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The use of imaging in early drug development, mainly as related 
to neurosciences, has contributed greatly to the increased effi-
ciency and optimization of the development process of new 
molecular entities.1 Of the various in vivo imaging techniques, 
positron emission tomography (PET) in conjunction with a 
suitable radioligand appears to have the best ability to meas-
ure receptor occupancy (RO) in humans.2 The integration of 
PET occupancy studies into clinical drug development plans 
provides a valuable tool for dose selection and optimization in 
humans by accurately characterizing the relationship between 
the time course of plasma drug concentration and target RO.3,4 
In fact, a rational approach to selecting dosing regimens should 
be based on a knowledge of the onset and duration of RO 
(which is expected to be more closely related to drug effect) 
rather than the time course of drug concentration in plasma.5 
Clearly, the choice of dosing regimens should also account for 
the time course of downstream transduction, in case these 
are rate-limiting effects; therefore, an appropriate integrated 
approach that takes into account both phenomena should be 
considered.6

The methods proposed for the analysis and quantification 
of these exposure–time–occupancy relationships are based on 
preclinical (animal model) characterization of the time course 

of RO.6,7 These methods have been extended to investigate the 
relationship between dose and exposure in human studies in 
which very sparse data relating to PET measurements were avail-
able (typically only at the time of peak plasma concentration).8–10 
However, recent publications, mainly involving dopamine D2 
receptor antagonists, demonstrate the importance of account-
ing for the time course of RO in humans in the dose-selection 
strategy for chronic treatment.11–13

RO time-course studies in humans are not without their con-
straints. In a PET study, both the total number of subjects and 
the number of scans per subject are limited either by cost or 
for ethical reasons (e.g., concerns regarding overall radiation 
exposure may limit the number of scans per subject, typically 
to a maximum of three). It is within these constraints that an 
appropriate experimental design should be adopted in order to 
best characterize the exposure–time–occupancy relationship. In 
a recent study involving a novel antipsychotic drug (D2 antago-
nist), Lim et al.14 used serial PET scans in healthy volunteers to 
assess the time course of RO. An indirect model that included 
an effect compartment was successfully identified using popula-
tion approaches. In this study, fixed time points were used for 
PET assessment. In view of the constraints encountered in these 
studies, the application of adaptive-optimal design methods 
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should be considered in order to arrive at a proper allocation of 
drug doses and PET scan timings.

Optimization of experimental designs has been success-
fully used to increase the efficiency and minimize the cost of 
clinical trials15,16 by optimizing dose allocation and sampling 
schedules. D-optimal designs have been applied to population 
approach studies and have demonstrated more precise popu-
lation parameter estimates.17–19 In recent work,20 a series of 
theoretical designs was considered for exploring the influence 
of optimizing the PET scan timing allocation, determining 
the number of subjects to be assigned to elementary (“fixed”) 
designs, and determining the number of dose levels; the alloca-
tion of appropriate scan timings appeared to be the most criti-
cal factor for improving efficiency rather than the number of 
groups/doses.

The major limitation in the application of optimal design in 
early phase I PET studies is the need for detailed information 
about model structure and parameter values. In fact, although 
information can be derived from preclinical experiments 
regarding distribution of receptors in the target organ and the 
associated affinity of the labeled compound to the receptor 
(kon/koff), a conspicuous degree of uncertainty remains when 
translating this information from animal studies to application 
in humans.21

In general practice, PET studies are conducted according to 
a sequential adaptive design. An initial cohort of subjects is 
treated with an initial dose (selected on the basis of preclinical 
pharmacokinetic (PK) RO information and early human PK 
data), with scan timings targeting the maximal plasma concen-
tration and/or a lower concentration (usually 24 h after dose).8 
The decisions regarding sample size, doses, and scan timings for 
the second cohort of subjects are derived from the analysis of 
the initial data. This procedure is repeated for all the cohorts of 
subjects planned in the study protocol. The number of subjects 
treated, the selection of informative doses, and the scan timings 
remain critical issues for a precise and accurate characterization 
of the PK–RO relationship. This is what is referred to here as an 
“educated” approach. When PET studies are performed with 

the same scanning timings for all subjects, we refer to this as a 
“fixed” approach.

