
ntPET: A New Application of PET Imaging for Characterizing
the Kinetics of Endogenous Neurotransmitter Release

Evan D. Morris1,2, Karmen K. Yoder1, Chunzhi Wang1, Marc D. Normandin2, Qi-Huang Zheng1,

Bruce Mock1, Raymond F. Muzic Jr3, and Janice C. Froehlich1

1Indiana University School of Medicine, Indianapolis, IN, 2Purdue University, West Lafayette, IN, 3Case Western Reserve University,
Cleveland, OH

Abstract
We present a new application of positron emission tomography

(‘‘ntPET’’ or ‘‘neurotransmitter PET’’) designed to recover

temporal patterns of neurotransmitter release from dynamic

data. Our approach employs an enhanced tracer kinetic model

that describes uptake of a labeled dopamine D2/D3 receptor

ligand in the presence of a time-varying rise and fall in endog-

enous dopamine. Data must be acquired during both baseline

and stimulus (transient dopamine release) conditions. Data

from a reference region in both conditions are used as an input

function, which alleviates the need for any arterial blood

sampling. We use simulation studies to demonstrate the ability

of the method to recover the temporal characteristics of an

increase in dopamine concentration that might be expected

following a drug treatment. The accuracy and precision of the

method—as well as its potential for false-positive responses

due to noise or changes in blood flow—were examined. Finally,

we applied the ntPET method to small-animal imaging data in

order to produce the first noninvasive assay of the time-varying

release of dopamine in the rat striatum following alcohol.
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Introduction

The utility of positron emission tomography (PET) for

detecting net changes in endogenous neurotransmit-

ters after a stimulus has already been demonstrated

through a variety of approaches [1–9]. However, most

studies have asked a simple binary question: Did neu-

rotransmitter levels increase or decrease? Our present

focus is not merely on the detection of increases in

neurotransmitter, but also on the characterization of

the temporal signature of a neurotransmitter’s response

to stimuli. We believe that development of neurochem-

ical assays that capture these temporal signatures is

critical because the dynamics of synaptic neurotransmit-

ter concentrations have been invoked to explain the

addictiveness of drugs [10] and, more generally, neuro-

transmitter dynamics may encode both normal and

abnormal cognitive or behavioral functions. The elucida-

tion of specific patterns of neurotransmitter fluctuation

would, thus, be beneficial to the study of a wide range of

neuropsychiatric diseases, including alcohol and sub-

stance abuse disorders.

The purpose of this article is to describe and dem-

onstrate the feasibility of a new technique for visual-

izing time-varying neurotransmitter concentrations via

PET (‘‘ntPET,’’ i.e., ‘‘neurotransmitter PET’’). This new

method relies on an enhancement of the standard tracer

kinetic model typically applied to PET data. The en-

hanced model we propose accounts for both the time-

varying dynamics of the radiotracer that we employ,

[11C]raclopride ([11C]RAC, a dopamine D2/D3 receptor

antagonist), and the endogenous neurotransmitter do-

pamine (DA) that competes with it. To make the tech-

nique practical in small animals, the model has been

developed using a reference region approach. There is

no need for arterial sampling of the input function in

this method. Experimentally, the data must be acquired

in two separate PET scans: one conducted with the

animal at rest (‘‘baseline’’ condition), the other imme-

diately following a stimulus that induces a transient

increase in striatal DA concentration (aka, ‘‘activation’’

or ‘‘stimulus’’ condition). In this article, we demonstrate

the accuracy and sensitivity of the method by analyzing

realistic simulation studies. We also begin to address the

precision and biological validity of the method by ana-

lyzing preliminary data acquired in rats receiving alcohol

(to cause release of DA) and in rats imaged during

control conditions.
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What Developments and Observations have Prompted

us to Develop a New Imaging Method?

