
When What You See Isn’t What You Get: Alcohol Cues,

Alcohol Administration, Prediction Error, and Human

Striatal Dopamine

Karmen K. Yoder, Evan D. Morris, Cristian C. Constantinescu, Tee-Ean Cheng,
Marc D. Normandin, Sean J. O’Connor, and David A. Kareken

Background: The mesolimbic dopamine (DA) system is implicated in the development and
maintenance of alcohol drinking; however, the exact mechanisms by which DA regulates human
alcohol consumption are unclear. This study assessed the distinct effects of alcohol-related cues
and alcohol administration on striatal DA release in healthy humans.

Methods: Subjects underwent 3 PET scans with [11C]raclopride (RAC). Subjects were informed
that they would receive either an IV Ringer’s lactate infusion or an alcohol (EtOH) infusion dur-
ing scanning, with naturalistic visual and olfactory cues indicating which infusion would occur.
Scans were acquired in the following sequence: (1) Baseline Scan: Neutral cues predicting a
Ringer’s lactate infusion, (2) CUES Scan: Alcohol-related cues predicting alcohol infusion in a
Ringer’s lactate solution, but with alcohol infusion after scanning to isolate the effects of cues,
and (3) EtOH Scan: Neutral cues predicting Ringer’s, but with alcohol infusion during scanning
(to isolate the effects of alcohol without confounding expectation or craving).

Results: Relative to baseline, striatal DA concentration decreased during CUES, but increased
during EtOH.

Conclusion: While the results appear inconsistent with some animal experiments showing dopa-
minergic responses to alcohol’s conditioned cues, they can be understood in the context of the
hypothesized role of the striatum in reward prediction error, and of animal studies showing that
midbrain dopamine neurons decrease and increase firing rates during negative and positive predic-
tion errors, respectively. We believe that our data are the first in humans to demonstrate such
changes in striatal DA during reward prediction error.
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C ONDITIONED CUES ASSOCIATED with alcohol
can induce craving in humans (Carter and Tiffany,

1999), which results in alcohol-seeking and consumption (e.g.,
Cooney et al., 1997; Litt et al., 2000). It has been hypothesized
that cue-induced activation of the mesolimbic dopamine
(DA) system leads to drinking behavior (Weiss et al., 1993).
Animal studies of alcohol self-administration have shown that
extracellular DA concentration ([DA]) in the nucleus accum-
bens (NAc) increases while animals wait in operant chambers
for access to alcohol. (Gonzales and Weiss, 1998; Katner

et al., 1996; Melendez et al., 2002; Weiss et al., 1993). While
these studies observed the effects of environmental cues on
DA levels, Doyon et al. (2003, 2005) concluded that the initial
perception of the olfactory ⁄gustatory properties of alcohol
transiently elevates NAc [DA]. Similarly, others have shown
that NAc [DA] increases as a result of exposure to condi-
tioned stimuli associated with cocaine (Ito et al., 2000; Phillips
et al., 2003; Weiss et al., 2000). Taken together, these studies
support a relationship between dopaminergic activity in the
NAc and presentation of alcohol- and drug-related cues
(Berridge, 2007; Robinson and Berridge, 1993).
In humans, brain areas associated with reward are acti-

vated during cues that elicit craving. Using fMRI, we showed
that alcoholic drink odors increased blood oxygen level
dependent (BOLD) responses in the NAc of risky drinkers
(Bragulat et al., 2008; Kareken et al., 2004a). Myrick and
colleagues (2004) found that images of alcoholic beverages
increased ventral striatal BOLD signals in alcoholic patients
(see also Braus et al., 2001; Wrase et al., 2007). Cue-induced
limbic, cortical, and striatal activity have also been correlated
with craving (Modell and Mountz, 1995; Myrick et al., 2004)
and alcohol intake (Grusser et al., 2004).
The neurochemical basis of cue reactivity and craving in

humans is less clear. In parallel with the animal studies cited
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above, Boileau et al. (2007) reported that conditioned contex-
tual cues of amphetamine administration lead to increased
ventral striatal [DA] release. Although several studies have
examined the relationship between DA and drug craving, the
literature is equivocal. In detoxified alcoholics, low DA syn-
thesis capacity and low DA receptor availability are associ-
ated with higher craving (Heinz et al., 2005; Heinz et al.,
2004). Nicotine-induced striatal DA release is associated with
diminished urge to smoke in nicotine-dependent subjects
(Brody et al., 2004), which similarly suggests an underlying
hypoactive DA system. In contrast, both Wong et al. (2006)
and Volkow et al. (2006b) reported that the intensity of cue-
induced craving is correlated with cue-induced increases in
[DA] in the dorsal striatum of cocaine users.
We used [11C]raclopride (RAC) PET to study the relation-

