established that nicotine activates brain
dopaminergic systems and in addition has neuroprotective
actions. Thus, nicotinic acetylcholine receptor (nAChR)
agonists might be beneficial in the treatment of Parkinson’s
disease, and it is important to study the interactions of
nicotine with drugs affecting the nigrostriatal dopaminer-
gic pathway. We used brain microdialysis to study the
effects of nicotine on extracellular levels of dopamine
(DA) and its metabolites in the rat dorsal striatum in com-
bination with drugs inhibiting either DA uptake (nomifen-
sine), catechol-O-methyltransferase (COMT; tolcapone),
monoamine oxidase B (MAO-B; selegiline) or DA recep-
tors (haloperidol). Nicotine (0.5 mg/kg, s.c.) modestly in-
creased DA output, and this effect was antagonised by
mecamylamine but not by hexamethonium. Nomifensine
(3 mg/kg, i.p.) substantially further enhanced the nicotine-
induced increase in DA output and nomifensine+nicotine
also evoked a strong mecamylamine-sensitive ipsilateral
rotational behaviour in 6-hydroxydopamine lesioned rats.
Tolcapone (10 mg/kg, i.p.) did not alter DA output, but
markedly decreased homovanillic acid (HVA) and in-
creased 3,4-dihydroxyphenylacetic acid (DOPAC). Selegi-
line pretreatment (5×1 mg/kg, i.p.) significantly increased
extracellular DA and decreased DOPAC and HVA. Halo-
peridol (0.1 mg/kg, s.c.) slightly increased DA output and
more clearly DOPAC and HVA. Tolcapone, selegiline or
haloperidol did not enhance the nicotine-induced DA out-
put. These results indicate that the activation of nigro-
striatal nAChRs induces a significant DA release in the
striatum, which is potentiated by DA uptake inhibition but

not by COMT, MAO-B or presynaptic DA receptor in-
hibition. Our findings therefore agree with the notion that
the termination of the effect of DA in the synapse mainly
occurs via neuronal reuptake. Thus, selective nAChR ago-
nists, possibly in combination with a DA uptake inhibitor,
might improve dopaminergic transmission in Parkinson’s
disease.
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Introduction

Degeneration of nigrostriatal dopaminergic neurons and
consequent decrease of striatal dopamine (DA) is the ma-
jor neuropathological change in Parkinson’s disease. The
aetiology for the degeneration, however, is still largely
unknown. Epidemiological studies have shown that the oc-
currence of Parkinson’s disease is significantly less com-
mon among smokers and even former smokers than among
those who have never smoked (Allam et al. 2004; Baron
1986; Gorell et al. 1999; Morens et al. 1995). As nicotine
is the main pharmacologically active substance in ciga-
rette smoke, this finding has stimulated many researchers
to elucidate whether nicotine and nicotinic acetylcholine
receptors (nAChRs) have any role in the aetiopathology
of Parkinson’s disease and in its treatment (for a review
see for example Quik 2004).

A number of studies have demonstrated that nicotine
stimulates the release of DA in striatum, as studied in vitro
using striatal slices (Arqueros et al. 1978; Giorguieff-
Chesselet et al. 1979; Teng et al. 1997; Westfall 1974) or
synaptosomes (Rapier et al. 1990; Rowell 1995; Sakurai
et al. 1982; Whiteaker et al. 1995), and in vivo using mi-
crodialysis (Damsma et al. 1988; Di Chiara and Imperato
1988; Imperato et al. 1986; Marshall et al. 1997; Toth et al.
1992). The nAChR subtypes localised on dopaminergic
and glutamatergic nerves are thought to mediate this effect
(Kaiser and Wonnacott 2000; Wonnacott 1997; Wonnacott
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et al. 2000). However, nAChRs also exist on dopaminer-
gic cell bodies and dendrites in the substantia nigra (Clarke
and Pert 1985; Court and Clementi 1995; Klink et al.
2001; Sorenson et al. 1998) and a cholinergic pathway with
nAChRs from pedunculopontine nuclei to the substantia
nigra has been described (Clarke et al. 1987; Futami et al.
1995).

