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Abstract Optimal experimental design can be used for optimizing new pharma-
cokinetic (PK)-pharmacodynamic (PD) studies to increase the parameter precision.
Several methods for optimizing non-linear mixed effect models has been proposed
previously but the impact of optimizing other continuous design parameters, e.g. the
dose, has not been investigated to a large extent. Moreover, the optimization method
(sequential or simultaneous) for optimizing several continuous design parameters
can have an impact on the optimal design. In the sequential approach the time and
dose where optimized in sequence and in the simultaneous approach the dose and
time points where optimized at the same time. To investigate the sequential
approach and the simultaneous approach; three different PK-PD models where
considered. In most of the cases the optimization method did change the optimal
design and furthermore the precision was improved with the simultaneous approach.

Keywords Optimal design - Simultaneous optimization - Dose optimization -
Pharmacometrics

Introduction

Population pharmacokinetic (PK) models are becoming increasingly important in the
drug development field. These models can be used to describe experiments already
performed, and perhaps more importantly, these models can be used to predict what
will happen in new trials. The models can be used to predict concentrations for new
individuals, predict outcomes based on a pharmacodynamic (PD) model, etc.
Population models can also be used as prior information to optimal experimental
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designs which can optimize the designs for new studies based on a prior model.
These designs optimize the study design parameters to provide as much information
as possible on the parameters of the model. The methods for computing optimal
experimental designs using non-linear mixed effects models was first elaborated by
Mentré et al. [1, 2], and since then the method has mostly been used to optimize the
measurement times of an experiment [3] or the number of individuals in a study [4].

However, optimal design theory does not limit the type of design variables we can
optimize to improve the information content of our experiment. In theory any design
variable could be optimized. Examples of other optimization parameters are dose,
infusion duration of a drug, wash-out period length for disease progression studies,
start and stop time of studies, titration schemes, etc. In fact, non-time type design
variables are often more crucial to select appropriately. Ideally both sample times
and other design variables ought to be optimized. Most of the current population
optimal design software does not support optimization on design parameters other
than time and therefore little research about optimizing on these parameters has been
done [35, 6]. In this paper the two design variables we choose to optimize on are dose
and sample times. This joint optimization could be applicable very early on in drug
development as well as for late phase studies of a drug. Examples are: screening
experiments where optimal doses (concentrations) and sampling times for the
screening of the drug candidates could be optimized, disease progression studies
where a dose and sample time could be optimized to give a certain power. Further, in
highly standardized tests like the glucose tolerance tests, optimization of dose and
sample times could be applicable and increase the efficiency of the test.

Optimization on design parameters other than sampling times could be of great
importance, especially when optimizing on PK—PD models or when the elimination
of the PK model is non-linear. In PK-PD or only PD models the dose could be
crucial to reach the desired effect. For example, with a typical Emax dose-
concentration-effect model a certain dose has to be given to achieve good
knowledge about the maximum effect. A less trivial optimization problem is to
select a dose that gives good estimates of the concentration at 50% of the maximal
effect (EC50) and in this situation optimal design theory could be very helpful.

As mentioned above, the correlation between measurement times and other
design parameters (such as dose) could play a crucial role in designing an
experiment. Considering the dose-concentration-effect Emax model, the optimal
times to measure concentrations and effects so as to gain information about the
EC50 parameter will obviously be dependent on the dose given. Similar to the
estimation problem with PK/PD models where PK and PD parameters can be
estimated sequentially and simultaneously [7], one can envisage a range of
simultaneous and sequential approaches to optimize on different design parameters
(e.g. sample times and dose).

The aim of this paper is to investigate some of the methods available in optimal
design for optimizing over other design variables in addition to measurement times.
To do this we investigate various examples where dose and measurement times can
be optimized and the optimization of dose is not trivial (mostly non-linear models).
We then approach the optimal design calculations with both simultaneous and
sequential methods and explore the resulting optimal designs.
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Methods
The population model