ship between striatal [DA] and the sight and smell of preferred
alcoholic drinks, which were used to predict intravenous (IV)
alcohol administration. As PET methodology cannot resolve
the individual contributions of multiple stimuli (e.g., anticipa-
tion of administration, physiological effects of alcohol) to
changes in [DA], we isolated the effects of cue-induced antici-
pation from the pharmacological effects of alcohol by using
separate scan sessions. Generalizing from the animal literature
and our work with IV alcohol (Yoder et al., 2005, 2007), we
initially hypothesized that conditioned cues predicting alcohol
would increase striatal [DA], while alcohol administration
would not. However, ventral striatal [DA] instead varied sys-
tematically in response to alcohol cues and unexpected alco-
hol exposure in a manner consistent with the hypothesized
role of the dopamine system in detecting reward prediction
errors (Mirenowicz and Schultz, 1994; Pan et al., 2005;
Schultz et al., 1993, 2000).

MATERIALS AND METHODS

Subjects

Eight healthy Caucasian subjects (Table 1) signed informed con-
sent statements agreeing to participate in the study, which was

approved by the Indiana University Institutional Review Board.
None had any history of psychiatric or neurological disease as deter-
mined by interview, and none were drug or alcohol dependent
according to the Semi-Structured Assessment for the Genetics of
Alcoholism (SSAGA; Bucholz et al., 1994). Two subjects had a
family history of alcoholism. Five subjects (2 female) surpassed the
Alcohol Use Disorders Identification Test (AUDIT; Saunders et al.,
1993) threshold of 8 for hazardous drinking (Conigrave et al., 1995).
All were screened with the University of Pennsylvania Smell Identifi-
cation Test to rule out problems smelling the olfactory cues (Doty
et al., 1984, 1989). All subjects completed the Timeline Followback
Interview (Sobell et al., 1986) for assessment of drinking habits.

Scanning Procedures

[11C]raclopride (RAC, a selective DA D2 ⁄D3 receptor antagonist)
was synthesized as reported previously (Fei et al., 2004). Subjects
underwent 3 RAC PET scans (EXACT HR+, CTI; Knoxville, TN)
over 2 days. PET data were acquired with septa retracted (3D mode).
Full width half maximum (FWHM) was 9 mm when images were
reconstructed with a 5 mm Hanning filter. Radiochemical purity
was > 99%. Scans were initiated with the IV injection of
(mean ± SD) 14.1 ± 0.99 mCi of RAC; total mass injected was
15.1 ± 5.69 nmol per subject per scan. Dynamic data acquisition
lasted 45 minutes [An analysis of ventral striatal time-activity curves
(TACs) from a previous study (Yoder et al., 2005) demonstrated that
BPND values from 45 minutes of scan data were only 2.5% lower
than BPND values estimated from 60 minutes of data. BPND values
from the 45- and 60-minute datasets were highly correlated
(R2 = 0.99; p < 3.4 · 10)14)]. A heavily T1-weighted, spoiled gradi-
ent recalled (SPGR) magnetic resonance image (MRI; 1.5T GE
Echospeed LX, GE; Waukesha, WI) was acquired in each subject for
subsequent spatial normalization of image data into Montreal
Neurological Institute (MNI) stereotactic space.

Behavioral Paradigm

A schematic of the 3 conditions is presented in Fig. 1. Subjects
were informed that what they saw and smelled would predict what
would happen to them during scanning. Specifically, they were
instructed that if they saw and smelled leather and lilac, they would
receive an infusion of Ringer’s lactate (no alcohol), and that if they
saw and smelled their favorite alcoholic beverages, they would receive
an alcohol infusion to an intoxicating level.

Cue Stimulation. Neutral or alcohol cues were started 2 minutes
after RAC injection, and were maintained for 15 minutes. Visual
cues were placed on a rotating table behind the scanner gantry
(viewed through mirror goggles). Two sets of objects (neutral cues:
scraps of tanned leather and plastic lilac flowers; alcohol cues: a sub-
ject’s 2 favorite alcoholic beverages, e.g., a filled glass of beer next to
a beer bottle, a glass of wine next to a wine bottle) were set on the
table and separated by an opaque divider. The table rotated every
75 seconds, and each side was displayed 6 times. Visual displays were
accompanied by presentation of the corresponding olfactory stimu-
lus.
Olfactory stimuli were delivered with a computer-controlled olfac-

tometer (Kareken et al., 2004a,b) through a polytetrafluoroethylene
(PTFE) nasal cannula that was mounted on the scanner gantry and
positioned approximately one inch in front of the subject’s nose. The
cannula delivered a constant airflow of 2.0 liters per min of airflow
throughout the imaging session, with odors injected into the constant
air-stream during two 10 second odor periods during each visual
display period. The first odor in the 75-second display period began
3 seconds after the visual display came into view; the second odor
began 27 seconds later. Lilac and leather odors were provided
by International Flavors and Fragrances (Union Beach, NJ).