It has been suggested that even nicotine itself may have
an antiparkinsonian effect (Balfour and Fagerström 1996;
Domino et al. 1999). In addition, several potent nAChR
agonists have been recently developed and many of them
are presently under evaluation as antiparkinsonian drugs
(Mihailescu and Drucker-Colin 2000; Vernier et al. 1998).
Given these findings, and the fact that parkinsonian pa-
tients use a number of drugs enhancing the brain dopa-
minergic transmission, we wanted to further study the
involvement of nicotinic mechanisms in the striatal dopa-
minergic transmission and potential suitability of nico-
tine or related nAChR agonists as antiparkinsonian drugs.
Thus, to study how nicotine alters the endogenous dopa-
minergic transmission we compared the effects of nicotine
(0.5 mg/kg) in combination with various drugs affect-
ing synaptic DA by performing a series of microdialy-
sis experiments in awake and freely moving rats. A DA
uptake inhibitor, nomifensine (3 mg/kg), a catechol-O-
methyltransferase (COMT) inhibitor, tolcapone (10mg/kg),
a monoamine oxidase B (MAO-B) inhibitor, selegiline (5×
1 mg/kg, a MAO-B selective dose), and a DA receptor
blocker, haloperidol (0.1 mg/kg), were used at doses that
have been reported to alter the endogenous dopaminer-
gic transmission significantly although not maximally
(Carboni et al. 1989; Imperato et al. 1986; Kaakkola and
Wurtman 1992; O’Connor et al. 1995; Schiffer et al. 2003).
Furthermore, additional studies using the well-known par-
kinsonian animal model, rotational behaviour, were carried
out in order to explore whether changes in the striatal do-
paminergic transmission reverberate to the rotational be-
haviour of rats.

Preliminary results have been previously published in
abstract form (Janhunen et al. 2001; Kaakkola et al. 2000).

Materials and methods

Animals Male Wistar rats weighing 240–380 g were used
in both microdialysis and rotational behaviour experiments.
The rats were housed under a 12-h light-dark cycle at a
constant room temperature (24±2°C) with food (Altromin
1314 standard-diet; Chr. Petersen A/S, Ringstedt, Den-
mark) and tap water freely available. All animal procedures
were conducted in accordance with the Council Directive
86/609/EEC and the European Convention for the Pro-
tection of Vertebrate Animals used for Experimental and
Other Scientific Purposes, and they were approved by the
Institutional Animal Care and Use Committee, and the
chief veterinarian of the County Administrative Board.

Surgeries For insertion of guide cannulae in microdialysis
experiments the rats were anaesthetised with halothane

(3.5% for induction and 2% for maintenance) and mounted
in a stereotaxis apparatus (Stoelting, IL, USA) with the
incisor bar set at −3.3 mm. The skull was exposed, and a
burr hole was drilled to insert a guide cannula (MD-2250;
Bioanalytical Systems, West Lafayette, IN, USA). The
coordinates for the caudate-putamen were as follows:
AP+1.0, L+2.7, V-2.0 (Paxinos and Watson 1986). The
surgery was conducted similarly in all rats despite vari-
ability in their weight. The guide cannula was held in
place using dental acrylic cement and three stainless screws
attached to the skull. After the surgery, the rats were treated
with tramadol (1.0 mg/kg s.c.) for postoperative analgesia,
placed individually in test cages and allowed to recover for
6–8 days.

The rats used for unilateral destruction of nigrostriatal
dopaminergic neurones were separate from those used for
the microdialysis study. The rats were anaesthetised with
halothane (3.5% for induction and 2% for maintenance)
and mounted in the stereotaxis apparatus with the incisor
bar set at −3.3 mm. Thirty minutes prior to 6-OHDA in-
jection the rats were administered desmethylimipramine
(15 mg/kg i.p.) to prevent the uptake of 6-OHDA into the
noradrenergic nerve terminals. A burr hole was drilled
above the medial forebrain bundle (MFB). Unilateral le-
sions of the right nigrostriatal pathway were made by in-
jecting 6-hydroxydopamine (6-OHDA, 8 μg/4 μl, 1.0 μl/
min for 4 min) into the MFB with the 10 μl Hamilton
syringe. The coordinates were as follows: AP -4.2, L -1.4,
V -8.2 (Paxinos and Watson 1986). The surgery was con-
ducted similarly in all rats despite variability in their
weight. Upon completion, the injection needle was kept in
place for an additional minute to minimise backflow of
the solution. The rats were allowed to recover from the
surgery for 1–2 days in individual cages and thereafter
housed in groups as before the surgery.

Microdialysis On the day before a microdialysis experi-
ment, a dummy probe (MD-2204, 4-mm-long dialysis sur-
face; Bioanalytical Systems) was inserted into the guide
cannula; the tip of the probe extending 6.0 mm below the
dura. In the morning of the experimental day, the dummy
probe was replaced by an identical new probe. The probe
was infused with artificial cerebrospinal fluid (pH 7.4)
containing 147 mM NaCl, 1.2 mM CaCl2, 2.7 mM KCL,
1.0 mM MgCl2, and 0.04 mM ascorbic acid at a rate of
2 μl/min using a microperfusion pump (CMA Microdi-
alysis AB, Solna, Sweden). Following an approximately
2-h equilibration period, the dialysate samples were then
collected every 15 min (30 μl) and they were immediate-
ly analysed by high-performance liquid chromatography
(HPLC) with electrochemical detection. During the micro-
dialysis experiments, the rats were allowed to move freely
in their cages at a room temperature of 21±1°C.

