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Endogenous Opioid Release in the Human Brain
Reward System Induced by Acute Amphetamine
Administration
Alessandro Colasanti, Graham E. Searle, Christopher J. Long, Samuel P. Hill, Richard R. Reiley,
Darren Quelch, David Erritzoe, Andri C. Tziortzi, Laurence J. Reed, Anne R. Lingford-Hughes,
Adam D. Waldman, Koen R.J. Schruers, Paul M. Matthews, Roger N. Gunn, David J. Nutt, and
Eugenii A. Rabiner

Background: We aimed to demonstrate a pharmacologically stimulated endogenous opioid release in the living human brain by evaluat-
ing the effects of amphetamine administration on [11C]carfentanil binding with positron emission tomography (PET).

ethods: Twelve healthy male volunteers underwent [11C]carfentanil PET before and 3 hours after a single oral dose of d-amphetamine
(either a “high” dose, .5 mg/kg, or a sub-pharmacological “ultra-low” dose, 1.25 mg total dose or approximately .017 mg/kg). Reductions in
[11C]carfentanil binding from baseline to post-amphetamine scans (�BPND) after the “high” and “ultra-low” amphetamine doses were
assessed in 10 regions of interest.

Results: [11C]carfentanil binding was reduced after the “high” but not the “ultra-low” amphetamine dose in the frontal cortex, putamen,
audate, thalamus, anterior cingulate, and insula.

onclusions: Our findings indicate that oral amphetamine administration induces endogenous opioid release in different areas of human
rain, including basal ganglia, frontal cortex areas, and thalamus. The combination of an amphetamine challenge and [11C]carfentanil PET
s a practical and robust method to probe the opioid system in the living human brain.
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T he endogenous opioid system consists of three distinct opi-
oid receptors (ORs; �-, �-, and �-OR) and four families of
endogenous peptides (�-endorphin, enkephalins, dynor-

phins, endomorphins). It is thought to modulate many aspects of
human behavior, including the reward system (1), pain responses
(2), eating (3), negative emotions (4,5), and social behaviors (6).
Endogenous opioids have been implicated in the pathophysiology
of disorders such as chronic pain (7), depression (8), anxiety (4), and
borderline personality disorder (9). Furthermore, the endogenous
opioid system has been proposed to mediate impulsivity (10) as
well as the effects of multiple drugs of abuse (11).

Opioid receptors and peptides are highly expressed in brain
areas involved in reward and motivation, such as the ventral
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triatum, putamen, caudate, frontal and cingulate cortex, hypo-
halamus, amygdala, and ventral tegmental area. Other brain
reas with high OR expression are those involved in pain regula-
ion such as thalamus, insula, and periaqueductal grey (PAG)
12). Endogenous opioid signaling in the brain is hypothesized
o possess intrinsic rewarding properties and to mediate some of
he effects of psychostimulant drugs. Animal studies demon-
trating a facilitation of striatal dopamine (DA) release by OR
timulation (13–16) have led to the proposal that the mediation
f rewarding behaviors by endogenous opioids is secondary to
opamine release; however, human studies of interactions of
pioids with dopamine have been few, and no consistent find-

ngs have emerged (17–20).
Although opioid modulation of dopaminergic systems has been

ecognized, the dopaminergic modulation of opioid systems might
lso be important in mediating reward. Acute administration of
mphetamine, a monoamine-releasing agent, induces the release
f �-endorphin in the rodent ventral striatum (21) and increases
triatal enkephalin and dynorphin precursor messenger RNA levels
22). Clinical data support the role of endogenous opioids in medi-
ting the pharmacological effects of amphetamine, because the
pioid antagonist naltrexone attenuates the subjective effects of
mphetamine administered orally (23), and positron emission to-
ography (PET) studies have demonstrated a role for the opioid

ystem in the mechanisms underlying psychostimulant addiction
24,25). However, no direct evidence for induction of endogenous
pioid release by psychostimulants in the living human brain has
een reported.

Positron emission tomography can detect endogenous neu-
otransmitter release on the basis of the competition between syn-
ptic neurotransmitters and PET radiotracers at receptor level
26,27). [11C]carfentanil is a PET agonist radioligand with high and
elective affinity for �-opioid receptors (MOR) (28). Changes in the

rain binding of [11C]carfentanil after physiological and psycholog-
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ical interventions designed to induce the acute release of opioid
peptides have led to the suggestion that it is sensitive to endoge-
nous opioid fluctuations (2,5).