Table 1. Subject Characteristics

Mean SD n %

Age 23.8 4.03 ––– –––
Male ––– ––– 5 62.5
AUDIT 7.0 2.88 ––– –––
Drinks ⁄ weeka 11.14 8.18 ––– –––
Drinks ⁄ montha 46.5 34.4 ––– –––
Drinks ⁄ drinking daya 4.57 1.76 ––– –––
Subjects reporting FHAb ––– ––– 4 50.0
# Relatives 2.25 (Range: 1–4) ––– –––

SD, standard deviation; AUDIT, Alcohol Use Disorders Identification
Test; FHA, family history of alcoholism; includes report of any first- or
second degree relatives with alcohol use disorders.

aAssessed by the Timeline Followback Interview (Sobell et al.,
1986).

bTwo subjects were ‘‘unambiguously’’ family-history positive for alco-
holism (defined as reporting at least 2 relatives, with at least one being
a first-degree relative). One subject reported only 1 first-degree rela-
tive; the other reported 2 second-degree relatives.
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Alcohol-related odors were produced by bubbling air from the olfac-
tometer through each subject’s 2 most preferred alcoholic beverages.
The 3 scan conditions occurred in the following fixed order: (1)

Baseline (BL): Neutral cues with a lactated Ringer’s infusion; (2)
Alcohol cues (CUES): Alcohol cues, with alcohol infusion after scan-
ning to fulfill the promise of alcohol delivery; (3) Alcohol (EtOH):
Neutral cues, but with alcohol infusion during scanning (thus violat-
ing the subject’s expectation and avoiding anticipation of alcohol). A
fixed-order design was used for several reasons. The last scan, the
alcohol condition, involved a direct deception. A critical factor in
execution of this experiment was that the subjects maintain faith in
the veracity of the predictive stimuli. Had a randomized scan order
been used, the deception condition could have come either first or
second. In that scenario, a subject would have been deceived before
completing the entire protocol, and would have been highly unlikely
to believe anything that the stimuli were supposed to have predicted
in subsequent conditions, thus confounding the remaining scan(s).

Alcohol Infusion. The physiologically-based pharmacokinetically
(PBPK) modeled IV alcohol clamp (O’Connor et al., 1998;
Ramchandani et al., 1999) was used to control the exact timing of
alcohol delivery and minimize the experimental variation in the
brain’s exposure to alcohol across subjects. Oral ingestion of alcohol
causes highly variable rates and concentrations of brain alcohol
exposure as a result of inter-subject differences in stomach pH, vol-
ume of stomach contents, age, gender, and first-pass metabolism.
Different brain alcohol concentrations are likely to cause different
magnitudes of dopamine responses across subjects. In addition, the
timing of alcohol exposure is likely to affect the timing of dopamine
release. We have shown that if the timing of DA release is not held
constant, then the outcome measure of [11C]RAC binding potential
could be confounded (Yoder et al., 2004). The PBPK model was
therefore used to specify individual alcohol infusion profiles based on

each subject’s height, weight, and gender. Profiles were calculated
such that an IV infusion of alcohol (6% vol ⁄vol in lactated Ringer’s)
would achieve a breath alcohol concentration (BrAC) of 80 mg%
(0.08) for both scans involving alcohol infusion. This infusion profile
was also used for the Ringer’s lactate infusion during Scan 1. For
alcohol infusion following the CUES condition (scan 2), infusion
began immediately after PET image acquisition was completed, con-
tinued for 15 minutes (the time at which BrAC was calculated to
reach the 80 mg% target), and then stopped. For scan 3 (EtOH),
alcohol infusion began 4 minutes after RAC injection, ascended over
15 minutes to the target based on model calculations, and was then
clamped to maintain the 80 mg% target throughout the remaining
25 minutes of image acquisition (Fig. 1). Following imaging in scans
2 and 3, a BrAC sample was taken using a Dräger Alcotest� 7410
handheld breath meter to determine the subject’s actual breath alco-
hol level. Subjects were thoroughly debriefed following scan 3 about
the need for the experimental deception.