The ith individual responses from a non-linear mixed effects model (e.g. a
population PK-PD model) can be described as

f1 (?iuﬁn) +hy (?n, Bilygil)
)_;i = f(ﬂvﬁi) +h(;}7ﬁi7§i> = : (1)
fj (?ija Bij) +h; (;ija Bijs 5;7)

where f;( ) is a function that describes how the response j change with the exper-
imental variables, ?,-j is the ith individual vector (arrow indicates vector) of design
variables belonging to response j (e.g. PK sampling times). The model parameters
for the ith individual are functions of the typical values in the model 5, the between
subject variability (BSV) of the ith individual 7#j;, and the covariates (e.g. dose,
weight, etc.) for that individual @, i.e. f; = (0,7, @ ). The function h;( ) repre-
sents the residual error model for response j, ZU is the vector of residual error terms
for the ith individual response j. The residual error is normally distributed with
mean zero and a variance of X, i.e. &; ~N(0, X). It is also assumed that the mea-
surement errors are independent (even though that is not necessary as in
Gueorguieva et al. [8]) but they are functions of the experimental variables and the
model parameters. Hence the variance matrix for the measurements can be defined
as

r= (2)

where n is the number of residual error parameters in all of the responses. The BSV
is assumed to be normally distributed with a mean zero and a variance of Q
(n; ~N(0,€)). In this work we assume that the 7#j; are independent from each other
(although this restriction is not required, see [8] for an example) and independent
from the residual variability:

»? 0

0 on
where k is the number of BSV parameters in all responses. Note also that it is
possible within this framework that some responses share the same residual

variability (e.g. o« = 0,4) and also that the design variables for some responses are
coupled in the optimization (e.g. f;,k,i = ?pd7,~), however this is not the case in this

paper.
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Fisher information matrix

In general, optimal design theory is based on the Cramer-Rao inequality which
states that the inverse of the Fisher information matrix is a lower bound for the
variance-covariance matrix of the parameters in a model. The population Fisher
information matrix (FIM) for population models was first proposed by Mentré et al.
[1] and further developed and improved by Retout et al. [2, 9]. In this work we
compute the FIM using the approach described by Forracchia et al. [5] with some
modifications (described below). The Fisher information matrix is defined as the
expectation value of the second derivative of the negative joint log likelihood
function with respect to the estimated parameters:

o*L(8)

0000

4)

where © = {(3, @, 62} is the vector of the parameters to estimate in the population
model. To guarantee”that the random effects are normally distributed we must
linearize both f( ) and h( ) with respect to the random effects (1 and ¢). In this
treatment we linearize about the mean values (y = 0 and ¢ = 0) as in the FO
method from NONMEM [10, 11]. It has been shown [12] that the prediction from
the FO approximation in optimal design calculations correlates well to the standard
errors computed by NONMEM [11] using the FOCE method or Monolix [13] using
the SAEM algorithm. Linearizing around #; = 0, & = 0 we get:

~ f(f},g(a, ii; =0, Zii>) + Li<?i7g(-)) 1 + Hi(?iag(')a ?',) " & ®)

where

and

H; (?,-,g(@ ﬁi7a’i)7a) = 2_?’, (?i,g(@ ﬁnai)T’Ei)

In this linearization we allow for any residual variability error model and follow
the linearization performed by Beal [11]. This is an extension of the previous FIM
calculations [3, 5, 8, 9] which only allow for additive and proportional error
structures. Now the mean and the variance of the linearized model can be defined

Es ) ~ (1,2 (0.7, = 0.a@)) (®)

Var(y;)) ~L-Q-L" + diag(H- X -H") 9)

71;=0,6=0

The individual Fisher information matrix depending on the parameters © and the
design variables X; = [E},Eii] may now be written as [5]
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The population FIM is the sum of the individual matrices in an experiment. If we
assume that certain groups of individuals in a study will all have the same design
(and the same covariates) then all these individuals will have the same FIM and
hence the FIM for a number of groups may be defined as:

FIM()?, é) - zm:FIM,- (55 @) - igi - FIM; ()? @) (15)
i=1 i=1

where N, is the number of groups, g; is the number of individuals in group i and

Ng
m=73_ g

i=1
D-optimal design

In d-optimal design the determinant of the Fisher information matrix, }FIM X, e) ,
is maximized, and hence, by the Cramer-Rao inequality the expected variance-
covariance matrix will have the lowest possible asymptotic lower bound when
estimating parameters. By optimizing with the determinant all possible perturba-
tions of the elements in a matrix, i.e. the off-diagonals in the FIM, are considered.