The rewarding effects of pleasurable stimuli are

driven, in part, by the dopaminergic projection from

the ventral tegmental area to the nucleus accumbens

(‘‘the mesolimbic DA system’’). DA is thought to play a

critical role in mediating the reinforcing properties of

rewarding stimuli [11–15]. Alcohol and other drugs of

abuse (e.g., cocaine, methamphetamine) cause increases

in DA concentration in the striatum, which contains the

nucleus accumbens. It has been hypothesized that the

rewarding properties and addictive liabilities of drugs

of abuse may be related to the kinetics of DA elevation

[16,17]. It has been shown with [11C]methylphenidate

PET imaging that intravenous methylphenidate reaches

the brain much faster than an oral dose. The ability of

the intravenous drug to increase DA concentration

rapidly almost certainly underlies its euphoric effect.

In their review of methylphenidate abuse, Volkow and

Swanson [10] went so far as to state, ‘‘the relevant vari-

able for [the study of] reinforcement is the magnitude of

the dopamine change per time unit.’’ We see the devel-

opment of ntPET as a means to explore directly, and in

detail, the process of DA elevation (and any alterations

therein) and its possible role in substance abuse disor-

ders such as alcohol abuse. Several studies have already

documented that alcohol releases DA in the striatum of

rodents [18–27]. However, these studies provide only

crude descriptions of the temporal patterns resulting

from DA release because of limitations in the temporal

resolution of the experimental techniques employed.

What is the State of Current Tools for Probing Temporal

Changes in DA?

In vivo microdialysis and voltammetry are the two

established methods commonly used to assess stimulus-

induced changes in DA concentration. Each technique

suffers inherent limitations that are circumvented by

ntPET. Microdialysis and voltammetry require intracranial

cannulation, which precludes within-animal longitudinal

studies. Additionally, microdialysis and voltammetry

measure changes in extracellular neurotransmitter con-

centrations, which may not directly correspond to events

that occur within the synapse, the milieu of neurotrans-

mission. The DA curves estimated via ntPET reflect

events that are occurring intrasynaptically; specifically,

we measure the time-varying competitive displacement

of bound [11C]RAC from postsynaptic D2/D3 receptors

by increases in endogenous DA [28,29]. We cannot mea-

sure from individual synapses, of course, but we can

visualize the ensemble pattern of activation of the DA

system in brain regions. Another good reason to de-

velop a PET-based tool for intrasynaptic neurotransmit-

ter measurement is that the same tool that we develop

for small animals can be applied to humans (probably

with greater success because the higher signal-to-noise

data possible from human imaging will lead to better

performance of ntPET.)

How Does One Make Kinetic Measurements

of Endogenous Neurotransmitters?

To recover meaningful parameters that describe

physiological processes from PET data, the data must

be fit with a compartmental model that describes the

uptake and retention of target-specific radiotracers by

a tissue of interest. The model must account for the

kinetic ‘‘states’’ of a tracer in the tissue, and the fluxes

between states. The earliest PET models [30] neglected

endogenous neurotransmitters and were based on the

premise that, if present, the concentrations of any en-

dogenous ligands were constant throughout the scan-

ning period. A useful compound parameter to emerge

from early models was the binding potential (BP) (equal

to the steady-state ratio of bound to free tracer). BP has

found use as a stand-in for number of receptors, Bmax,

which is harder to measure. BP can also be used for

in vivo neurotransmitter assays.

Apparent changes in BP after some treatment are

regularly attributed to changes in the level of the neuro-

transmitter that competes with the tracer [5–8]. Unfor-

tunately, with a single index, it is not possible to represent

complex information related to both timing and magni-

tude. In fact, changes in the former can sometimes be

confused for changes in the latter [31]. The questions

we want to ask are: Did the DA concentration increase

quickly? Precisely when did it peak? How high was the

peak relative to the baseline? To answer these questions,

we must formulate a more comprehensive model.