The purpose of this work is to present methodology that 
enables optimal sequential PET occupancy experiments. The 
algorithm presented aims to provide an optimal strategy for the 
selection of doses and allocation of scan timings for each subject, 
leading to a more accurate estimation of the PK–RO relation-
ship. The method is developed in a framework that combines 
the benefit of a “population–optimal design” methodology22,23 
and a “sequential adaptive approach”24 leading to more informa-
tive experimental designs compared to more traditional fixed or 
educated approaches.

Adaptive-optimal design has recently been proposed as a 
method of improving the assessment of RO time courses in 
PET experiments.25 In the present work, we have expanded this 
concept by including the optimization of dose and by improv-
ing the adaptation/optimization algorithm. An indirect model 
(kon–koff), using the binding potential (BP) data typically esti-
mated from PET studies,26 was developed to account for base-
line intersubject variability. A comparison was performed for 
adaptive-optimal designs vs. traditional (“fixed” or “educated”) 
designs of PET scan allocations, when optimizing either the sam-
pling schedule alone or both sampling schedule and dose.

Two different scenarios were explored. Scenario 1: the initial 
dose was considered to be informative (i.e., a dose providing 
RO >50%) based on prior information (i.e., preclinical data). 
Scenario 2: the initial dose is chosen to be noninformative (i.e., 
a very low dose in the dose–occupancy relationship), in order to 
test the performance of the adaptive-optimal design in experi-
ments in which initial dose selection based on prior information 
is misleading (for instance, when preclinical data are not predic-
tive of the behavior of the drug in humans).

Results
A total of 12 subjects were considered for all the designs, with 
groups of 2, 3, and 4 subjects being allocated for a given ele-
mentary design. Table 1 reports details of sampling timings and 
doses for the fixed and educated designs.

Table 1 S election of doses and sampling timings for fixed and educated designs

Scenario Setup Design Method Doses (mg) Sampling timings (h)

1. �Informative  
initial dose

1 4 subj/3 groups Fixed 6, 1.5, 4 {0, 6, 24}; {0, 6, 24}; {0, 6, 24}

1 4 subj/3 groups Educated 6, 1.5, 4 {0, 6, 24}; {0, 3, 12}; {0, 8, 36}

2 3 subj/4 groups Fixed 6, 1.5, 4, 3 {0, 6, 24}; {0, 6, 24}; {0, 6, 24}; {0, 6, 24}

2 3 subj/4 groups Educated 6, 1.5, 4, 3 {0, 6, 24}; {0, 3, 12}; {0, 8, 36}; {0, 12, 48}

3 2 subj/6 groups Fixed 6, 6, 1.5, 1.5, 4, 4 {0, 6, 24}; {0, 6, 24}; {0, 6, 24}; {0, 6, 24}; {0, 6, 24}; {0, 6, 24}

3 2 subj/6 groups Educated 6, 6, 1.5, 1.5, 4, 4 {0, 6, 24}; {0, 6, 24}; {0, 3, 12}; {0, 3, 12}; {0, 8, 36}; {0, 8, 36}

2. �Noninformative  
initial dose

4 4 subj/3 groups Educated 0.5, 1.5, 6 {0, 6, 24}; {0, 3, 12}; {0, 8, 36}

5 3 subj/4 groups Educated 0.5, 1.5, 4, 6 {0, 6, 24}; {0, 3, 12}; {0, 8, 36}; {0, 12, 48}

6 2 subj/6 groups Educated 0.5, 6, 1.5, 3, 4, 8 {0, 6, 24}; {0, 6, 24}; {0, 3, 12}; {0, 3, 12}; {0, 8, 36}; {0, 8, 36}