Comparing designs

When comparing different designs the efficiency is the most common metric. The
efficiency for d-optimal design is defined as in Atkinson—-Donovev [14],
1/p
‘FIM (x] , é) ’
= (16)

where X; and X, are two different designs, © are the model parameter values and p

are the number of parameters in the designs. This is a good measurement, however it
does not reflect the number of parameters in the model except as an average. For
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example an efficiency of 95% when having a few parameters in the model might be
quite similar to the optimal design but the same efficiency could reflect a larger
imprecision of the model in general if the model has a large number of parameters.
In this work only designs from the same model with the same parameter values e}
are compared, therefore the ratio of the |FIM| for different designs will mainly be
used as a measurement.

)FIM (zl , (?)) ‘
FIMmtio = D’éjf =

‘FIM (552, (3))‘ )

Simultaneous and sequential optimization

Optimization of design variables can be done one at a time, i.e. sequentially, where
for example optimization on dose and sample times could be performed by
optimizing on dose first, then sample times or by optimizing on sample times first
and then doses. By optimizing sequentially we reduce the solution space, but also
reduce the chance of finding the true optimum.

In the simultaneous approach, similar to the methods presented by Hooker et al.
and Zhang et al. [7, 15], all design parameters are optimized at the same time, i.e.
within the search algorithms. This, in some circumstances discussed later, allows for
a more global search. For example the gradient of the FIM used in the optimization
search will be pointing in both the dose and the sampling times steepest descent at
the same time.

Three different optimization approaches were considered in this work for the
optimization of doses and sample times:

1. TID: Fix the doses, optimize on sample times, then fix the optimal times and
optimize on doses.

2. DIT: Fix the sample times, optimize on doses, then fix the optimal doses and
optimize on sample times.

3. T,D: Optimize on doses and sample times at the same time.

The difference between the approaches can be seen in Fig. 1 where the peak
corresponding to the true optimum will only be guaranteed to be chosen in the
simultaneous approach, if a global optimization is assured, but not in the sequential
approaches.

The optimization algorithms used were first a random search with adaptive
narrowing (RS) with 300 iterations (narrowing after 50 iterations) followed by a
Steepest Descent (SD) optimization with 150 iterations and finally a line search (LS)
method with 50 iterations for each design variable to be optimized. The LS algorithm
is performed by dividing the design space in each dimension in 50 equal sizes and the
algorithm finds the best (e.g. highest determinant) criterion out of those 50 values. This
is done sequentially for each design variable. The optimal design was said to be found
if the LS did not change the optimal design given by the SD, otherwise the method
re-started with the RS, SD and LS until convergence. These methods are presented in
more details in Forrachia et al. [5] and are all standard settings in PopED [5].
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Fig. 1 The surface of the determinant of the FIM for an Emax dose-concentration-effect model. The left
panel shows the determinant of FIM as a surface with the corresponding view from above in the right
panel. It can be seen that a TID approach with an initial dose of 2.5 mg will get 1 h as the optimal time
and hence get the peak marked with a ring as the optimal determinant. The T,D approach will instead get
the true optimum at time 0.6 (h) with a dose of 1 mg marked with an arrow

For the SD method the simultaneous approach (T,D) will point in both the dose
and time derivative direction but the sequential approaches will point in one of these
directions at each iteration, depending on time-first or dose-first. Similarly; for the
RS and LS methods T,D will search in both the time and the dose dimension while
the sequential methods will only search in either the time dimension or the dose
dimension within an iteration.

Examples

Three examples were evaluated to cover different models and different approaches
for the optimization. In all of the examples the residual variability terms were
assumed fixed and known (as previously assumed by Forrachia et al. [5]). In
general; it is quite easy to have precise parameter estimates of residual variability
parameters compared to e.g. between subject variability parameters and are
therefore excluded as parameters in the Fisher information matrix. All the
optimization was performed in the Matlab version of PopED [5], available free of
charge at http://poped.sourceforge.net. The different design setups in the examples

Table 1 Design setups

Design setup Model Model Model
1 2 3
(a) Sample times different between groups, no placebo dose X X X
(b) Sample times the same between groups, no placebo dose X X -
(c) Sample times different between groups, placebo doses for PD X X -
measurements
(d) Sampling times same between groups, placebo doses for PD X - -
measurements

All design setups (a, b, ¢ and d) had the initial sampling times spread evenly within a group and the initial
doses spread evenly between different groups. For each setup, designs were calculated for 1-5 groups
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are presented in Table 1. The number of groups in the optimization differed
between one group and five groups. All design setups had the initial sampling times
spread evenly within a group and the initial doses spread evenly between different
groups. To minimize the risk that a local minimum was found the setup was opti-
mized five times for each of the sequential and simultaneous approaches.