Subjective Impressions. Subjects were assessed for desire to drink
(craving) using the Alcohol Urge Questionnaire (AUQ; Bohn et al.,
1995) before scanning. After scanning, subjects completed a second
AUQ, with the items modified to refer retrospectively to how they
felt ‘‘while in the scanner, and while seeing and smelling the items on
the table.’’
During scanning, subjects rated how ‘‘high’’ (up, stimulated, feel-

ing good) and how ‘‘intoxicated’’ (drunk, inebriated, tipsy) they felt
during imaging, using a modified Subjective High Assessment Scale
(SHAS; Schuckit and Gold, 1988). In our modified version, subjects
spoke a number ranging from 0 (same as before infusion) to 100
(most high or intoxicated ever experienced). Subjects were prompted
for responses every 10 minutes during imaging. Subjects were
informed that they would be assessed for their feelings of ‘‘high’’ and
‘‘intoxication’’ throughout all 3 scan sessions, regardless of the kind
of infusion (alcohol or saline) they received.

Subject Expectations. After each scan, subjects were asked to
rank their subjective expectations about what they believed would
occur during scanning. Subjects rated 2 statements (‘‘It was clear that
I was about to get drunk’’ and ‘‘I knew that I was not about to get
drunk’’) on a visual-analog scale anchored by 1 (strongly disagree) to
7 (strongly agree).

Image Processing

Image processing procedures were as previously described (Yoder
et al., 2007) . MRI and PET images were converted to Analyze for-
mat using MRIcro software (http://www.sph.sc.edu/comd/rorden/
mricro.html). All subsequent data processing steps were performed
with SPM2 software (http://www.fil.ion.ucl.ac.uk/spm/). For each
scan, a summed image was created from the first 10 minutes of
dynamic [11C]RAC data using the Realign function in SPM2. These
summed images contained a mixture of blood flow and specific stria-
tal D2 ⁄D3 binding, permitting accurate registration of all time frames
to a single image. The summed image was co-registered to the indi-
vidual subject’s MRI scan using SPM2. Motion correction was
achieved by coregistering individual PET frames to the coregistered,
summed PET image. Each subject’s MRI was normalized into Mon-
treal Neurological Institute (MNI) stereotactic space using SPM2’s
default normalization parameters. The transformation matrix
obtained from this normalization step was applied to the motion-
corrected, coregistered PET images from each subject, thus placing
all dynamic PET data in MNI stereotactic space.

Parametric Binding Potential Images

The binding potential of RAC is an index of the number of DA
D2 ⁄D3 receptors that are available for binding, and is operationally

Fig. 1. Graphic depiction of scanning protocols. See text for details.
Arrows indicate [11C]raclopride injection and beginning of image acquisition.
Dotted lines represent the alcohol infusion profiles, with black box at 45 min-
utes indicating scan end time. (A) Baseline (BL) scan; Ringer’s solution was
infused using the same infusion rate parameters determined for each sub-
ject’s alcohol scan. (B) Olfactory and visual alcohol cues (CUES) scan; the
IV line was kept open during scanning, alcohol infusion was started after
scanning. (C) Alcohol (EtOH) infusion scan.
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defined as Bavail ⁄KD. Binding potential will be denoted herein as
BPND, that is, binding potential calculated as bound tracer concen-
tration relative to nondisplaceable tracer concentration (Innis et al.,
2007). Changes in BPND can be used as indices of change in [DA]
(Innis et al., 2007; Laruelle, 2000). If RAC BPND values from an
experimental scan condition are different from baseline BPND values,
the changes in BPND are presumed to be caused by changes in endog-
enous [DA] (Dewey et al., 1992, 1993; Seeman et al., 1989; Young
et al., 1991). Increases in BPND relative to baseline indicate decreases
in [DA], and decreases in BPND relative to the baseline BPND indicate
increases in [DA].
Parametric BPND images were generated as described previously

(Yoder et al., 2007), using a multilinear reformulation of the Logan
reference region graphical analysis (Ichise et al., 2002; Logan et al.,
1996). The parametric whole brain BPND images were smoothed with
an 8 mm Gaussian kernel (Costes et al., 2005; Picard et al., 2006;
Ziolko et al., 2006). We restricted the search area for the voxel-wise
paired t-tests to the striatum, as (1) our sole focus was the striatum,
and (2) the striatum has the highest density of D2 ⁄D3 receptors in the
brain, and is the only brain structure with high enough signal-to-
noise ratio to support quantification of D2 ⁄D3 receptor availability
with [11C]RAC. A bilateral striatal binary mask (created from basal
ganglia ROIs from MARINA http://www.bion.de/index.php?title=
MARINA&lang=eng) was applied to the whole brain parametric
images to create striatal parametric images. The striatal parametric
images were used for SPM analysis.
Dopamine responses, which include increases and decreases in

[DA], can be indexed by change in BPND (DBPND), defined here as
(BPND1–BPND2) ⁄BPND1. BPND1 refers to the BL scan, and BPND2

refers either to the CUES or EtOH condition. Positive DBPND values
indicate increases in [DA], and negative DBPND values reflect
decreases in DA levels. Striatal DBPND maps were created from the
parametric BPND images using the ImCalc function in SPM2 for
each subject. These maps of changes in [DA] were used as the depen-
dent measures for the CUES and EtOH conditions.