Materials and Methods

Kinetic Model Development

Figure 1A represents an extension of the standard

PET model to account for time variations in endogenous

ligand concentration [32]. It includes compartments for

tracer as well as endogenous species (DA). The balance

on the free tracer, F, is

dFðtÞ
dt

¼ K1CpðtÞ � k2FðtÞ

� kon Bmax � BðtÞ � BDAðtÞ
� �

FðtÞ þ koffBðtÞ ð1Þ

The rate constants have the same interpretation as in

the standard two-tissue compartment model used fre-
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quently in PET. Cp(t) is the plasma concentration of

tracer. Normally, this quantity must be measured directly

via arterial blood sampling. The balance on the bound

tracer, B, is

dBðtÞ
dt

¼ kon Bmax � BðtÞ � BDAðtÞ
� �

FðtÞ � koffBðtÞ ð2Þ

F and B have the standard definitions: Free and

bound molar concentrations (pmol/mL), respectively.

The addition to the standard model consists of the

free DA, FDA, and the bound DA, BDA. The balance on

the bound endogenous DA is

dBDAðtÞ
dt

¼ kDA
on Bmax � BðtÞ � BDAðtÞ
� �

FDAðtÞ

� kDA
off B

DAðtÞ ð3Þ

where kDA
on and kDA

off are the association and dissociation

rate constants, respectively, for endogenous DA at the

D2/D3 receptor site. FDA(t) can be treated as an addi-

tional input to the system. Equation 3 is coupled to the

standard model (Equations 1 and 2) through the

specific binding term (Bmax � B � BDA)FDA. This term

shows that binding is bimolecular and saturable. Specific

binding of tracer (Equation 2) depends on concentra-

tion of available receptors (Bmax � B � BDA) and on free

tracer, F. In the enhanced model (Equations 1–3), Bmax

must refer to the concentration of all the D2/D3 recep-

tors (contrast this with the parameter that occurs in the

standard model, B0
max, defined as all available D2/D3

receptors at steady state) [33].

Using a Reference Region as an Input. As stated

above, Cp(t), can be measured from arterial samples. It

is possible to avoid this procedure, provided there are

regions of the image that can serve as a ‘‘reference’’

region [34,35]. Figure 1B represents a reference region

(REF), which is defined as an area that lacks the recep-

tors that bind the radioligand. We will use data from a

REF to alleviate the need for an arterial curve. To use a

REF approach, we adopt an alternative formulation of

the basic kinetic model [34]. Specifically, Equation 1

(with binding constant, kon = 0) can be rearranged to

yield an expression for the plasma in terms of the free

tracer in a REF, FRef(t):

CpðtÞ ¼
1

KRef
1

dFRefðtÞ
dt

þ kRef
2 FRefðtÞ

� �
ð4Þ

As long as the PET signal in the REF is a good

approximation to the contents of its free compartment

(which is valid except early in the scan, immediately

following the injection of tracer), the model can be

reformulated by incorporating Equation 4 into the stan-

dard model (Equation 1) to eliminate Cp(t). In our

implementation of the REF approach, we spline the true

activity curve (TAC) from the cerebellum (via ‘‘pchip,’’ a

shape-preserving cubic spline function in Matlab, The

Mathworks, Natick, MA); use that splined curve as our

measured FRef(t) and differentiate the splined curve to

get the derivative required in Equation 4.

A Function to Model Time-Varying Dopamine. A tran-

sient increase in DA release induced by a stimulus con-

stitutes an unknown—and not directly observable—

input to the system. Estimating the pattern of this

transient release over time, FDA(t), is our primary goal.

In vivo studies of drug-induced increases in mesolimbic

DA suggest that DA typically rises and falls unimodally

in response to alcohol [18–23,26,36] or other experi-

mental stimuli [37–41]. Therefore, we choose to pa-

rameterize the unknown input as a gamma variate with

an offset (Basal), leading coefficient (G), and delay (aka,

takeoff, tD). We describe the stimulus-induced increase

in intrasynaptic DA in terms of the five parameters of

the gamma variate function, QDA = [Basal, G, tD, a, b]T,

as:

FDAðtÞ ¼ Basal þ G�½t� tD�aexpð�b½t� tD�Þ: ð5Þ

The peak height of FDA occurs at a peak time, t = tD
+ a/b.