Initial sampling timings for the adaptive-optimal designs were selected to be the same as in standard designs {0, 6, 24}. In the design that optimized for sampling timings alone, 
the dose selected was equal to the doses in the fixed and educated designs, with the same number of subjects and groups. Only the initial dose (6 mg in scenario 1 and 0.5 mg in 
scenario 2) was selected in the design that optimized both sampling timings and doses.

subj, subject.
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Scenario 1 simulation studies: informative dose selection
Optimization of sample timings results in a clear improvement 
with respect to bias (scaled mean error), precision (relative 
standard error), and accuracy (root mean square error) of the 
population estimates (kon and koff) when compared to tradi-
tional (fixed and educated) designs (scenario 1, Table 2). Scaled 
mean error, relative standard error, and root mean square error 
are defined in the Methods section. Bias (with 95% confidence 
intervals) and boxplots of relative error are illustrated in Figure 1 
for the adaptive-optimal and nonoptimal study designs. These 
results indicate that the two traditional designs occasionally 
provided severely misspecified parameter estimates (outliers), 
resulting in relatively high bias values. The optimal designs do 
not suffer from this problem. Unbiased mean estimates were 
found for the optimal designs; a great improvement in accu-
racy (25- to 30-fold) was found when using optimal designs as 
compared to fixed designs, and a significant improvement was 
found when comparing optimal designs with educated designs 
(two- to threefold). Overall, both educated and optimal designs 
provide plausible parameter estimates in the majority of simu-
lated studies, whereas, as expected, the fixed designs based on 
three fixed time points typically provided estimates that were 
highly biased and imprecise. Figure 2 shows the distribution of 
optimal sampling timings for the four-step design (scenario 1, 
setup 2 in Table 2) when optimizing only sample timings.

In experiments with informative initial doses, no clear 
advantages were found when optimizing both timing and dose 
(scenario 1, Table 2) as compared to optimization of timing 
alone. The number of adaptive steps had less influence on design 

performance than did the method of designing the next step. A 
slight improvement was obtained in intersubject variability esti-
mates when using optimal designs as compared to nonoptimal 
designs (data not shown). In general, the estimates of kon and 
koff intersubject variability were underestimated, with typical 
variances ranging between 0.04 and 0.07 (against a true variance 
of 0.1 for both kon and koff). These results are not unexpected, 
given the low sample size.

Scenario 2 simulation studies: noninformative dose selection
Scenario 2 in Table 2 compares results obtained from educated 
and adaptive-optimal designs in a scenario in which the ini-
tial dose was noninformative, with optimization of sampling 
timings alone, and also of both sampling timings and dose. 
As in scenario 1, the optimal-adaptive designs in scenario 2 
display a clear improvement in parameter bias precision and 
accuracy. In addition, the adaptive-optimal design, as applied 
to both timing and dose, provided better performance than 
the adaptive-optimal design for timing alone: on average, the 
improvement in accuracy and precision ranged from 10 to 
40%. In this scenario, the number of adaptive steps appears 
to be more relevant than in the previous scenario (in which 
initial doses were more informative); designs with four and 
six adaptive steps showed better performance than the three-
step design.

Discussion
Traditional approaches to establishing a PK–RO model are 
generally based on the assumption of a direct link between 

Table 2  Performances of fixed, educated, and adaptive-optimal designs

Scenario Setup Design Performance

Fixed Educated
Optimal  

(timing only)
Optimal  

(timing + dose)