At the end of the experiments the rats were anaes-
thetised with CO2, killed by decapitation and the brains
were removed. Frozen coronal sections were prepared and
stained with thionine blue for verification of the probe
location. Only data from animals with proper probe place-
ments in the caudate-putamen were used.
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Rotational behaviour After a 14-day recovery period,
rotational behaviour of the rats was measured in black
circular plastic bowls (37 cm in diameter and 15 cm high)
with a 40-cm high transparent plexiglas cylinder surround-
ing the bowls. Each rat was attached to a rotation sensor
with a spring tether connected to the plastic collar around
the neck of the rat. The rotation sensor detected full (360°)
clockwise (in this case, ipsilateral) and counter clockwise
(contralateral) turns. Each rat was taken from the cage,
placed individually into the test bowl and allowed to
habituate for 45 min. Thereafter, the rotation counts were
recorded in 15-min intervals for 3 h. At the end of rotation
experiments, the 6-OHDA lesions were verified by mea-
suring DA concentrations in depleted and intact dorsal
striata.

HPLC analysis Dialysate levels of DA, 3,4-dihydroxy-
phenylacetic acid (DOPAC), homovanillic acid (HVA) and
5-hydroxyindoleacetic acid (5-HIAA) were immediately
analysed by HPLC with electrochemical detection. The
HPLC system consisted of a Coulochem II detector (ESA,
MA, USA) equipped with a 5014B microdialysis cell, a
Pharmacia LKB model 2248 HPLC pump (Pharmacia
LKB, Uppsala, Sweden), and a SSI model LP-21 pulse
damper (Scientific Systems, State College, PA, USA). The
column (Spherisorb ODS2, 3 μm, 4.6×100 mm; Waters,
Milford, MA, USA) was kept at 40°C with a column
heater (Croco-Cil, Saint-Foy-la-Grande, France). The mo-
bile phase consisted of 0.1 M NaH2PO4, pH 4.0 (adjusted
with 0.1 mM citric acid), 0.85–0.95 mM octane sulpho-
nic acid, 15% (v/v) methanol and 1.2 mM EDTA. The
flow rate of the mobile phase was 1.0 ml/min. A CMA/200
autoinjector (CMA Microdialysis AB) was utilised for in-
jecting 20 μl of the dialysate sample into the HPLC system.
DA was reduced with an amperometric detector (set at
−150 mV) whereas DOPAC, HVA and 5-HIAA were ox-
idised with a coulometric detector (set at +350 mV). Sam-
ples were quantified by comparing peak heights with those
of standards.

To verify the 6-OHDA lesions, both depleted and intact
dorsal striata of the 6-OHDA-lesioned rats were dissected,
the striatal samples were immediately frozen on dry ice
and stored at −80°C until assay. Samples were homog-
enised and purified as described earlier (Haikala 1987).
The samples were assayed for the concentration of DA by
using an HPLC system with a C-18 reverse-phase column
(Spherisorb S5 ODS2, 4.6×250 mm; Waters) and electro-
chemical detection (+200 mV, ESA Coulochem 5014A;
ESA, Bedford, CA, USA). Only rats with DA depletion of
more than 95% in the lesioned right dorsal striatum
compared with the intact left dorsal striatum were included
in the final data analysis. The mean DA depletion of rats
included in the results was 99.6% (range 95.1–100%,
n=45).

Drugs and their administration Haloperidol (Orion-Phar-
ma, Espoo, Finland), hexamethonium chloride (Sigma, St.
Louis, MO, USA), mecamylamine hydrochloride (Merck,
Whitehouse Station, NJ, USA), (-)-nicotine base (Fluka,

Buchs, Switzerland), selegiline (a gift from Orion-Pharma)
and tramadol hydrochloride (Orion-Pharma) were dis-
solved in saline. The pH of nicotine solution was adjusted
to 7.0–7.4 with 0.05 M HCl and that of haloperidol so-
lution to 7.2 with 1 M NaOH. Nomifensine maleate (RBI,
Natick, MA, USA) and desmethylimipramine (Sigma)
were dissolved in sterile water. Tolcapone (a gift from
Orion-Pharma) was suspended in phosphate buffer (pH
7.4) containing a drop of Tween 80. 6-OHDA (Sigma) was
dissolved in saline containing 0.02% ascorbic acid. Halo-
peridol, nicotine, selegiline and tramadol were injected
subcutaneously (s.c.) while the other drugs were given
intraperitoneally (i.p.). Doses refer to free base. All re-
agents were of analytical grade. In all microdialysis ex-
periments except for those studying selegiline, all rats
were injected twice in 30-min intervals after collecting
baseline samples; with saline (0.9% NaCl solution) only
(control), with saline and an active drug or with two active
drugs, as indicated in the figures. Selegiline (1 mg/kg, s.c.)
was given repeatedly on 5 consecutive days and the mi-
crodialysis experiments were conducted on the 5th day,
when the selegiline injection was given 2 h before starting
collecting the baseline samples and thus 3 h before the
nicotine injection. In rotational behaviour experiments the
rats were treated twice or thrice in 15-min intervals, as
indicated in the Fig. 6.