Voxel-Wise Statistics. To test for effects of CUES and EtOH
conditions on [DA] via changes in BPND, one-sample voxel-wise
t-tests were conducted on the striatal DBPND maps in SPM2 to test
the null hypothesis that DBPND = 0 at each voxel.

Other Statistics. Repeated-measures analysis of variance
(ANOVA) was used to test for: (1) changes in pre-scan and postscan
AUQ, (2) changes in SHAS scores during the respective scanning
periods, and (3) changes in subject expectations. One-way ANOVA
was used to test for differences between scan conditions in mCi
injected and mass dose injected. Pearson’s correlation coefficient was
used to test for exploratory relationships among variables. Statistical
significance was set at p < 0.05.

RESULTS

Cue Paradigm Validity

To test the validity of the behavioral paradigm, we tested
for differences in pre- and postscan AUQ craving scores
across all scan sessions using a repeated-measures ANOVA.
The omnibus test revealed significant differences across all
time points (F5,35 = 17.90, p < 0.001). A planned contrast
showed a significant difference in AUQ scores between
measurements made before and after the CUES scan
(F1,7 = 33.67, p = 0.001, Fig. 2), in which the visual and
olfactory stimuli signified impending alcohol infusion. This
result suggests that the multi-sensory paradigm was successful

in evoking a significant desire for alcohol. The cues also suc-
cessfully directed subjects’ expectations in the direction
intended by the cues, with significant changes across scans for
the questions: ‘‘It was clear that I was about to get drunk’’
(F2,14 = 9.38, p = 0.003) and ‘‘I knew that I was not about
to get drunk’’ (F2,14 = 7.81, p = 0.005). For each question,
planned comparisons showed that expectations at baseline
and during EtOH (both of which involved neutral cues) were
significantly different than during the CUES scan, which
involved the alcohol cues (p’s < 0.05; Fig. 3).

Fig. 2. Alcohol Urge Questionnaire (AUQ) scores before and after each
scan condition. Alcohol-related cues significantly increased the postscan
AUQ score.

Fig. 3. Subject expectations after cue presentation.
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Subjective Effects of Alcohol

Following alcohol infusion during scan 3, the actual mean
BrAC as measured was 79 ± 11 mg%, which compares
favorably with the pharmacokinetic model target of 80 mg%.
SHAS data for perceived ‘‘High’’ and ‘‘Intoxication’’ were
analyzed separately for each scan with a 2(SHAS) · 6(Time)
repeated-measures ANOVA, using polynomial contrasts to
test for linear trends across the duration of the scan (see
Fig. 4). There were no significant changes in subjective
impressions of the effects of alcohol during the course of BL
image acquisition. While there were some significant changes
in perceived effects during the course of the CUES scan
(omnibus F1, 7 = 7.56, p < 0.05, Greenhouse-Geisser correc-
tion), the changes were not highly linear over time (p = 0.1).
During the EtOH scan, there were significant changes in sub-
jective ratings over time (omnibus F5,35 = 4.96, p < 0.005),
as well as a significant interaction between ‘‘High’’ and
‘‘Intoxication’’ (F5,7 = 5.18, p = 0.001), with ‘‘Intoxication’’
showing a more distinct linear trend over time (F1,7 = 7.53,
p < 0.05). ‘‘High’’ showed a borderline level of omnibus sig-
nificance (p = 0.051), but did not exhibit a significant linear
trend (p = 0.14).

Imaging Results

There were no differences in either mCi injected or mass
dose injected between scan conditions. mCi injected for base-
line, CUES, and ETOH was 13.9 ± 1.30, 14.4 ± 0.64, and
14.1 ± 1.00, respectively. Mass dose injected (nmol ⁄ subject)
was 14.6 ± 4.20, 14.5 ± 6.78, and 16.4 ± 6.33 for baseline,
CUES, and ETOH conditions, respectively.
Contrary to the hypotheses, striatal DA concentration did

not increase during the CUES condition relative to BL.
Instead, the voxel-wise analysis showed a cluster of voxels in
the right ventral striatum where DBPND was significantly neg-
ative (Fig. 5, top), reflecting a decrease in DA concentration.
The average DBPND value of the voxels in this cluster was
)0.20 ± 0.13 (i.e., a 20% increase in BPND).
The voxel-wise t-test of the unexpected EtOH DBPND map

showed a cluster of voxels in the left NAc with significantly
positive DBPND values, indicating an increase in DA concen-
tration (Fig. 5, bottom). The average DBPND value of the
voxels in this cluster was 0.12 ± 0.08 (i.e., a 12% decrease in
BPND).
The average BPND values from the significant clusters are

presented in Table 2.