We investigated the interactions between monoamines and en-
dogenous opioids in the human brain in vivo by examining the
effects of single oral dose of amphetamine on the binding of
[11C]carfentanil. To control for the effects of expectation, we com-
pared the effect of a pharmacologically relevant dose of amphet-
amine with that of a pharmacologically inactive dose. We hypothe-
sized that that only the administration of the “active” dose of
amphetamine would result in an increase in the synaptic concen-
tration of endogenous opioids and hence a decrease of [11C]carfen-
tanil binding. We also evaluated the correlation between the sub-
jective effects of amphetamine administration and the changes in
[11C]carfentanil binding.

Ten anatomically defined regions of interest (ROIs) were chosen
a priori, on the basis of the known distribution of MOR (Figure S1 in
Supplement 1). The ROIs examined were: the ventral striatum, cau-
date, putamen, amygdala, thalamus, hypothalamus, frontal cortex
(including up to the primary motor cortex), insula, anterior cingu-
late cortex, and PAG. The brain areas where changes were predicted
include those involved in reward and motivation processes, such as
ventral striatum, putamen, caudate, frontal and cingulate cortex,
hypothalamus, and amygdala.

Methods and Materials

Study Design
This was a single-blind, nonrandomized, between-groups de-

sign study. Twelve healthy male volunteers (details in Supplemen-
tary Methods and Table S1 in Supplement 1) were examined with
[11C]carfentanil PET before and 3 hours after an oral administration
of either a high (.5 mg/kg, n � 6) or an ultra-low dose (1.25 mg total

ose or approximately .017 mg/kg; n � 6) of d-amphetamine. The
ltra-low dose was included to control for any effects of expecta-

ion of receiving amphetamine and was not expected to produce
harmacological effects (29) (Figure S2 in Supplement 1).

rocedure
All subjects received identical instructions and were told they

ere receiving an oral dose of amphetamine. Subjects underwent
agnetic resonance imaging (MRI) at approximately 9:00 AM. Ten of

the subjects underwent baseline and post-amphetamine PET scans
in the same day, 5 hours apart, at approximately 10:30 AM and 3:30
PM, respectively. In two cases, one within each dose group, the
post-amphetamine scan was done on the day after the baseline
scan, at the same time of day as the baseline scans. The oral dose of
d-amphetamine sulfate (Dexedrine, UCB) was administered on an
empty stomach 3 hours before the start of the post-amphetamine
scan. The choice of the time for the post-amphetamine scan was
based on the hypothesis that the expected effects on the opioid
system are secondary to monoamines released by amphetamine.
Amphetamine plasma levels after oral amphetamine administra-
tion reach a peak at 3 hours, and a previous PET study conducted
in our center demonstrated dopamine release at the same time
point (30).

Systolic and diastolic blood pressure and heart rate were mea-
sured 2 hours before the baseline PET scan, 30 min before amphet-
amine administration and immediately before and after the post-
amphetamine PET scans.

The subjective response to amphetamine administration was
rated by the subjects with a simplified version of the amphetamine

interview rating scale (SAIRS) (31). The SAIRS consisted in self-rat- b

www.sobp.org/journal
ngs for euphoria (“feel good”), restlessness (“feel like moving”),
lertness (“feel energetic”), and anxiety (“feel like moving”) on an
nalogue scale ranging between 1 (“least ever felt”) and 10 (“most
ver felt”). The SAIRS was administered at the following time-points
elative to amphetamine administration: 0 (before amphetamine
dministration), 1 hour, 2 hours, 3 hours (before PET scan), and 4.5
ours (after PET scan).

ET Protocol
Subjects were positioned in the PET scanner, after insertion of a

enous cannula in an antecubital vein, and a head-fixation device
as used to minimize head movements during data acquisition. All
ynamic [11C]carfentanil PET scans were acquired on a Siemens
iRez 6 PET/computed tomography scanner (Siemens Healthcare,
rlangen, Germany). A low-dose computed tomography scan was
erformed immediately before each PET study for subsequent at-

enuation and scatter correction. Dynamic emission data were col-
ected continuously for 100 min (1 � 30 sec, 6 � 15 sec, 3 � 60 sec,

� 120 sec, 5 � 300 sec, and 6 � 600 sec), after an intravenous
njection of a bolus over 20 sec of up to 350 MBq of [11C]carfentanil.

aximum injected carfentanil mass was .03 �g/kg. The synthesis of
11C]carfentanil has been described in details in Supplement 1.