Figure 1. (A) The enhanced model corresponding to Equations 1 –3. Plasma

(Cp), free ( F), and bound (B) refer to tracer. Free ( FDA) and bound (BDA ) refer

to endogenous ligand. The dotted rectangle around the two bound compart-

ments refers to the competition between B and BDA for a limited number of re-

ceptors. (B) If plasma data (Cp) are not available, data from a REF region (and

its derivative in time) can be used instead as the input function to the model.
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PET Output Equation. Although the enhanced model

contains terms for an endogenous species, the expres-

sion for the discrete PET output is unchanged from

standard models. It is the weighted sum of radioactivity

concentrations in tissue compartments and in whole

blood, integrated over the frame time:

PET
tj
ti ¼

1

Dti�j

Ztj
ti

FvCbloodðtÞ

þ ð1 � FvÞSAðtÞ½FðtÞ þ BðtÞ�dt ð6Þ

Exponentially decaying specific activity, SA(t), con-

verts molar quantities of F and B to radioactivity. The

weightings are based on the respective volume frac-

tions. Fv is the blood volume fraction of the region of

interest (ROI). Cblood(t) is the whole blood radioactivity

concentration.

Simulations

Activation Condition. For each case to be examined,

we created 10 realistic simulations of TACs in the

striatum at baseline and 10 during the stimulus con-

dition by solving the model shown in Figure 1A

(Equations 1–3, 5, 6). A single arterial input, Cp(t),

was simulated for both conditions based on real

[11C]RAC data in rats. To test the REF approach to

the estimation of stimulus-induced DA curves requires

reference region TACs. Specifically, we created 10 cere-

bellum curves for both conditions. Hence, a simulation

dataset consisted of two striatum curves and two cere-

bellum curves for each case that was addressed. Blood

flow parameters (K1, k2) used for a given striatal curve

were also used for the associated cerebellar curve,

except in the specific case where change in K1 was

being examined (see below). For every simulation set to

be created, tracer parameters, QRAC (= [K1, k2, kon, koff,

Bmax]
T), were selected randomly from a uniform dis-

tribution (±10%) around canonical parameter values

based on our [11C]RAC scan data in rats. kDA
on and kDA

off

were fixed at large values that were compatible with the

measured affinity constant for DA at the D2/D3 receptor

(KD = 100 nM; [42]). The same DA curve parameters,

QDA, were used for every stimulus condition simulated.

Varying tracer parameters for each simulation set is akin

to simulating inter-rat variability in the uptake and

retention of raclopride. All baseline simulations were

created with DA fixed at the same Basal concentration

(100 nM) so occupancy of D2/D3 by DA was 50% at

baseline. Constant DA level at baseline is an assumption

of our model (see Parameter Estimation), and with

regard to this point, our simulated data were always

in compliance. The DA curve used in all the stimulus

conditions was derived from actual [11C]cocaine PET

data [43] in order to approximate the DA response that

might occur following administration of a moderate

dose of intravenous cocaine (for details, please see

Ref. [31]). By way of comparison with other studies,

the average DBP by graphical analysis [44] for the 10

simulated PET datasets containing a nonconstant DA

curve was 0.28 ± 0.11. Noise was added [45] to

produce the noise level observed in our animal experi-

ments. All models were implemented in Matlab using

COMKAT [46].

Control (Null) Condition. We simulated an additional

98 datasets that paired two baseline striatal TACs (and

the accompanying cerebellar TACs) that differed only

in their particular noise realizations. To address the

likelihood and magnitude of false positives, these data

were then analyzed with the complete ‘‘ntPET’’ method

as if one of the two had been acquired during an acti-

vation condition. The mean BP for 196 null cases (98

‘‘rest’’ plus 98 ‘‘activation’’) was 1.012 ± 0.138 and the

mean DBP was 0.033 ± 0.095, confirming that the null

data were configured with no detectable DA change.