Effects of Subject-Specific Variables

Subjects classified as ‘‘hazardous drinkers’’ (AUDIT
scores > 8, n = 5) did not differ significantly from social
drinkers (n = 3) in the average DBP from significant clusters
in either experimental condition. Neither SHAS nor AUDIT
score were significantly correlated with the average DBP from
the CUES or ETOH clusters.

DISCUSSION

Rodent studies suggest that conditioned cues or contexts
that accompany or precede alcohol administration result in
increased [DA] in the NAc (Gonzales and Weiss, 1998; Kat-
ner et al., 1996; Melendez et al., 2002; Weiss et al., 1993).
However, in this human PET study, the sights and smells of
subjects’ preferred alcoholic drinks, intended to explicitly cre-
ate anticipation of alcohol administration, did not cause any
increases in [DA] in the NAc or other striatal areas. Instead,
we found an effect in the opposite direction, such that alco-
hol-related cues decreased ventral striatal [DA]. This is consis-
tent with microdialysis data from animals that were first
trained to respond for alcohol and then subsequently under-
went extinction training: Olfactory cues that reinstated oper-
ant responding for alcohol (without the alcohol delivery
predicted by the cues) also decreased NAc [DA] (Katner and
Weiss, 1999). Moreover, unexpected alcohol administration
increased ventral striatal [DA]. This is similar to Boileau
and colleagues (2003), but not to work from our laboratory
(Yoder et al., 2005, 2007). In particular, we previously dem-
onstrated that, in subjects who were aware that they would
receive alcohol, intravenous alcohol administration did not

Fig. 4. Subjective High Assessment Score (SHAS) scores (mean ± SD)
for high (circles, left panels) and intoxication (triangles, right panels) during
the 3 scan conditions. For all scans, cue presentation began 2 minutes after
[11C]raclopride injection. Ringer’s infusion (Baseline) or alcohol infusion
(ETOH) began 4 minutes after [11C]raclopride injection. (Panels A, B) Base-
line. (C, D) CUES. (E, F) EtOH.
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cause detectable dopamine release (however, see Yoder et al.,
2007, for alternative methods of analysis for quantifying
EtOH-induced DA release).
When the data from the CUES and EtOH conditions are

examined in a different context, they appear to match Schultz
et al.’s work on dopamine neuron function in reward predic-

tion error (Mirenowicz and Schultz, 1994; Schultz, 2002;
Schultz et al., 1993): (A) If reward is expected but not deliv-
ered (negative prediction error), the activity of midbrain DA
neurons is greatly reduced (Morris et al., 2004; Schultz et al.,
2000). In our CUES condition, alcohol was promised but not
delivered during scanning, with a resulting decrease in NAc
[DA]. (B) The unexpected delivery of a reward (positive pre-
diction error) increases DA neuronal activity (Mirenowicz
and Schultz, 1994; Pan et al., 2005; Schultz et al., 2000). Dur-
ing our EtOH scan condition, alcohol was delivered unexpect-
edly, and [DA] consequently increased in the NAc. Given the
strength of the midbrain dopaminergic innervation of the stri-
atum, it seems likely that the firing rates of DA neurons
would correspond to changes in striatal [DA]. We therefore
suggest that our present in vivo human PET data are consis-
tent with the aforementioned preclinical electrophysiological
findings: (A) [DA] is reduced when alcohol was promised but

Fig. 5. Axial (left), coronal (middle), and sagittal (right) maps of t-values from voxel-wise statistical testing. Top: Voxel-wise 1-sample t-test to determine if
DBPND at each voxel was significantly < 0. Dopamine levels were significantly lower during the alcohol-related cues (CUES) condition relative to the baseline
(neutral cues) condition (display threshold p < 0.005). Bottom: Voxel-wise 1-sample t-test to determine if DBPND at each voxel was significantly >0. Dopa-
mine levels were significantly higher during the unanticipated alcohol (EtOH) condition compared with the baseline condition (display threshold p < 0.005).