Three specific (widely used) models were used and they were chosen to have a
non-obvious dose (non-linear in the dose-response). As described above numerous
numbers of groups, doses, sample times and grouping of samples and doses was
investigated to cover as large design range as possible.

Model 1: intravenous PK, E-max PD model

In this example a one-compartment PK model with bolus input followed by a direct
Emax PD-model is used. This model was also investigated by Hashimoto and
Sheiner [16]. The PK model in mg/l for the ith subject is a one compartment
intravenous bolus dose model with a proportional residual variability according to

L2 Dose; iz
V. lpki
fp (fpk,uﬁi) = e Vit
Vi

hpk (;;ak,iv Bi? gpk,i) = lpk (fpk.,h ﬁz) ! gpk,i ’ (18)
gpk,i ~N (0, J;k)

where 7, ; is a vector with the PK sample times for subject i and B,- is a vector with
the ith subjects model parameters and covariates.

The ith subjects parameters for clearance (CL;) and volume of distribution (V)
has an additive normally distributed BSV term.

The pharmacodynamic (PD) model was characterized by an Emax model with an
additive residual variability and its connection to the PK model for the ith subject is

for (?,,k,i, B,) + hy (i;:k,ia Bi. gpk.,i)

fpa (7pd_,-, E,) + hpa (?pk,h B, 5pd-,i)
Emax; - f1 (?pdﬁh B,)
ECso; + fpr (?pd.,ia Bz) 7
hpa (ﬁ;d.i; B gpdﬁi> = i

B ~ N<O, af,d)

The typical values for the PK model drove the concentration input to the PD
model (i.e. in a first order (FO) way). Similar to the PK part of the model the
parameters for the PD model have an additive BSV. Emax; represents the maximal
effect for subject i, ECs; is the concentration at 50% of the effect and Ey; is the
baseline of the effect. The parameter values for the model can be seen in Table 2.

Yi =

fpq (;;Jd,i; ﬁz) =Ey; +
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Table 2 The model parameter

values for Model 1 Variable Value
Oc 0.50 (I/h)
Oy 0.20 (1)
Omax 1.00
Orcs, 1.00 (mg/1)
O, 1.00
o 0.01 (I/h)?
w} 0.0016 (1)*
O 0.01
OFc, 0.09 (mg/1)>
The random parameters, the ‘”éo 0.09
between subject variability o’ aﬁk 0.15
and the residual variability 62, gid 0.15

are entered in variance units

The doses limits in the optimization were 0.5-5 mg for setup a and b, and 0-5 mg
for setup ¢ and d. The PK and PD sample times were limited to be taken within 0—
1 h.

Four different design setups were evaluated for this model. For each of the four
setups the optimal design was calculated for 1-5 groups of 20 individuals. The
number of samples per group was always five, where two of the samples belonged
only to the PK model and three were dedicated to the PD model. To ensure that
numerical approximations did not affect the result each setup was calculated with
analytic derivatives instead of numerical differences.

Model 2: oral PK, E-max PD model

A one-compartment model for oral administration of theophylline [17] is used as the
2nd example. The PK model is followed by a direct linked Emax PD model as in the
previous example (Eq. 19).

The PK model has an additive and a proportional residual variability term. The
ith subject has a PK-response according to

Tk (?pk.h B,) = —Dosei Kai - ke . <e_ke-i'?ﬁk-f — e_k“-i'?nk.i)
’ CL; - (ka,i - ke,i)

hyi (tpk.iaﬁhgpk,i) = Ipk (fpk,hﬁi) * Epky,i T Epkyi
g i~N(0,02

pky i s Y pk,

Zxi~N(0,02

Pkpi s ¥ pk,

where ?pkvi is a vector with the PK sample times for subject i and B,- is a vector with
the model parameters and the covariates for the ith subject. As in Model 1 the link
between the PK model and the PD model was a first order link. CL; is the clearance
for subject i, k,; and k, ; are the rate constants from the absorption compartment into
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the central compartment and the elimination rate constant from central compart-
ment. All the parameters in the PK model have exponential BSV.