kon koff kon koff kon koff kon koff

1

1 4 subj/3 groups Bias (SME) 0.87 1 0.13 0.12 −0.0095 −0.029 0.0086 −0.0088

Precision (RSE) 2.56 2.82 0.383 0.437 0.185 0.205 0.195 0.196

Accuracy (RMSE) 4.86 5.74 0.449 0.506 0.183 0.201 0.196 0.194

2 3 subj/4 groups Bias (SME) 0.83 0.93 0.096 0.076 −0.0010 −0.012 −0.0078 −0.02

Precision (RSE) 3 3.19 0.434 0.487 0.199 0.238 0.201 0.214

Accuracy (RMSE) 5.56 6.21 0.485 0.53 0.199 0.235 0.2 0.21

3 2 subj/6 groups Bias (SME) 0.87 1 0.13 0.12 0.013 0.0022 0.011 0.0004

Precision (RSE) 2.56 2.82 0.383 0.437 0.196 0.227 0.182 0.2

Accuracy (RMSE) 4.86 5.74 0.449 0.506 0.199 0.228 0.185 0.2

2

1 4 subj/3 groups Bias SME 0.164 0.161 0.019 0.014 −0.023 −0.040

Precision (RSE) 0.435 0.532 0.376 0.427 0.332 0.335

Accuracy (RMSE) 0.532 0.638 0.383 0.433 0.325 0.324

2 3 subj/4 groups Bias (SME) 0.171 0.161 0.036 0.027 0.014 −0.0057

Precision (RSE) 0.535 0.687 0.292 0.342 0.229 0.257

Accuracy (RMSE) 0.649 0.814 0.304 0.352 0.233 0.256

3 2 subj/6 groups Bias (SME) 0.101 0.095 0.037 0.022 0.022 −0.0001

Precision (RSE) 0.306 0.359 0.244 0.295 0.216 0.251

Accuracy (RMSE) 0.352 0.405 0.256 0.302 0.222 0.251

RMSE, root mean square error; RSE, relative standard error; SME, scaled mean error; subj, subject.
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plasma concentration and RO. The direct model assumes both 
rapid exchanges across the blood–brain barrier and a rapid 
equilibration at the receptor sites. However, in many cases these 
assumptions are not appropriate, and alternative models such as 
effect compartment or association–dissociation models should 
be used.27 Clearly, in this context, the application of an optimal 
study design for the selection of PET scan timings is more rel-
evant than in the case of a direct relationship. In this work, we 
have characterized the relationship between plasma concentra-
tion and occupancy using an indirect model. In practice, this has 
been implemented using BP as the dependent variable, which 
offers advantages over the use of occupancy. In fact, BP is the 
primary variable (measured in the PET scan), whereas RO is 
a derived variable using BPs at baseline (BP0) and after dosing 
(BP). Normalization of all observations per baseline value has 
previously been shown to lead to significant bias in parameter 
estimates, especially in studies with small numbers of subjects (as 
is the case here).28 In addition, the use of BP allows for modeling 
(i.e., understanding) of baseline intersubject variability.

As described in the introduction, Lim et al.14 recently pro-
posed the use of serial PET scans in healthy volunteers to assess 

the RO time course, using an indirect model. However, scans 
at fixed timings in all subjects were used in this study, which 
may have had an impact on both bias and uncertainty, especially 
around effect parameters (keo, kon, or koff). Two possible methods 
of improving the results in the study by Lim et al. are to increase 
the study size and to change other aspects of the design of the 
study. Clearly, given that PET studies are expensive, an increase 
in sample size may not be a practical suggestion. However, by 
optimizing and adapting other aspects of the design (e.g., scan 
timings and doses) benefits with regard to reduction in bias and 
improvement in accuracy and precision may be achieved at no 
extra cost.

In both the study by Lim et al. and our current work, the use 
of the population modeling approach is proposed. One of the 
many advantages of this approach is the ability to “borrow” 
information between individuals, leading to accurate and pre-
cise parameter estimates when data from individual modeling 
approaches might be too sparse for parameter estimation. These 
results indicate that adaptive-optimal design for PET occupancy 
studies can provide more accurate information on the PK–RO 
relationship.
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Figure 1  Comparison of performances (bias and relative error) of adaptive-optimal and nonoptimal approaches to various designs (scenario 1). 
Parametric confidence intervals are shown in the bias plots. sbj, subject; stp, step.
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In our first example (scenario 1), informative initial dosing, 
based on previous knowledge of the system, allowed for a spread 
of doses in the cohorts, resulting in high, medium, and low occu-
pancy levels. Consequently, optimization of dose was found to 
have no significant influence on the results. In scenario 2, where 
an initial misleading dose was selected, the optimization of both 
timing and dose showed a clear advantage over the optimization 
of timing alone. In addition, in these experiments, all designs 
that did not optimize doses in each cohort relied on “educated” 
dose adjustment. Optimization of dose makes the successful 
outcome of the experiment less dependent on the experience of 
the people running it, leading, in general, to a less error-prone 
experimental design.