Null Condition with K1 Decrease. To investigate the

possibility that change in some aspect of tracer uptake

other than competition with DA could masquerade as a

DA change, we created additional null simulations that

included a 25% reduction in K1 relative to baseline for the

duration of the ‘‘activation’’ scan. An increase in blood

flow is unlikely to be confused with a DA increase as more

blood flow would cause higher tracer uptake, whereas DA

competition will cause a decrease in PET signal. Of

course, logically, a decrease in blood flow should affect

both K1 and k2, but it has already been shown that a

concomitant change in both parameters does not appre-

ciably alter the PET signal [3,4]. We examined a drop in K1

alone to probe for extreme (and probably unphysiologic)

perturbations that might cause pronounced false-positive

results [4]; examining an increase in k2 alone would

produce comparable results because increasing efflux

and decreasing influx both lower net uptake.

Small-Animal Imaging Protocol

Three high-alcohol drinking (HAD) [47] rats (423 ±

28 g) each received two [11C]RAC PET scans on different

days. Before each scan, rats were anesthetized with an

intramuscular injection of 0.1 mL per 100 g body weight

ketamine cocktail (ketamine/xylazine) 20 min before the

tracer. Two ‘‘alcohol’’ animals received a scan at base-

line, and another scan some time after an intraperito-

476 ntPET for Characterizing Neurotransmitter Kinetics Morris et al.

Molecular Imaging . Vol. 4, No. 4, October 2005



neal alcohol challenge. Rat A received 0.5 g/kg 11 min

prior to injection of [11C]RAC; Rat B received 1.5 g/kg

of alcohol intraperitoneally 2.5 hr prior to injection of

[11C]RAC. The control animal (Rat C) received two base-

line scans.

Animals were gently secured on the scanner bed in

the supine position. At scan start, 0.326 ± 0.109 mCi

[11C]RAC was injected through the tail vein; scans lasted

60 min. The injected SA was 0.355 ± 0.185 Ci/mmol

and mass dose of raclopride for all scans was 3.34 ±

3.57 nmol/kg. Images were reconstructed (filtered back-

projection) using the following time frames: 6 � 60, 2 �
120, 4 � 150, 8 � 300 sec. The spatial resolution of the

IndyPET II is 2.5 mm FWHM at the center of the field of

view; axial resolution is 4.1 mm FWHM [48].

Circular ROIs (11 voxels *0.625 * 0.625 * 3.15 =

13.54 mm3) were positioned on the left and right

striatum on a single slice and on the cerebellum

(57.83 mm3), also on a single axial slice. Left and right

striatal values were averaged. ROI placement and the

Figure 2. (A, B) MIP images show axial positions of the striatum and cerebellum, respectively. (C, D) Striatal and cerebellar slices of [11C]RAC images with circular

ROIs positioned on the left and right striatum (C) and cerebellum (D). (E) Typical striatal and cerebellar TACs. Striatal curve is based on pooled left and right striatal

ROI data. Note separation of curves indicating detection of considerable specific (displaceable) binding of [11C]RAC.
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resulting typical cerebellum and (pooled) striatum TACs

for the case of a baseline condition scan are illustrated

in Figure 2.

Parameter Estimation

The power of our method to estimate new informa-

tion from dynamic PET comes from fitting our model to

data from rest and stimulus conditions simultaneously

(a ‘‘concatenated dataset’’). In doing so, we assume that

the tracer parameters remain constant across conditions

and the DA curve is allowed to vary only in the stimulus

condition. This is not unlike modeling approaches that

have sought to improve parameter identifiability by

simultaneously fitting data acquired either from multi-

ple regions or at multiple SAs [49–54]. The best fit to

the concatenated dataset (baseline plus stimulus con-

ditions) is found by minimizing the objective function,

F, over the space of all parameters (QDA, QRAC, QREF).