The pharmacodynamic (PD) model was characterized by an Emax model with an
additive residual variability and its connection to the PK model for the ith subject is

Emax; - (?pd,h Bz)
ECso; + i (?pd.h ﬁl) ) (21)
hpa (E;Jd,ia Biv gpd-,i) = g17d-i ~N (O’ 612%1)

The PD model has an additive BSV on all parameters. The parameter values are
shown in Table 3.

Three different setups were evaluated for this model (a, b and c, see Table 1).
The doses were the same for the different setups, i.e. a single dose of 1-10 mg for
all groups. The number of individuals in a group was fixed to 4. The time points
(three PK samples and three PD samples) were restricted to be in the range of
0-25 h for both the PK and the PD model. In setup (c) only two PK and two PD
samples were allowed, the samples times for the PD measurements in this setup
were 7,4 = [0, 120].

fpa <?pd,n ﬁi) = Ep; +

Model 3: intravenous PK with Michaelis Menten elimination

The one-compartment PK model with Michaelis Menten elimination and a
combined additive and proportional residual variability term is used in this
example. The PK model is defined by the equation

Table 3 The model parameter

values for Model 2 Variable Value
Ocr 0.0373 (I/h)
0, 2.71 (1/h)
Or, 0.0763 (1/h)
OEmax 1.00
Oecy, 1.00 (mg/1)
Ok, 1.00
o 0.0238
of, 0.7840
W} 0.0185
O 0.09
OFc, 0.09 (mg/1)*
wF, 0.01
The random parameters, the “;2;/(,, 0.15
between subject variability w? o 0.419 (mg/1y*
and the residual variability ¢* 0;2;(1 0.15

are entered in variance units
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Yi(?iaﬁivgl) = Pk(?iaﬁt) + by (E&Bi»@)
o Al,i(?i,Bi)

ok (ti; ﬁi) = T

hyi (E,Bngi) = tpr (&Bi) Bk i Epkyi

dA;; (?17 ﬂi) Vmax; - Ay

dr T Kmi+ Ay
Zpi~N (0, ajka)
Epk,i ~ N (O, O’zkp)
with the closed form solution found by Beal [17]
Ay (71, Bl) = Km; - F(X(?ia B,)) (23)
where the function F satisfies the equation y - ¢’ = ¢* and

- Ay (0, ﬁz) Ay (07 ,7);1) Vmax;
X(? ) —1 ' _max g 24
i n K, + Km: Kim; (24)

where the initial amount in compartment one at time zero is Aj; (07 Bl> = Dose;
(units). The concentration of subject i is fp; (?,, ﬁ,) (units/1). The maximal rate

constant is given by Vmax; (units/h), the Michaelis Menten constant is represented
by Km; (units) and the volume of distribution is denoted V; (1). All parameters in the
model have an exponential BSV term. The function F was solved in an iterative way
using Newton’s method with a precision of £ ~ 107, The parameter values used for
this model are presented in Table 4.

Only one setup was investigated with this model (a, see Table 1). The dose in this
setup was Dose; € [10,500] (units) with one dose per group. Three time points for
each group were considered and were constrained 7; € [0,2] (h). There were 20
individuals in each group.

Table 4 The model parameter

values for Model 3 Variable Value
Ovimax 182 (units/h)
Okm 73 (units)
Ov 6 (1)
@2, . 0.01
%, 0.01
»? 0.01
a2 0.01
The random parameters are ng,, 1 (units/1)®

shown in variance units
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Results

The five optimizations for each approach and group certified that an optimal design
was found since it did not change the determinant of the FIM more than ~ 1.5% for
Models 1 and 3 on average. For Model 2 the average change in the optimization was
6%. In all cases the largest determinant of the Fisher information matrix was chosen
as the optimal design.

Model 1

The optimal dose and sampling schedule for the 5 group designs in setup la are
shown in Fig. 2. In all cases the PK sampling times were the same but the optimal
PD sampling schedule and the optimal doses to give were different.

The ratio Deff? between the sequential and simultaneous |FIM| values for the
three different optimization approaches is shown in Fig. 3. It can be seen that it is
always at least as informative and often more informative to optimize with the
simultaneous approach. The time first approach (TID) seems, in general, to be more
similar to the simultaneous approach (T,D) than the dose first (DIT). The results
from setup 1c and 1d is not presented in the figure to make the figure easier to
overview but these setups showed similar trends as the setup la and 1b (see
Appendix 3).