Data analysisDialysate values reported were not corrected
for probe in vitro recovery, which was approximately 20%
for dopamine and 10–15% for its metabolites and 5-HIAA.
The average concentration of three or four stable samples
(<20% variation) before the first drug injection was de-
fined as the baseline level (=100%). Data are expressed as
means±SEM of the percentage change from the baseline
values. The statistical analysis of the results was per-
formed by two-way analysis of variance (treatment×time)
for repeated measures (time). Post hoc comparisons were
performed by using Newman-Keuls test in all cases when
the main effect (treatment) was positive (P<0.05; Statistica
version 5.1; StatSoft, Tulsa, OK, USA). Almost constantly
when a positive main effect was found the interaction term
also showed statistical significance. In the selegiline ex-
periments, the baseline dialysate levels of DA, DOPAC,
HVA and 5-HIAAwere analysed using the Student’s t test.
The data for total ipsilateral rotations were analysed using
one-way analysis of variance followed by the Newman-
Keuls test.

Results

Basal levels of dopamine, DOPAC, HVA and 5-HIAA
in dialysate samples

In control rats (n=18), baseline dialysate levels of DA,
DOPAC, HVA and 5-HIAA per sample (mean±SEM) were
54.1±5.4 fmol, 18.0±1.4 pmol, 12.9±1.4 pmol and 3.3±
0.2 pmol respectively. The baseline levels in all drug-
treated rats before treatment were comparable with those
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of the control rats and there were no statistically sig-
nificant differences in the baseline values between various
treatment groups in separate experiments.

Effects of nicotine, mecamylamine
and hexamethonium

Nicotine (0.5 mg/kg s.c.) produced a moderate but sig-
nificant increase in the extracellular DA level up to 140%
of the baseline level, F(3,22)=3.9, Newman-Keuls test
P<0.05 vs. saline control group (Fig. 1). Nicotine also sig-

nificantly increased the dialysate levels of DOPAC up to
125% of the baseline level, F(3,22)=5.7, P<0.05 vs. saline
control group, and HVA up to 137% of the baseline level,
F(3,22)=8.1, P<0.01. The maximum increase for HVA
occurred about 15 to 30 min later than that for DOPAC
(Fig. 1). The HVA level remained elevated at the end of
the collecting period (270 min), whereas the DA and
DOPAC levels had almost restored to their baseline levels
during the collecting period.

Neither a brain penetrating nAChR antagonist, meca-
mylamine (5 mg/kg i.p.), nor a peripheral nAChR antag-
onist, hexamethonium (5 mg/kg i.p.), changed the striatal
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Fig. 1 The effects of nicotine (0.5 mg/kg s.c.) alone and after a
pretreatment with mecamylamine (5 mg/kg i.p.) or hexamethonium
(5 mg/kg i.p.) on the striatal extracellular levels of dopamine (DA),
3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid
(HVA). Rats were given mecamylamine, hexamethonium or sa-

line (first arrow) after collecting the baseline samples and 30 min
later nicotine or saline (second arrow). The data, starting from
the last baseline sample, are expressed as percentage changes of
three to four consecutive baseline samples collected before injec-
tions (means±SEM, n=6–8)
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extracellular levels of DA, DOPAC or HVA (data not
shown). Pretreatment with mecamylamine significantly pre-
vented the nicotine-induced increases in the extracellular
levels of DA, F(3,22)=3.9, Newman-Keuls test P< 0.05
vs. nicotine group (Fig. 1) and DOPAC, F(3,22)=5.7, P<
0.01. Mecamylamine also significantly prevented the nic-
otine-induced increase in the HVA level, F(3,22)=8.1, P<
0.05, but its effect started to gradually disappear 210 min
after the nicotine administration (Fig. 1). In contrast to
mecamylamine, hexamethonium did not alter the nico-
tine-induced increases in the striatal levels of DA and its
metabolites (Fig. 1). Nicotine, mecamylamine or hexa-
methonium did not significantly change the extracellular
5-HIAA level (data not shown).

Effect of nomifensine with nicotine

The administration of the DA uptake inhibitor, nomifensine
(3 mg/kg i.p.), significantly increased the striatal DA level,
F(3,23)=7.9, Newman-Keuls test P<0.05 vs. saline control
group (Fig. 2), but failed to significantly alter the levels
of DOPAC, HVA or 5-HIAA (Fig. 2; saline+saline group
omitted from the figure due to clarity). The peak increase
in the DA level after nomifensine was about 200% of the
baseline level.

The combination of nomifensine (3 mg/kg) and nicotine
(0.5 mg/kg) induced a substantial elevation in the extra-
cellular DA level up to 370% of the baseline level (Fig. 2).
The increase was significant when compared with the sa-
line control group, F(3,23)=7.9, Newman-Keuls test P<
0.001, with the nomifensine group, P<0.05, and with the
nicotine group, P<0.05. After the combination of nomi-
fensine and nicotine the extracellular levels of DOPAC and
HVA were at the same level as after nomifensine alone,
but lower than after nicotine alone, DOPAC F(3,23)=6.2,
P<0.01, HVA P=0.065 (Fig. 2).