Increasing the number of steps of the adaptation in this work 
appeared to improve precision and accuracy, especially when the 
initial dose selection was not informative. In a real (nonsimu-
lated) experiment, the selection of a nonoptimal initial dose can 
easily occur and should be considered the norm. These results 
suggest that, given a certain sample size, increasing the number 
of groups—and therefore reducing the number of subjects per 

group—should be considered. This is especially true in the initial 
steps, when uncertainty in dose selection is much greater than 
in the subsequent steps.

Further refinements of this adaptive-optimal approach can 
be envisaged. For example, in this work we have assumed a 
model structure and parameter values for this model at each 
step in which an optimal design is computed. However, this 
information can be very uncertain, especially in the first step of 
the adaptive sequence, when the model and parameter values 
might be based on estimates from preclinical information that 
may not be directly applicable to human subjects. It would 
therefore make sense to include this uncertainty in the cal-
culations involved in the optimal design. This can be done in 
two ways: (i) uncertainty about the parameter values for the 
model can be incorporated using ED-optimal design29 and 
(ii) multiple model structures can be used to find the optimal 
designs.30

We expect that the optimal characterization of the PK–RO 
relationship after a single dose should allow for the prediction 
of the occupancy that will be achieved after a repeat dosing trial. 
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This expectation is conditional on the assumption of a time–in-
variant relationship (i.e., association and dissociation parameters 
remain unaltered after chronic treatment). If this assumption 
holds, then the results from these single-dose trials can be used 
to provide additional information earlier in the drug develop-
ment process.

In a more general context, we have presented a method 
of adapting and optimizing PET studies of RO such that the 
results will contain fewer biased parameter estimates and will 
not rely solely on the judgment of an “educated” clinical team. 
Optimal-adaptive design is attractive because the methodol-
ogy can use prior information and also react to data accrued 
during the study. The idea of adaptive-optimal designs is not 
a new one31 but is still relatively rarely used. Previous work 
has demonstrated the utility of adaptive-optimal designs in 
phase II dose–response studies from a naive pooled mod-
eling perspective.24 In this work, we use similar methodol-
ogy to demonstrate the effectiveness of adaptive-optimal 
approaches in early phase I studies with a population mod-
eling approach.

Methods
Adaptation/optimization algorithm. In the proposed adaptive/opti-
mal algorithm, the dose and PET scan time points for the first cohort 
of subjects are selected on the basis of RO estimated from preclinical 
studies or from in vitro binding studies. In our work, the same initial 
dose and PET scan time points (pharmacodynamics) were selected 
for the traditional and optimal designs so that these initial conditions 
would not influence the comparisons of the various designs. Given the 
assumption that extensive PK sampling is typically carried out in PET 
studies, the PK parameters of the PK–BP model are considered to be 
known and therefore not optimized.

This initial information is then used to estimate model parameter val-
ues, and these values are used as priors to select doses and PET scan tim-
ings in the next cohort (more details are provided below, under “Methods 
of simulation, estimation, and optimization”). For each subsequent 
cohort, the data from all previous cohorts are used as prior information 
(in the form of updated model parameter estimates and fixed design 
variables) to select doses and PET scan timings. At each adaptation point, 
PET scan timings (and, in some scenarios, doses) are chosen on the basis 
of optimal criteria (see Figure 3). In this approach, it is important to 
emphasize that the selection of initial doses and timings is not based on 
the true model parameters.

Simulation studies. Simulations were conducted to study the performance 
of the proposed approach in the context of a real PET study characterized 
by a limited sample size (N = 8–16). Adaptive optimization of doses and 
sampling timings was performed using the PK–BP model.