Model 2

As seen in Fig. 4 the time first-approach (TID) does not seem to suffer anything in
efficiency compared to the simultaneous approach (T,D) for the setup 2b, while the
setup 2a, time-first (TID), with only two groups, is much more inefficient than the
simultaneous approach. The dose-first (DIT) approach is always less efficient than
the simultaneous approach (T,D). The result from setup 2c is excluded in the figure

fffffff D SORRRRREEEEEEEEat JENNIEED TECEEEEEEEEEEE R 2
4 1 10 2 2 1
6 9. 2 2.0
4 22 7 3 2
0 ® @
0 0.5 1 0 0.5 1 0 1 2 3 4 5
PK times (h) PD times (h) Dose (mg)

Fig. 2 The optimal sampling schedule and dose for design setup la with five groups. The PK optimal
sampling times are seen to the left. The PD sampling times are seen in the middle and the optimal doses
are to the right. The optimal sampling times and the doses are clustered together for all the groups. That
is, a 6 means that six samples are taken at the same or very close time point. Two PK samples were
available per group which gives a total of ten PK samples per approach. Similarly; three PD samples were
taken per group which gives a total of 15 PD samples per approach. Finally; one dose was given per group
which gives a total of 5 doses per approach
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Fig. 3 Fraction of the simultaneous (T,D) D-optimal FIM for Model 1. The TID approach for setup 1b is
similar to the T,D approach, i.e. ~100%. The black horizontal line represents the T,D approach
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Fig. 4 Fraction of the simultaneous (T,D) D-optimal FIM for Model 2. The black horizontal line
represents the T,D approach

to get an easy overview of the findings. However this setup showed similar trends as
setup 2a and 2b (see Appendix 3).

Model 3

Figure 5 shows the ratio Deff? between the sequential and simultaneous |FIM|
values for the different optimization approaches. In all cases the sequential
approaches are worse than the simultaneous approach. The worst approach seen in
Fig. 5 is the sequential approach with dose first (DIT), where with one group the
ratio Deff? is 0.5 indicating that there is 50% less information in this approach
compared to the simultaneous approach (T,D).

In this example we also examined the expected coefficients of variation (CV) of
the parameters in the different approaches. This can be seen in Fig. 6. Again, the
worst scenario compared to the simultaneous approach (T,D) is clearly to optimize
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Fig. 5 The IFIMI ratio between the DIT, TID and the T,D approach for setup 3a. The black horizontal line
represents the T,D approach
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Fig. 6 The increase of the coefficient of variation (CV) in percent per parameter of the sequential DIT,
TID approaches compared to the simultaneous (T,D) approach for setup 3a

dose first (DIT). However with Fig. 6 it is clear that the worst scenario occurs with 3
groups (instead of 1 group as seen in Fig. 5). One possible explanation for this
divergence is that the off-diagonal elements in the FIM (i.e. the correlations
between the expected variances of the parameter estimates) are considered in the
ratio shown in Fig. 5 but not in the CVs in Fig. 6.

Discussion
We have demonstrated that the optimization of design variables other than time is

not only possible (as shown previously by Forrachia et al. [5]) but that the method
used for the optimization is important. Our results clearly show that the approach
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used when optimizing affects the resulting optimal design. For example, in Fig. 2 it
can be seen that the PD-sampling times and doses differ between the different
approaches. These differences in design also result in significant differences in the
information content of the experiments. In some examples the ratio between the
determinant of the Fisher information matrix of the sequential and simultaneous
approaches could be as small as ~25% (see Fig. 3), indicating that the T,D
approach is about four times as informative as the sequential approach.

In our results, the best sequential approach is clearly the TID approach. In some
cases no difference was found between the TID approach and the T,D approach to
optimization. One possible reason for this result is the fact that the sequential
approaches are more dependent on the initial values of the design parameters. That is,
when optimizing dose first and then sample times the initial placement of sample
times (at the beginning of the optimization) will affect the chosen optimal doses.
In the examples considered in this work the initial doses were closer to the
(simultaneous) optimal doses than the initial time points were. Thus the optimization
of time-points first resulted in better optimal designs in these examples, but no
generalization as to which sequential strategy is better can be provided.