Table 2. Mean ± SD BPND Values From the Baseline and Challenge
Scans (CUES or ETOH) for the Significant SPM Clusters (see Fig. 5)

Cluster

Scan

Baseline Challenge

CUES-R 1.38 ± 0.46 1.59 ± 0.37
ETOH-L 1.23 ± 0.33 1.08 ± 0.30

CUES-R: voxel data from the right ventral striatal cluster in the
CUES contrast (DBPND < 0). ETOH-L: voxel data from the left ventral
striatal cluster in the ETOH contrast (DBPND > 0).
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not delivered, (B) [DA] increased with unexpected alcohol
administration.
Our results are consistent with and complementary to the

work of other human neuroimaging investigations. Several
fMRI studies have reported changes in striatal brain activity
during conditions that involved prediction errors. Specifically,
negative prediction errors resulted in lower ventral (Abler
et al., 2006) and dorsal striatal (Davidson et al., 2004;
McClure et al., 2003) activity, while unpredictable delivery of
stimuli (positive prediction error) caused increased activity
in the ventral striatum (Berns et al., 2001) and putamen
(McClure et al., 2003). Although fMRI does not provide
information about changes in specific neurotransmitter sys-
tems, these reported changes in local brain activity resulting
from prediction errors parallel our data regarding the effects
of prediction error on striatal dopamine activity. The data in
the present work are also analogous to that of Pappata and
colleagues (2002), who detected striatal DA release during
unexpected monetary gain; however, this group did not detect
any change in striatal [DA] in response to unexpected mone-
tary loss.
It is possible that our observed increase in [DA] during

alcohol administration resulted from pharmacological effects
of alcohol on dopaminergic neurons (Brodie and Appel,
2000; Brodie et al., 1999; Gessa et al., 1985) rather than pre-
diction error, per se. Using the same radioligand as in the
present work, Boileau and colleagues (2003) demonstrated
that oral alcohol induced DA release in the ventral striatum
of human subjects. However, when we used a similar analysis,
our group could not show increased [DA] from IV alcohol
administration (Yoder et al., 2005, 2007). Were the effect of
alcohol on DA release strictly pharmacological, increased
[DA] would be expected with either IV or oral alcohol. We
instead propose that the discrepancy between the Yoder and
colleagues (2005, 2007) and Boileau and colleagues (2003)
studies stems from themode of administration of alcohol (oral
versus IV). In particular, IV alcohol administration does not
provide conditioned gustatory and olfactory cues (which are
present in oral administration), which may themselves induce
DA release (Doyon et al., 2003, 2005).
Our present work also parallels an emerging view that the

NAc DA release observed following investigator-adminis-
tered alcohol was provoked by novelty, unexpectedness,
and ⁄or aversiveness of the administration (Bradberry, 2002;
Gonzales et al., 2004; Heidbreder and De Witte, 1993;
Imperato and Di Chiara, 1986; Joseph et al., 2003; Marinelli
et al., 2003; Philpot and Kirstein, 1998; Yan, 1999; Yim et al.,
1998, 2000; Yoshimoto et al., 1992). Although several studies
have documented increases in NAc [DA] during oral self-
administration of alcohol (Doyon et al., 2005; Gonzales and
Weiss, 1998; Melendez et al., 2002; Weiss et al., 1992, 1993,
1996), Doyon and colleagues (2003, 2005) showed that
increases in NAc [DA] were dissociated from changes in brain
ethanol concentration: NAc DA levels peaked 5 minutes after
the onset of oral alcohol self-administration, then gradually
tapered off over the next 30 minutes as the animals continued

to drink alcohol and brain ethanol levels continued to rise.
These authors suggested that the sensory properties of alcohol
(e.g., scent, taste, intraoral sensation) associated with subse-
quent alcohol administration ⁄ intoxication are the sources of
increased accumbal DA levels seen at the beginning of alcohol
consumption. Likewise, in the 2003 Boileau study, subjects
began drinking alcohol 30 minutes prior to scanning, at
which time they also became aware of the drink’s contents. If
the properties of oral alcohol cause effects in humans similar
those observed in Doyon and colleagues’ work, it may have
been the case that the intraoral sensory properties of alcohol
raised ventral striatal dopamine levels high enough and long
enough to produce a measurable decrease in RAC binding.
Even if NAc [DA] tapered off after drinking (Doyon et al.,
2003, 2005) and before the start of the PET scan, modestly
elevated DA levels at the time of RAC injection may have
been sufficient to cause a measurable decrease in RAC bind-
ing potential relative to the control scan. This possibility is
supported by the fact that the measure of BPND is especially
sensitive to early perturbations of endogenous dopamine
(Morris et al., 1996; Yoder et al., 2004). Future studies are
needed to further explore and reconcile these findings.
We detected unilateral effects in each prediction error con-