Effect of tolcapone with nicotine

The administration of the catechol-O-methyltransferase
inhibitor, tolcapone (10 mg/kg i.p.), did not alter the ex-
tracellular DA level when compared with the saline con-
trol group. Tolcapone significantly increased the striatal
DOPAC level up to 142% of the baseline level, F(3,24)=
12.2, Newman-Keuls test P<0.01 vs. saline control group,
and significantly decreased the HVA level down to 13%
of the baseline level, F(3,24)=48.2, P<0.001 (Fig. 3, sa-
line+saline group omitted from the figure due to clarity).

Pretreatment with tolcapone (10 mg/kg) had no signif-
icant effect on the 0.5 mg/kg nicotine-induced increase in
the DA level, although it slightly tended to retard the
elevation of DA (Fig. 3). The combination of tolcapone
and nicotine considerably elevated the extracellular level
of DOPAC (up to 177% of the baseline level). This
increase was significantly higher than that induced by
either tolcapone, F(3,24)=12.2, Newman-Keuls test
P<0.05, or nicotine alone, P<0.01. The striatal HVA

level after the combined treatment of tolcapone and
nicotine remained almost as low as after the tolcapone
treatment alone, P>0.10.

Tolcapone alone or in combination with nicotine had
no effect on the extracellular level of 5-HIAA (data not
shown).
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Fig. 2 The effects of nomifensine (3 mg/kg i.p.) on the changes
induced by nicotine (0.5 mg/kg s.c.) or saline in the striatal
extracellular levels of DA, DOPAC and HVA. Rats were given
nomifensine or saline (first arrow) after collecting the baseline
samples and 30 min later nicotine or saline (second arrow). It is to be
noted that the scale of the ordinates differs between the graphs
showing DA and its metabolites. The data, starting from the last
baseline sample, are expressed as percentage changes of three to four
consecutive baseline samples collected before injections (means
±SEM, n=6–8)
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Effect of selegiline with nicotine

When given repeatedly on 4 consecutive days and on
the experimental day 2 h before collecting the dialysate
samples, the monoamine oxidase B inhibitor, selegiline

(1 mg/kg s.c.), significantly elevated the extracellular DA
level in the baseline samples more than 5-fold compared
with the samples of the rats correspondingly treated with
saline (selegiline: 394±98 fmol, n=10, saline: 72±23 fmol,
n=6, means±SEM per 20 μl, Student’s t test P<0.05).
Selegiline treatment also significantly decreased the lev-
el of DOPAC in the baseline samples (selegiline: 7.9±
0.9 pmol, saline: 21.2±3.8 pmol, P<0.05) and tended to
decrease that of HVA (selegiline: 8.2±0.9 pmol, saline:
14.1±3.2 pmol, P>0.05). Selegiline treatment did not alter
the level of 5-HIAA in the baseline samples (selegiline:
3.6±0.3 pmol, saline: 3.5±0.6 pmol).

The selegiline-elevated DA level was decreasing during
the collecting period (i.e. 2–6 h after the last selegiline
administration), and at the end of the experiment it had
decreased by 50% from the elevated level seen in the
baseline samples. Initially during the collecting period the
selegiline-decreased levels of DA metabolites continued
to decrease, but the DOPAC level returned at the end of
the experiment towards the levels of the baseline samples.
The HVA level further decreased more than the DOPAC
level and remained low at the end of experiment (Fig. 4,
saline+saline/nicotine groups omitted from the figure due
to clarity).

Nicotine (0.5 mg/kg), given acutely 3 h after the fifth
selegiline (1 mg/kg) injection, modestly although not sig-
nificantly elevated the levels of DA and its metabolites,
particularly that of HVA, that were decreasing during the
collecting period (Fig. 4; P>0.10).

Effect of haloperidol with nicotine

The DA receptor blocker, haloperidol (0.1 mg/kg s.c.),
induced a moderate increase in the extracellular DA level
up to 180% of the baseline level (Fig. 5). Due to high
variability between haloperidol-treated rats the increase
failed to reach significance in pair-wise comparison with
the control group (P=0.054). The administration of halo-
peridol clearly elevated the levels of DA metabolites; both
the DOPAC and HVA levels were significantly increased
compared with the saline control group, DOPAC: F(3,18)=
39.0, Newman-Keuls test P<0.001; HVA: F(3,18)=27.6,
P<0.001 (Fig. 5). The maximal increase in the DOPAC
level occurred 120 min after the administration of halo-
peridol, after which the DOPAC level remained almost
unchanged for the rest of the collecting period. The HVA
concentration was maximally increased about an hour later,
at which level it remained until the end of the collecting
period (270 min).