Image data were reconstructed with filtered backprojection (di-
ect inversion Fourier transform) with a 128 matrix, a zoom of 2.6, a
ransaxial Gaussian filter of 5 mm, scatter correction, and attenua-
ion correction. All volunteers had structural MRI, performed on a
-T MR scanner (Magnetom Trio Syngo MR B13 Siemens 3T; Sie-
ens AG, Medical Solutions), including volumetric T1-weighted
agnetization-prepared rapid acquisition gradient-echo sequences.
ll structural images were inspected by an experienced clinical
euroradiologist (A.D.W.) for unexpected findings of clinical signif-

cance or features that might confound PET co-registration or quan-
itative analysis. No significant findings or features were observed
n any of the volunteers recruited into our study.

mage Analysis
Dynamic PET images were registered to the volumetric MRI

ataset of the subject and corrected for motion with a frame-to-
rame registration process with a mutual information cost function
SPM5b; Wellcome Trust Centre for Neuroimaging, http://www.
l.ion.ucl.ac.uk/spm).

Most of our prechosen ROIs (see introductory section of this
rticle) and the occipital lobe (used as reference region) were de-
ned with the ICBM152 template (http://www2.bic.mni.mcgill.ca),
eriving from an average of standard MRI brain scans from the
ontreal Neurological Institute, which was nonlinearly warped to

he high-resolution T1-MRI of each individual, with Statistical Para-
etric Mapping 5 (SPM5; Wellcome Trust Centre for Neuroimag-

ng). The deformation parameters derived were then applied to a
orresponding anatomical atlas (32) to bring this into the space of
he individual subject. Finally, the MRI image, ROIs, and warped
natomical atlas were resampled to match the PET image resolu-
ion. From the atlas, the ROIs were automatically defined with SPM5
32). Each ROI was then applied to the dynamic PET data to derive
egional time-activity curves. The exceptions were the ventral stria-
um, hypothalamus amygdala, and the PAG—small but important
egions that were manually defined on the MRI of each subject with
natomical guidelines. The definitions of “ventral striatum” and
hypothalamus” are as in previously published guidelines (32),
hereas “amygdala” and “PAG” are defined as in Supplementary
ethods and Figure S3 in Supplement 1.

Regional MOR availability was quantified as the [11C]carfentanil

inding potential (BPND) (33) with the simplified reference tissue

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www2.bic.mni.mcgill.ca
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model (34) with occipital cortex as reference region (Figure S1 in
Supplement 1). The occipital cortex has been used as a reference
egion in previous human studies with [11C]carfentanil (35), be-
ause it has a very low concentration of MOR (36). In a study con-
ucted in our laboratory, blockade with MOR antagonists induced a
eneralized, dose-dependent reductions in [11C]carfentanil BPND,

which was observed in all ROIs except the occipital cortex, justifying
its selection as a reference region (3). Furthermore, an excellent
test-retest reliability of [11C]carfentanil uptake has been previously

bserved in the occipital cortex (37).
The binding potential relative to the nondisplaceable compart-

ment (BPND,Equation 1) is equal to the product of concentration of
available receptor sites (BA), affinity of ligand for the target (1/KD),

nd the free fraction in the brain (fND):

BPND�fND

BA

KD

(1)

The magnitude of endogenous opioid release induced by the
administration of d-amphetamine in each ROI was inferred from the
fractional reduction in BPND (�BPND).