dition. Asymmetries in human neurotransmitters (including
dopamine) were first documented several decades ago (Glick
et al., 1982), and asymmetries in rodent dopaminergic systems
can have functional relevance at molecular and behavioral
levels (e.g., Adrover et al., 2007; Besson and Louilot, 1995;
Louilot and Le Moal, 1994). Particularly relevant to the pres-
ent work is a study suggesting that the NAc dopaminergic
response to appetitive odors is differentially lateralized as a
function of the animal’s conditioning history (Besson and
Louilot, 1995). There are also a growing number of human
studies reporting that the left and right dopaminergic systems
subserve qualitatively different aspects of cognitive functions
(Badgaiyan et al., 2007; Cheesman et al., 2005; Tomer and
Aharon-Peretz, 2004; Tomer et al., 2008). Tomer and collea-
gues (2008) recently reported that motivated behavior is
related to higher DA receptor availability in the left putamen
relative to the right. This same group found that novelty-
seeking was decreased in Parkinson’s Disease patients who
had initial left-side dopaminergic loss, but not in PD subjects
with initial right-side DA loss. Badgaiyan and colleagues
(2007) hypothesized that the anterior left caudate was respon-
sible for detecting rule changes during an implicit learning
task. Further study is required to determine if positive and neg-
ative prediction errors recruit hemisphere-specific dopaminer-
gic circuitry consistently across populations and paradigms.
Although very little work exists on prediction error and

addiction, both positive and negative prediction errors could
conceivably contribute to development of alcohol addiction.
Berridge suggests that increases in DA code incentive salience,
or ‘‘wanting,’’ the component of reward that motivates seek-
ing and consumption (Berridge, 2007). Equally interesting is
the manner in which prediction errors may drive excessive
alcohol consumption (Lapish et al., 2006). For example, early
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drinking experiences may be more rewarding than initially
thought, creating the equivalent of a positive prediction error.
With repeated drinking, and with the transition from alcohol
abuse to addiction, the perceived reward value of alcohol may
diminish from factors such as tolerance, effectively creating a
negative prediction error. In the latter case, the perceived
effects of alcohol do not match the effects expected from ear-
lier experiences, and more alcohol is consumed in an attempt
to reproduce the desired (‘‘expected’’) effects (Lapish et al.,
2006). It is therefore possible that alcoholics code alcohol-
related ‘‘prediction errors’’ differently than social drinkers,
and that the relative strength of these signals mediates the
destructive drinking behavior in alcoholism. The dopaminer-
gic responses to prediction errors may constitute potential
biomarkers that represent components of the neurochemical
basis for alcohol addiction, and may be predictive of how
likely individuals are to respond to treatment. Further
research in both addicted and nonaddicted populations would
be required to test such hypotheses.
There is an important consideration that could temper our

interpretation that the decrease in DA we observed during the
CUES condition is indicative of a negative prediction error.
Specifically, we did not assess subjects’ beliefs as to whether
they had actually received alcohol during scanning, and the
group data suggests a transient (although highly variable)
change in subjective effects at the third time point of measure-
ment (�12 minutes after cue exposure). Thus, we cannot rule
out the contribution of a ‘‘placebo’’ effect (i.e., the errant
belief that alcohol was being administered). However, this
interpretation of a placebo effect runs counter to reports that
placebo administration increases striatal DA concentration
(de la Fuente-Fernandez et al., 2001, 2002; Kaasinen et al.,
2004)—an effect opposite to what we observed during the
CUES condition. Nevertheless, further study is indicated to
better dissociate these phenomena.
Although none of our subjects were dependent drinkers,

our sample was heterogeneous with respect to recent drink-
ing and family history of alcoholism. We did not find any
effects of drinking history on our results. However, it is
possible that a larger sample would reveal relationships
between drinking and the dopamine response to prediction
error. As only 2 subjects had an unambiguous positive fam-
ily history of alcoholism (see Table 1), we were unable to
assess the effects of family history. Given that family his-
tory-positive subjects without alcoholism may possess pro-
tective factors in the dopamine system (Volkow et al.,
2006a; but see Munro et al., 2006), it will be important to
understand how dopaminergic responses to prediction error
may differ across alcoholic and nonalcoholic subjects who
vary according to family history.
To the best of our knowledge, this is the first report to pro-

vide in vivo human evidence that striatal dopamine concen-
tration varies bi-directionally as a function of violations of
reward expectation. Our results can be explained in the con-
text of preclinical electrophysiological data which show that
the firing rates of midbrain dopamine neurons change during

prediction errors—errors which themselves may play a role in
addiction by heightening differences between original reward
experiences and a tolerance-driven inability to recapture that
original experience (Lapish et al., 2006). The results of this
study provide further rationale for using PET to study the
dopaminergic signals associated with alcohol-related stimulus
processing and learning in humans.
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