The combination of haloperidol (0.1 mg/kg) and nico-
tine (0.5 mg/kg) did not lead to any further significant
increase in the levels of DA, DOPAC or HVA compared
with that induced by haloperidol alone (Fig. 5). No sig-
nificant treatment effects were observed in the 5-HIAA
levels after nicotine, haloperidol or their combinations
(data not shown).
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Fig. 3 The effects of tolcapone (10 mg/kg i.p.) on the changes
induced by nicotine (0.5 mg/kg s.c.) or saline in the striatal ex-
tracellular levels of DA, DOPAC and HVA. Rats were given tol-
capone or saline (first arrow) after collecting the baseline samples
and 30 min later nicotine or saline (second arrow). The data, starting
from the last baseline sample, are expressed as percentage changes
of three to four consecutive baseline samples collected before in-
jections (means±SEM, n=6–8)
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Rotational behaviour

Nicotine (0.5 mg/kg s.c.) alone induced only a very modest
ipsilateral rotation (Fig. 6). A slightly more intense rotation
was induced by nomifensine (3 mg/kg i.p.). When these
two drugs were combined, a strong ipsilateral rotational
behaviour was observed. The net rotation differed sig-
nificantly from that induced by either nicotine, F(2,18)=
5.5, Newman-Keuls test P<0.05, or nomifensine alone,

F(2,18)=12.2, P<0.05. Mecamylamine (5 mg/kg i.p.) did
not induce any clear ipsi- or contralateral rotation. How-
ever, the pretreatment with mecamylamine significantly
(P<0.05) antagonised the rotation induced by the combi-
nation of nomifensine and nicotine (Fig. 6).
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Fig. 4 The effects of nicotine (0.5 mg/kg s.c.) or saline on the
extracellular levels of DA, DOPAC and HVA in the rats previously
repeatedly treated with selegiline (5×1 mg/kg s.c.). Rats were given
five repeated selegiline injections on 4 consecutive days and on the
experimental day 2 h before starting to collect the baseline samples.
Nicotine or saline (arrow) was given after collecting four conse-
cutive baseline samples. The data, starting from the last baseline
sample, are expressed as percentage changes of four consecutive
baseline samples collected before nicotine or saline injections
(means±SEM, n=4–6)
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Fig. 5 The effects of haloperidol (0.1 mg/kg s.c.), nicotine (0.5 mg/
kg s.c.) and their combination on the striatal extracellular levels of
DA, DOPAC and HVA. Rats were given nicotine or saline (first
arrow) after collecting the baseline samples and 30 min later
haloperidol or saline (second arrow). It is to be noted that the scale
of the ordinates differs between the graphs showing DA and its
metabolites. The data, starting from the last baseline sample, are
expressed as percentage changes of the consecutive baseline sam-
ples collected before injections (means±SEM, n=4–6)
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Discussion

To investigate nicotine’s effects on endogenous dopami-
nergic transmission in the nigrostriatal pathway, striatal
extracellular levels of DA and its metabolites were esti-
mated after administration of nicotine alone and in com-
bination with drugs inhibiting either DA uptake, COMT,
MAO-B or presynaptic DA receptors. Such a comparison
has not been previously carried out in one and the same
study, and indeed the effects of COMT inhibition on nic-
otine’s effects on the synaptic DA have not been previously
studied. The drugs were studied at doses that alter the
endogenous dopaminergic transmission significantly, al-
though not maximally (Carboni et al. 1989; Imperato et al.
1986; Kaakkola and Wurtman 1992; O’Connor et al. 1995;
Schiffer et al. 2003). Inhibition of COMT by tolcapone,
MAO-B by selegiline or presynaptic DA receptors by
haloperidol did not further enhance the nicotine-elevated
DA output. However, the DA uptake inhibitor nomifensine
in combination with nicotine induced a considerable in-
crease in the extracellular DA level in the dorsal striatum.
The interaction was also observed at a behavioural level,

as the combination caused a clear ipsilateral rotational be-
haviour in rats with unilateral destruction of nigrostriatal
dopaminergic nerve tract.