�BPND �
BPNDBaseline � BPNDPost Amphetamine

BPNDBaseline

(2)

Differences between baseline BPND and post-amphetamine
BPND were analyzed by means of two-tailed t test for paired sam-

les, separately for each amphetamine dose group. Differences in
BPND between high- and ultra-low-dose groups were tested with

two-tailed t test for independent samples. An analysis of variance
or repeated measures to study the effect of the interaction of time �
roup on BPND, with baseline BPND and post-amphetamine BPND as
ependent variables and amphetamine dose group as between-sub-

ect factor was also conducted. The level of significance for all the
nalyses was set at .05. Data were normally distributed as determined
y visual inspection and the Kolmogorov-Smirnov and Shapiro-Wilk

ests for normality.
In addition to the predefined regional level analysis, exploratory

oxel-level analysis was performed to examine the between-group
ifferences in �BPND, with permutation-based nonparametric in-

ference (Methods in Supplement 1).

nalysis of Physiological and Subjective Responses
The effect of the time � group interaction on heart rate, systolic

nd diastolic blood pressure, and subjective measures has been
ested with analysis of variance for repeated measures. For the
igh-dose group only, we studied the correlation (Spearman’s non-
arametric correlation) between the magnitude of the subjective
ffects induced by amphetamine and regional �BPND. The magni-
ude of the subjective effects was computed by calculating the
ifference between the rating scores at 3 hours after amphetamine
dministration and the baseline rating scores (� scores).

Results

High baseline [11C]carfentanil binding was observed in the ven-
tral striatum, caudate, putamen, thalamus, and cingulate cortex.
Other areas with baseline [11C]carfentanil BPND � 1 were the hypo-
halamus, amygdala, insula, PAG, and medial orbital cortex (Figure
1 in Supplement 1).

Effects of Amphetamine on [11C]carfentanil Binding
Regional �BPND ranged between 10.2% and 2.1% in the high-

dose group and between 6.7% and �2.3% in the ultra-low dose

group (see Table S2 in Supplement 1 for further details). p
The high dose of amphetamine led to reductions in BPND in the
utamen, caudate, frontal cortex (p 	 .0001), thalamus, insula, and
nterior cingulate (p 	 .005). No increases in BPND were observed
fter the high amphetamine dose. The reductions in BPND in the
utamen (p 	.01), thalamus, and frontal cortex were greater in

he high- than in the ultra-low-dose group (p 	 .05) (Figure 1).
elative differences in �BPND between groups showed similar
rends in the ventral striatum, caudate, insula, and anterior cingu-
ate cortex but did not achieve statistical significance (.05 	 p 	
09). No evidence for group differences in �BPND was observed in
he hypothalamus, amygdala, and PAG.

The results of an exploratory whole-brain, voxel-wise analysis
ere consistent with the a priori regional analysis, demonstrating
igher �BPND in the putamen; ventral striatum; caudate; thalamus;
rbitofrontal cortex; and superior, medial, inferior, and precentral

rontal gyri for the high-dose group (p 	 .05, corrected) (Figure 2,
able S3 in Supplement 1).

ffects of Amphetamine on Physiological and Subjective
arameters

We observed significant increases from baseline in heart rate
fter amphetamine and systolic and diastolic blood pressure in the
igh-dose group, whereas in the ultra-low-dose group, no effect of
mphetamine on physiological parameters was observed (Table S4

n Supplement 1). The changes in heart rate over time were greater
n the high-dose group relative to the ultra-low-dose group, with
ignificant group differences in the within-subjects contrasts be-
ween post-amphetamine time points (
3 hours and 
6 hours)
nd baseline (0 hours) (p 	 .0001) (Figure S2 in Supplement 1).
imilarly, the increase over time in systolic blood pressure was
reater in the high-dose group (p 	 .05), whereas the between-
roups difference in the change in diastolic blood pressure did not

each statistical significance (p � .07).
The changes in subjective ratings after amphetamine admin-

stration are presented in Figure S4 in Supplement 1. A mild
ncrease in euphoria and alertness ratings was observed after
mphetamine administration, which did not reach statistical sig-
ificance. The increase in euphoria was more evident in the
igh-dose group, although the effect of time � group interac-

ion was not significant. A decrease in anxiety ratings after am-
hetamine administration— greater in the high-dose group (p 	

05)—was observed, but the restlessness ratings did not change
Figure S4 in Supplement 1).