A total of 12 subjects, five possible doses (1.5, 3, 4, 6, and 8 mg), and 
three sample timings per subject were considered. Designs with three, 
four, and six adaptive steps (cohorts) were investigated. BP time-course 
data were simulated under the true model from the following designs: 
(i) empirical fixed designs, in which the sampling schedule was fixed to 
take place at baseline, RO tmax, and trough (24 h) in all subjects, (ii) edu-
cated designs, in which doses and sampling schedules were selected 
to appropriately cover the time–occupancy dynamic range (described 
below), and (iii) optimal designs, including optimization of sampling 
schedule alone and of both sampling schedule and dose.

For the educated design, under the assumption of the PK–BP model, 
the first PET scan was performed at baseline and the second around the 
RO peak, in order to gather information regarding the association rate; 
the third scan timing was selected after a sufficient decline in the RO 
levels, in order to gather information on the dissociation rate (which is 
dependent on dose). Initial doses were selected to be either informative 
or noninformative (see above). Doses for the additional cohorts were 
chosen to cover the dynamic range of RO (high, medium, and low occu-
pancies). When noninformative initial doses are chosen, full coverage of 
this dynamic range is more difficult to achieve.

Apart from the adaptive-optimal design involving both sampling sched-
ule and dose, the same “educated” doses were used for all the designs 
(fixed, educated, and adaptive optimal for sampling schedule). Details 
of sampling timings and doses for the fixed and educated designs are 
reported in Table 1. Because of the poor performance of the fixed design 
even with informative initial dosing, noninformative dosing was not con-
sidered for this design. One hundred studies per design were simulated to 
test the performance of these various design schemes. A simulated BP, RO, 
and plasma concentration–time course for a typical individual (scenario 1, 
setup 1), with optimal PET scan allocation, is illustrated in Figure 4.

RO time- course model using BP. A general representation of a 
PK–occupancy–time course model is described in Figure 5. However, 
in PET studies in which only a few PET scans per subject can be acquired, 
this model cannot be applied, and a simplified version needs to be consid-
ered. In our study, a kon–koff model, which characterizes the relationship 
between the plasma concentration of the drug and the estimates of BP 
derived from PET data, was considered. This is equivalent to an assump-
tion that the exchange across the blood–brain barrier and the partitioning 
of the drug in plasma and tissue from free to nonspecifically bound is 
sufficiently rapid for the association and dissociation of the specifically 
bound drug to be considered rate limiting. In general, RO is derived from 
the PET BP measurement, using:

�
(1)

where BP0 is the baseline binding potential and BP the time-dependent 
binding potential after dosing. The equation for the model for the time 
course of RO can be described as:

RO
BP BP

BP
( )

( )
,t t= −0

0

Study design Model selection Preclinical
data

Choose
dose and time
for PET scans

Acquire PET and
PK data

Analyze PET data
to estimate BP

Optimization

PK/BP modeling
reached required precision or

scanned all subjects

Determine PK/RO
relationship

Y

N

Figure 3  Adaptive-optimal design framework. Initial model, dose, and 
scanning timings are selected according to prior information. At each 
adaptive step, parameter estimates from the previous cohorts were 
determined and used to determine designs for the next cohort. BP, binding 
potential; PET, positron emission tomography; PK, pharmacokinetic; 
RO, receptor occupancy.
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� (2)

which can be rewritten as:

�
(3)

where CP is the concentration of the drug in plasma. In this study, the 
following parameters were used for the simulation of experimental data: 
kon = 0.088 h−1, koff = 0.221 h−1, and BP0 = 3. The estimates of parameters 
were derived from preclinical studies of a 5HT1A antagonist (S. Zamuner, 
unpublished data). An exponential distribution model was assumed for 
the intersubject variability (coefficient of variance = 30%) of BP0, kon, 
and koff, and a proportional error model was assumed for the residual 
variability (coefficient of variance = 10%).