Systemic administration of a small dose of nomifensine
increased the extracellular level of DA, while the level
of DOPAC did not increase. This is consistent with the
mechanism of action of nomifensine, an inhibitor of DA
reuptake (Hoffmann 1982) and also with previous results
(Butcher et al. 1991; Church et al. 1987; Kaakkola and
Wurtman 1992; Nakachi et al. 1995). The increases in the
striatal extracellular DA levels induced by nomifensine
alone or by the combination of nomifensine and nicotine
were reflected in the ipsilateral rotational behaviour in the
6-OHDA-lesioned rats. Both the neurochemical and the
behavioural interaction were inhibited by mecamylamine,
indicating the involvement nAChRs in the release of DA
in the dorsal striatum. Previously, it has been shown that
intra-accumbal administration of nomifensine in combina-
tion with a systemic administration of nicotine resulted in
a significant increase in the DA concentration in the di-
alysate in the nucleus accumbens (Benwell and Balfour
1992). A similar synergistic interaction between nicotine
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Fig. 6 The effects of meca-
mylamine, nicotine, nomifen-
sine and their combination on
ipsilateral rotational behaviour
in rats with unilateral nigrostri-
atal 6-OHDA lesions. a Rats
were given nomifensine (Nom,
3 mg/kg i.p.) or saline (Sal; first
arrow) and 15 min later nicotine
(Nic, 0.5 mg/kg s.c.) or saline
(second arrow) after which the
ipsilateral rotations were mea-
sured in 15-min intervals for
3 h. b Rats were given meca-
mylamine (Mec, 5 mg/kg i.p.) or
saline (first arrow), 15 min later
nomifensine (3 mg/kg i.p.) or
saline (second arrow) and an-
other 15 min later nicotine
(0.5 mg/kg s.c.) or saline (third
arrow), after which the ipsilat-
eral rotations were measured in
15-min intervals for 3 h. The
inserts present 3-h cumulative
ipsilateral rotations. Data are
expressed as means±SEM,
n=3–14
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and other DA uptake inhibitors (cocaine, methylphenidate)
has been recently reported by Gerasimov et al. (2000).
They found that nicotine and a relatively high dose of
cocaine or methylphenidate produced a synergistic eleva-
tion in the extracellular DA level in the nucleus accumbens.

Acute systemic nicotine increased the DA output in the
dorsal striatum as earlier reported after systemic admin-
istration (Damsma et al. 1988; Di Chiara and Imperato
1988; Ferger and Kuschinsky 1997; Imperato et al. 1986)
and also after intrastriatal application of nicotine (Marshall
et al. 1997; Toth et al. 1992). The effect appears to be
mediated by brain nAChRs, as the brain penetrating
nAChR blocker mecamylamine, but not the peripheral
nAChR blocker hexamethonium, antagonised the increase.
The effect was, however, quite modest, which may be due
to rather low ambient temperature or it may simply be due
to the brain area studied. We have shown earlier that
nicotine’s effect on the DA output in the dorsal striatum
is dependent on ambient temperature and is more pro-
nounced at elevated ambient temperatures (Seppä et al.
2000). The experiments presented here were performed at
room temperature (21±1°C). We, as well as others, have
also shown that the effect of nicotine on the DA output is
more pronounced in the nucleus accumbens than in the
dorsal striatum (Brazell et al. 1990; Imperato et al. 1986;
Seppä and Ahtee 2000).

Catechol-O-methyltransferase inhibitors, such as enta-
capone and tolcapone, have been recently introduced into
therapy for Parkinson’s disease (Kaakkola 2000). Their
mechanism of action in clinical use is based on the in-
hibition of peripheral metabolism of levodopa and subse-
quently they improve the bioavailability of levodopa and
prolong its elimination half-life. In addition to a peripheral
action, tolcapone penetrates the blood–brain barrier and
inhibits the O-methylation of brain DA (Zürcher et al.
1993). Thus, theoretically it might also have a central anti-
parkinsonian effect. Microdialysis studies have, however,
demonstrated that systemic administration of tolcapone
does not elevate the extracellular level of DA, although the
DA metabolism is altered (Huotari et al. 1999; Kaakkola
and Wurtman 1992). We also found similar effects of tol-
capone in this study.

A MAO-B inhibitor, selegiline, is also used to improve
efficacy of levodopa in the treatment of parkinsonian pa-
tients (Yahr et al. 1983). In our study, repeated admin-
istration of selegiline increased the basal extracellular
concentration of DA and decreased the striatal concentra-
tions of DA metabolites, especially DOPAC, but did not
alter the 5-HT metabolite, 5-HIAA. This suggests that se-
legiline inhibited mainly MAO-B at this dose and treatment
regimen. These findings agree with earlier studies in which
selegiline at low doses had modest effects on the extra-
cellular DA acutely (Butcher et al. 1990; Kaakkola and
Wurtman 1992; Wu et al. 2000), but increased it when
given repeatedly (Lamensdorf et al. 1996, 1999).

In our study, nicotine did not have clear additive or
synergistic effects with either tolcapone or with selegiline,
as their combinations did not induce any further increase in
the extracellular DA level. The probable explanation is that

the role of DA uptake in the termination of the effect of DA
in the synapse is of the most importance and the role of
COMT or MAO-B is minimal in normal metabolic con-
ditions in the rat striatum (Huotari et al. 2002; Raevskii
et al. 2002). Thus, the slight increase in the extracellular
DA induced by nicotine is probably controlled more by
DA transporter than by either COMT or MAO-B. As a
result, the effects of nicotine in combination with drugs
other than DA uptake inhibitor were not sufficient to
cause marked leakage of DA from the synaptic cleft into
the extracellular fluid, the compartment actually sampled
by the microdialysis probe. The situation may change
when levodopa is combined, as then tolcapone and se-
legiline potentiate the increase in the extracellular DA
level in the striatum (Huotari et al. 1999; Kaakkola and
Wurtman 1993). Whether nicotine or nicotine derivatives
in combination with levodopa and tolcapone/selegiline
have beneficial effects on parkinsonian symptoms remains
to be elucidated in future studies.