An exploratory analysis of the relationship between change in
ubjective ratings and regional �BPND showed significant positive
orrelations between �euphoria and �BPND in the ventral striatum
Figure S4 in Supplement 1), between �anxiety and �BPND in the
utamen, and between �restlessness and �BPND in the thalamus.

iscussion

We have demonstrated a reduction in the binding of [11C]car-
entanil to the MOR in the human basal ganglia, thalamus, and
rontal cortex after an administration of a pharmacologically rele-
ant dose of d-amphetamine. Our results are consistent with pre-
linical evidence that amphetamine induces a significant increase

n the extra-neuronal concentration of opioid peptides with high
ffinity for MOR (21,22). The availability of the MOR to bind [11C]ca-
fentanil can be reduced by the release of a variety of opioid pep-
ides that have relatively high affinity for MOR, including �-endor-
hin, endomorphins 1 and 2, met- and leu-enkephalins, and
ynorphin B (Table S5 in Supplement 1).

The high and ultra-low amphetamine doses were chosen to be

harmacologically active and inactive, respectively. The high am-

www.sobp.org/journal
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phetamine dose, .5 mg/kg, has been shown to induce a release of
dopamine detectable with PET (38). In contrast, a total oral amphet-
amine dose of only 1 mg was found to be pharmacologically inac-
tive in humans (39), and a threshold of .07 mg/kg was proposed for
pharmacological effects of amphetamine (29). In our subjects, the

Figure 2. Differences in �BPND between high and ultra-
ow amphetamine dose groups at the voxel level. (�BPND

igh � �BPND ultra-low; corrected for multiple comparisons).
Parametric statistical testing was carried out at the level of
spatially contiguous supra-threshold voxel clusters, while
controlling the family-wise probability of type 1 error at
p 	 .05, corrected).
www.sobp.org/journal
igh dose of amphetamine induced increases in heart rate and
ystolic and diastolic blood pressure, whereas the ultra-low dose of
mphetamine produced no effects on physiologic parameters, pro-
iding support for our choice of doses.

We observed amphetamine-related changes in [11C]carfentanil

Figure 1. Regional analysis of [11C]carfentanil binding po-
tential (BPND) across amphetamine dose groups. High
dose: .5 mg/kg amphetamine; ultra-low dose: 1.25 mg or
.017 mg/kg amphetamine. Left panel displays individual
BPND, before and after amphetamine. The right panel dis-
plays �BPND. Bar and markers indicate mean and individ-
ual values, respectively. *p 	 .0001; †p 	 .005 (paired
samples two-tailed t test); °p 	.01; §p 	 .05 (independent
samples two-tailed t test).
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BPND in anatomical regions known to be rich in opioid projections.
Opioid neuron fibers positive for �-endorphin, originating in the
arcuate nucleus of the hypothalamus, are abundant in all dien-
cephalic structures (40) and have also been described in the whole
striatum (41). Small groups of neurons in the frontal cortex, partic-
ularly in the cingulate and superior and medial frontal gyri, have a
high density of �-endorphin afferents (42). Enkephalin-containing
cell bodies and fibers are widely distributed in the striato-pallidal
regions and in the diencephalon (41). Endomorphinergic, espe-
cially endomorphin-1, fibers are also highly distributed in striatal
and thalamic regions (43). However, not all regions with rich opioid
innervation displayed the effects of amphetamine. It is not clear
why significant changes in [11C]carfentanil BPND were not seen in
regions such as amygdala, hypothalamus, and PAG, where high
levels of endogenous opioid terminals have been described (41,43).
t is possible that amphetamine-related changes in opioid levels

ight only occur in areas with significant expression of monoam-
nergic transporters, which are the primary targets of amphet-
mine. It is also possible that changes in [11C]carfentanil BPND in the

reference region, induced by amphetamine, might have led to
lower measures of �BPND (Discussion in Supplement 1). Because we

sed simplified reference tissue model as a method for the quanti-
cation of the BPND instead of direct measurement of the arterial
lasma input function, we can’t rule out this possibility.

In situ hybridization studies have shown that amphetamine
dministration is associated with increased synthesis of endog-
nous opioids (22), but there is no evidence of a direct effect of
mphetamine on the release of peptides from opioid-synthesiz-

ng neurons. It is very unlikely that amphetamine competes
irectly with [11C]carfentanil. We have examined the affinity of
mphetamine at MOR by performing an in vitro receptor binding
ssay in rat brain tissue (Methods in Supplement 1). Our data
uggest that the affinity of amphetamine at MOR is �100
mol/L, whereas the affinity of amphetamine for the dopamine

ransporter (DAT) in cultured intestinal cells was found to be 150
imes higher at approximately .64 �m (44), suggesting that di-
ect occupancy of the MOR by amphetamine is very unlikely to
ead to the changes in [11C]carfentanil BPND we observed. An

amphetamine dose occupying �1% of MOR would produce an
occupancy at DAT approaching 100%, which we do not believe
would be tolerable in vivo in humans.