In this work we have focused on optimizing two design variables (dose and
sample times). However, the results can be seen in a more general light—
optimization on all design variables to be determined could be done, if possible,
simultaneously. Examples of other design variables that could be optimized are:
times for changing treatment in titration or disease progression studies, dose
schedule in oncology trials, run-in and wash out period lengths for drug—drug
interaction studies, provocation size or duration in for example glucose tolerance
studies, doses in combination studies for determination of synergy/antagonism, etc.

In this study a continuous dose has been used. However, often doses are restricted
to, for example, different tablet sizes. Discrete doses are a special case of the
continuous dose optimization. To handle this special case, an optimization on time
could be done on all of the separate discrete doses (combination of doses) and after
optimization the best dose-time combination would be chosen. This approach is not
sequential in the sense used previously in this work and will not suffer from the
problems presented here, but it could be quite costly in computer run-time if the
number of discrete doses is large. Further; if the number of continuous design
variables to optimize over is greater than one (for example, sample times and the
stop time of an experiment) the simultaneous approach should be used regardless of
if the doses are discrete or not.

The models used in the examples have had quite smooth surfaces of the
determinant of the FIM (see Fig. 1). If more than one major peak is present in the
search space then optimizing sequentially may greatly reduce your chance of finding
the global optimum. Thus, it is realistic to believe that with a spikier surface of the
determinant of the Fisher information matrix even more discrepancy will be found
between the simultaneous and sequential approaches.

In this exercise no parameter uncertainty was introduced, i.e. ED-optimal design.
ED-optimal design has been elaborated and discussed in [18-21]. We believe that
parameter uncertainty in general is both useful and realistic because the fact that the
parameters are not perfectly known in general. However a sequential ED-optimal
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design approach will still suffer from the disadvantages shown from sequential
D-optimal design; in some cases even more due to a spikier Fisher Information
Surface (see Appendix 2). It is again difficult to provide some rule on when the
sequential ED-optimal design approach could be expected to perform worse than the
simultaneous ED-optimal but a general rule could be that, similar to the D-optimal
approach, one should always use a simultaneous approach.

Furthermore, in this exercise, no model misspecification was accounted for
except for the residual error. Our belief is that the same type of differences, seen in
the different approaches presented here, will be seen when using other types of
criterions (different from D-optimal design) such as optimizing over competing
models. These types of criterions have been used for optimizing population models
[3], however we believe that more investigation is needed to see the impact of these
types of criterions on sequential and simultaneous optimization of different design
variables.

To our knowledge there exists four ways to perform an optimal design search of
two or more continuous design variables:

1) The simultaneous approach (T,D) that, given a good optimizer, will (in general)
be the best method of finding a global optimum. This method will also in
general need the least amount of computational power.

2) The sequential approaches (TID), (DIT), optimizing each continuous variable
once. TID and DIT are compared in this paper to T,D. All of these approaches
have similar run times (in general). However, as we can see from these results,
TID and DIT will often perform worse than T,D and will never perform better.
TID and DIT will also perform worse than the iterative sequential approach
described below.

3) The iterative sequential approach, optimizing each continuous variable
iteratively until an iteration does not change the “optimal value”. This
approach is in general more time consuming than the T,D and will not always
find the optimal design even if a global optimizer is present. This is true simply
because of the restriction in the search space. Even though we believe that this
approach will produce results more close to the simultaneous approach than the
sequential methods described above, this method will come with a significantly
higher computational cost.

An empirical example was investigated to see how this approach differs from the
T,D approach in a simple example. The optimization was performed in only two
dimensions of the surface presented in Fig. 1, i.e. optimization over a PD sample
and a dose. The T,D approach was repeated five times and with different
(randomly chosen) initial values and the true optimum was found every time.
For the iterative TID approach an initial dose of >1.625 mg (regardless of the
initial sample time) always converged to the local optima. Similarly; for the DIT
approach, an initial sample time of 0.91 h < t;,;;y < 0.17 h (regardless of the
initial dose) will give the local optimum. These results indicate that the
probability of finding the true optima is zero for ~75% of the iterative TID
search space and ~ 26% for the iterative DIT search space and we conclude that
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it is important to consider a simultaneous approach even when an iterative
sequential approach is possible (see Appendix 1 for more details).

4) Divide all the continuous variables except one into discrete variables and
optimize on each combination of discrete values and the continuous variable
separately. This approach will be very time consuming and might miss the
optimal design due to too wide discretizations of the design variables. However
this method will (under the assumption that a fine enough grid is defined and
that the optimizer will find a global optimum in the single continuous
dimension) find the optimal design and it is a global optimizer per se.