A low dose of haloperidol slightly increased the extra-
cellular level of DA in the dorsal striatum. There was,
however, a considerable variability between animals. This
has been observed also by other researchers (Drew et al.
1990; O’Connor et al. 1995). It is likely that the eleva-
tion in the DA output seen after haloperidol is mediat-
ed by autoreceptors localised on dopaminergic terminals
(Westerink and de Vries 1989). Nicotine did not alter the
effects of haloperidol on the DA output and metabolism.
Probably the reuptake mechanism is able to terminate any
enhancement of the output of DA induced by combined
haloperidol and nicotine. The enhanced DA output from
dopaminergic terminals induced by nicotine might also,
at least partly, antagonise the haloperidol-induced block-
ade of presynaptic DA receptors.

We have earlier shown that intranigral administration of
nicotine induces contralateral rotation in rats (Kaakkola
1980). Nicotine can also enhance levodopa-induced con-
traversive rotation in hemiparkinsonian monkeys (Domino
et al. 1999). These experimental findings indicate that nic-
otine or nicotine derivatives may have a therapeutic appli-
cation in Parkinson’s disease, as also suggested by others
(Quik and Kulak 2002; Rusted et al. 2000). There are sev-
eral case reports stating that nicotine may improve clini-
cal symptoms of parkinsonian patients (Fagerström et al.
1994; Kelton et al. 2000; Marshall and Schnieden 1966;
Villafane et al. 2001). However, in several studies chronic
nicotine has had no significant effect on parkinsonian
disability (Clemens et al. 1995; Ebersbach et al. 1999;
Vieregge et al. 2001; Zdonczyk et al. 1988). The negative
results may be related to desensitisation or inactivation of
nAChR subtypes, or tolerance to the effects of nicotine
in the striatal dopaminergic system (Grady et al. 1994;
Marks et al. 1993; Pietilä et al. 1995, 1996). To our knowl-
edge there are no clinical reports on the use of DA up-
take inhibitors alone or in combination with nicotine in
Parkinson’s disease, and this may be due to the abuse
liability of these compounds.

One solution to avoid desensitisation or inactivation
might be the use of more selective nAChR agonists. In

488



animal models of Parkinson’s disease several such ago-
nists have shown promising effects (Menzaghi et al. 1997;
Sacaan et al. 1996; Schneider et al. 1998). In addition, as
there are many types of nAChRs in the brain, the devel-
opment of subtype selective nAChR agonists would be one
way to further improve parkinsonian therapy, particularly
in the early stage of the disease. Several nAChR subtypes
are involved in the DA release in the nigrostriatal system.
On the dopaminergic terminals at least α3, α4, α5, α6, β2
and β3 subunits have been described and suggested to be
involved in the DA release (Kulak et al. 2002; Quik et al.
2002; Salminen et al. 2004; Wonnacott et al. 2000; Zhou
et al. 2001; Zoli et al. 2002). In addition, α2, α4, α5, α6,
α7, β2 and β3 subunits appear to exist on dopaminergic
cell bodies and dendrites in the substantia nigra (Arroyo-
Jimenez et al. 1999; Azam et al. 2002; Klink et al. 2001;
Quik et al. 2000; Sorenson et al. 1998). nAChR ligands
directed to α6* nAChRs might be particularly relevant for
Parkinson’s disease (Quik and Kulak 2002; Quik et al.
2003). On the other hand, α7* nAChRs may be a relevant
target as well, since their activation increases not only the
release of DA in the striatum (Kaiser and Wonnacott
2000), but also the levels of tyrosine hydroxylase mRNA
in the substantia nigra (Serova and Sabban 2002). These
effects may be indirectly mediated through α7* nAChR
activation on glutamatergic nerve terminals leading to an
increase in glutamate release and activation of dopami-
nergic cells (Kaiser and Wonnacott 2000).

In conclusion, our studies indicate that nicotine is able to
increase the striatal extracellular levels of DA, the effect
that is potentiated by DA uptake inhibitor nomifensine.
The potentiation is also observed at a behavioural level. No
such potentiation was found when nicotine was combined
with drugs affecting DAmetabolism (tolcapone, selegiline)
or inhibiting DA receptors (haloperidol). Thus, our find-
ings indicate that striatal DA released by nicotine is rapidly
inactivated by reuptake of DA into nerve terminals, and, as
discussed above, the role of COMT or MAO-B is minimal
in normal metabolic conditions in the rat striatum. Subtype
selective nicotine derivatives, possibly combined with a
DA uptake inhibitor, may have a therapeutic application in
the treatment of early Parkinson’s disease.
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