A two-compartment model with first-order absorption was assumed 
for the plasma concentration kinetics, and individual PK parameters 
were assumed as known in the PK–BP model. The population PK model 
was parameterized as clearance (CL = 34.9 l/h), volume of distribution at 
steady state (Vss = 1,200 l), intercompartmental clearance (Q = 21.7 l/h), 
fractional central volume (FVC = 0.671), and rate of absorption (ka = 
0.605 h−1). The exponential distribution for intersubject variability was 
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Figure 4  Simulated binding potential–time course for the typical individual at three different dose levels (scenario 1, setup 1). Circles represents the optimal 
PET scan allocations per group (upper left panel). Time courses of receptor occupancy (continuous line) and of drug concentration in plasma (dotted line) for the 
typical individual at the three different dose levels (upper right and lower panels). BP, binding potential; PET, positron emission tomography.
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Figure 5  Schematic representations of a PK–receptor binding model (left 
panel). CFP and CNSP represent the free and the bound concentrations in 
plasma, respectively, and CFT and CNST represent the free and the bound 
(nonspecific) concentrations in tissue, respectively. kPT and kTP represent 
the plasma-to-brain tissue and brain tissue-to-plasma constant rates, 
respectively. kon and koff represent the association and dissociation rates 
between free brain concentration and receptor. The simplified model is 
shown in the right panel, with CP representing the total concentration 
in plasma. BBB, blood–brain barrier; BP, binding potential; PET, positron 
emission tomography.
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also used for the PK parameters, employing the following coefficients of 
variance: CL = 30%, Vss = 40%, Q = 45%, FCV = 30%, and ka = 45%.

Methods of simulation, estimation, and optimization. Simulation and 
parameter estimation were performed using NONMEM software, 
version VI (NONMEM Project Group, University of California, San 
Francisco, San Francisco, CA).32 Estimation was performed using the 
first order with conditional estimation method.

Optimization was performed for scanning timings alone, and also for 
scanning timings and doses, using a D-optimality criterion as imple-
mented in the PopED software (http://poped.sf.net).33 A looped linear 
sequence of random-search, gradient, and line-search algorithms was 
used to find the optimal design parameters. Optimization of doses and 
sample timings was carried out using a sequential method; for each of the 
five dose levels considered, sample timings were optimized, and the most 
informative dose was chosen. Because we were considering only discrete 
doses, the simultaneous method was not needed (we could consider all 
the possible dose levels).34 For each optimization, the parameter values 
of the model were updated according to the information from previous 
cohorts. Because this parameter re-estimation (with all data from all pre-
vious cohorts) occurs at each step of the adaptive algorithm, the previous 
cohorts’ designs were included (but fixed) in each subsequent optimal 
design calculation. That is, information from these cohorts was assumed 
to contribute to parameter estimation after the next step, but the designs 
could obviously not be changed because they had already been run. In 
order to improve run timings, the contribution of the fixed designs of the 
earlier cohorts was included in the current cohort’s design calculations 
as a fixed addition to the Fisher information matrix. This fixed term was 
computed once for every optimization, using the new model parameter 
estimates. With this addition, the D-optimal criterion was

�

(4)

where x→  is the vector of design parameters (doses, sample timings), 
Φ  is a vector of the updated model parameters, and x→n is the nth 
cohort’s design parameters, which can be optimized, whereas the 
earlier cohort designs (cohorts 1 to n − 1) are fixed. For the first 
cohort (n = 1), the sum of previous Fisher information matrix values 
is set to zero.

Comparison of results. The comparison of results was carried out by 
computing the bias measured as the scaled mean error of the esti-
mated parameter values with respect to the true parameter value; 
the accuracy was measured in terms of root mean square error of the 
estimated parameter values with respect to the true parameter value; 
and the precision was measured in terms of the relative standard 
error of the estimated parameter values.35 The definitions of scaled 
mean error, root mean square error, and relative standard error are 
as follows:

�
(5)

� (6)

�
(7)

where Ej is the estimated parameter value for the jth simulation, A is 
the expected value, E  is mean of the estimated parameters, and n is 

the number of simulations. In addition, box plots of the relative error 
pertaining to the estimated parameter values were examined.
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