The amphetamine challenge is not believed to directly in-
duce opioid release. Amphetamine administration leads to re-
lease of a variety of monoamines, including DA, norepinephrine
(NE), and serotonin (45). There are strong grounds to implicate
DA specifically as the primary mediator of amphetamine for
endogenous opioid release. Cocaine-induced release of �-en-
dorphin in the ventral striatum is attenuated by a blockade of the
DA D2 but not D1 receptors at hypothalamic level (46,47). The DA

1 and D2 receptor families on striatopallidal �-aminobutyric
cid-ergic medium spiny neurons also modulate the synthesis of
nkephalins and dynorphins, respectively (48). Finally, DA and

DA-agonists but not NE enhance the efflux of met-enkephalin
from striatal slices (49). Our data therefore support the notion
hat the brain dopaminergic system modulates opioid neu-
otransmission.

Because we believe monoamines have a role in mediating the
ffects of amphetamine on opioid release, the anatomical distri-
ution of monoaminergic terminals is a factor to consider in the

nterpretation of our findings. The distribution of the observed
mphetamine-induced changes in [11C]carfentanil BPND over-

aps partially with the known distribution of the DAT and dopa-

inergic tracts. The DAT is highly expressed in the putamen, n
audate, and ventral striatum and to a lesser extent in the frontal
ortex, cingulate cortex, insula, and thalamus. In fact, DAT levels
re significantly lower in regions outside the striatum and mid-
rain (50�52). Although there is a different order of magnitude

n dopamine in the frontal areas and striatal regions, similar
hanges in [11C]carfentanil BPND across these regions have been
bserved. This is particularly of interest, because the involve-
ent of other monoamines might be important in brain regions

ther than striatum, with the insula and the anterior cingulate
ich in the serotonin transporter and serotonin receptors (which
re also highly expressed in the striatum and thalamus) (53),
hereas the norepinephrine transporter is highly expressed in

he thalamus (54). However, the relationship between mono-
mine release and endogenous opioid release might not be
traightforward. Opioid release might occur in close proximity to
he release of monoamines, such as DA, or can occur distally, via
he effects of monoamines on long tracts. Our study cannot
nform on the exact mechanisms underlying monoamine-in-
uced opioid release.

We had to exclude the possibility of a direct occupancy of the
OR by nontracer amounts of [11C]carfentanil being responsible

or our results. We examined the relationship between the injected
ass of carfentanil (range .16 –2.33 �g) and BPND at baseline in 37

ubjects examined in our center over the past 2 years. We found no
orrelation between the injected mass and [11C]carfentanil BPND in
his dose range (Figure S6 in Supplement 1). Thus, despite some

inor differences in injected mass between baseline and post-
mphetamine scans (Table S1 in Supplement 1) and some statisti-
ally significant differences in injected mass at both baseline and
ost-amphetamine scans between groups (higher injected mass in

he ultra-low relative to the high-dose group), we believe that the
njected mass of carfentanil is not a significant factor in the inter-
retation of our data. Thus, we are confident that the effects re-
orted here are mediated through the action of monoamines and,
ore specifically, DA.

The study of the relationship between subjective effects of am-
hetamine and changes in [11C]carfentanil binding was limited by
ur small sample size and has to be considered as preliminary. The
resence of a trend indicating a positive correlation of �euphoria to
BPND in the ventral striatum (Figure S4 in Supplement 1) is consis-

ent with the notion that the euphoric effects of amphetamine are
ediated by release of endogenous opioids (Discussion in Supple-
ent 1).

In conclusion, we have characterized an amphetamine chal-
enge in the context of a [11C]carfentanil PET study as a practical and
obust method to probe the opioid system in the living human
rain. This represents the first direct demonstration of pharmaco-

ogically stimulated endogenous opioid release in the living human
rain. The application of this methodology to patient populations
as the potential to elucidate the role of opioid peptides in neuro-
sychiatric disease more broadly.
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