In this work we only compared the two run-time equivalent methods (1) and (2)
but we expect the third method to always be less or equal to the simultaneous
approach in terms of efficiency and in general more time consuming. Regarding
method (4); this method is applicable when we assume that the optimization surface
is quite flat between the discretization of the design space and also that we have few
dimensions (otherwise the run-times will be huge).

To conclude; it is as good or better to optimize simultaneously compared too
sequentially. This is simply because optimizing sequentially puts restrictions on the
search space of possible design values. These restrictions make it harder, and
sometimes impossible, for the sequential optimal design to find the global optimal
design in a given search space. These methods for simultaneous optimization of
multiple types of design variables are available in the current version of PopED,
freely available on the web at http://poped.sourceforge.net.

Appendix 1: simultaneous versus iterative sequential optimization

A repeated sequential iterative optimization on the setup presented in Fig. 1 was
performed where optimization was done on the PD sample and the Dose. This was
repeated numerous times to assure that the highest determinant was found.
Regardless of the initial values, the simultaneous approach always found the global
optimum. This was repeated with 5 different combinations of initial values for the
dose and sample time (randomly chosen).

For the iterative sequential approach different initial values were also tested.
After the first iteration of Time first (TID) or Dose first (DIT) optimization initial
values were updated for the next iteration to the optimal value from the previous
iteration. The search was considered to have converged when the design did not
change in an iteration.

The results show that regardless of the initial values for the time and an initial
value of the Dose > 1.625 the local optima in the TID approach would be found (the
circles area in Fig. 1).

Similarly, for the DIT approach, regardless of the initial value of the dose and
with an initial sample time of >0.91 or <0.17 the local optimum would be found.
Further, as an example, with an initial value of 0.2 the global optimum will only be
found after ~ 15 iterations.
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These results show that the iterative sequential approach does not give the same
results as the simultaneous approach. Further, in this simple case assuming a
randomly distributed initial value over the design space, it can be shown that in
~75% of the cases with the TID approach the probability of finding the global
optima is 0. Similarly the DIT approach will in ~26% of the cases also have a
probability of O finding the true optima while the simultaneous approach will have a
probability > 0 finding the global optimum.

Appendix 2: simultaneous ED-optimal design versus sequential ED-optimal
design

An ED-optimal design was tested with the simultaneous approach against the
iterative sequential approach.

Model 1 was used (see Fig. 1) with an ED-uncertainty assigned to the model. The
magnitude of the ED-uncertainty for the effect versus time plot is presented in
Fig. 7. This effect is presented as a visual predictive check with 1000 simulations
given the model (and the uncertainty). The ED-FIM surface was calculated with 90

Visual Predictive Check of Example I, Uncertainty vs no uncertainty around parameters

3 -
—— ED 95% PI
Median
—— ED 5% PI
2.5 95% PI
5% PI
2t
k3]
2
]
1.5
1+
0.5 | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (h)

Fig. 7 The magnitude of the ED-uncertainty for the predicted effect. The outermost lines are the 95%
and 5% prediction interval for the effect when having ED-uncertainty assigned to the model. The middle
line shows the median of the predicted effect and the lines outside the median shows the 95% and 5%
prediction interval without ED-uncertainty
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¥ 10 ED-optimal design

Dose

Fig. 8 The surface of the expected determinant of FIM against two of the design variables (sample time
and dose) when ED-uncertainty was assigned to the model

Latin Hyper Cube samples from the distribution around the parameters with Monte
Carlo Integration.

Figure 8 shows the FIM surface for this ED optimal design. Although not tested
because of runtime issues, it is believed that with an initial dose >1 and using the
time first approach (TID) the probability of finding the global optimum will be 0 as
in Appendix 1. In this example the advantage of the simultaneous approach is even
more pronounced than for D-optimal design because of the spikier surface of the
ED-optimal FIM. However, a general rule as to when an ED-optimal design will
suffer more than a D-optimal design when optimizing sequentially is not presented
here.

Appendix 3

See Fig. 9.
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Fig. 9 Fraction of the simultaneous (T,D) D-optimal FIM for setup 1c, 1d and 2c. The black horizontal
line represents the T,D approach
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