(The REF formulation introduces two new parameters

[Ri = K1/K1
ref and k2

0 = Rik2
ref] but only one net addi-

tional parameter as it eliminates K1 from QRAC). The

compound objective function is the weighted sum of

squared residuals (WSSR) over both baseline (B) and

stimulus (S) conditions:

FðQDA;QRAC;QREFÞ

¼

PP
i

w2
i ½PETDi � PETiðQDA ;QRAC;QREF; BÞ�2 þ

P
j
u2
j ½PETDj � PETjðQDA ;QRAC;QREF; SÞ�2

8>><
>>:

9>>=
>>;

ð7Þ

PETDx is the xth data point in a given condition. PETx

is the solution to the model (Equations 1–6) at the same

point; w2
i and u2

j weight each residual inversely accord-

ing to its variance. The precision of the estimates can be

improved by the addition of ‘‘prior’’ information to the

objective function via one or more penalty functions

[55]. An example is given in Equation 8:

FðQDA;QRAC;QREFÞpenalized

¼
FðQDA;QRAC;QREFÞþ

tðBPgraphical � BPðQDA;QRAC;QREFÞÞ

8<
:

9=
; ð8Þ

In this case, a penalty term has been appended to

the objective function, F, that requires independent

knowledge of BP. Minimizing the penalized objective

function thus favors a choice of parameters that yields

a BP that is ‘‘close’’ to the known value of BP—in our

case, a value that is measured concurrently but by an in-

dependent means [44]—from the baseline data. ‘‘Close’’

depends on the choice of weight for the penalty func-

tion, t. We chose the weight of the penalty term accord-

ing to a preliminary optimization that sought to minimize

the variances in the estimates of DA peak time, peak

height, and takeoff, from simulated data. Based on such

an analysis, t was set to 60 and was large enough to

force the estimated BP—a macroparameter made up of

a number of model parameters—to converge to roughly

its measured value. Despite limitations, described above,

one might also imagine using some applicable aspect

of microdialysis data (e.g., the normalized area under

the measured DA curve) from appropriately treated rats,

as another type of prior information to help guide the

minimization of a penalized objective function. In this

way, one could search for DA curves that satisfy the

PET data and yet are not inconsistent with a trove of

existing data from another experimental method.

The quality of our experimental data supported

the estimation of three tracer (k2, kon, koff), two REF

(Ri and k2
0), and five DA parameters (QDA) simulta-

neously. For all fits, the binding rate constants for DA

were fixed to fast values (kDA
on = 0.25 mL/(pmol min); kDA

off

= 25 min�1) based on an earlier review of the literature

[42]. The parameters Basal and Bmax were not strictly

identifiable, so Bmax needed to be fixed during fitting.

When fitting simulated data, we wanted to perform a

fair test of our estimation method, so we were careful to

fix Bmax to something other than the true value. We

chose to fix it at a reasonable value (50 nM) based on

the literature and on initial fits to rat data (for which

we allowed all QDA parameters to vary). Recall that sim-

ulations were created with QRAC parameters varying

by ±10% around a mean. The true Bmax varied in the

range 36–44 nM]. Because we are only interested in

positive changes in DA, we restricted G to values equal

to or greater than zero. Hence, FDA(t) curves were re-

stricted to positive values at or above baseline. Choices

for all other estimated parameters were limited above

and below by loose upper and lower bounds [e.g., 0.01 �
kon � 1 mL/(pmol min)].

Best-Fit Criteria. Even with the use of data from two

conditions, the task of fitting our enhanced model and

10 parameters to the data is an ill-posed problem.

Hence, we are not surprised to find some dependence

of fitted values on initial parameter guesses. In general,

this is due to two factors: inherent correlation between

some parameters which creates multiple combinations of

equivalent parameter groupings, and noise in the data
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which creates local minima in the functions F or

Fpenalized. To overcome the dependence on initial guess,

two additional steps were taken. (1) Fits of each dataset

were always performed starting from 100 different ini-

tial parameter guesses. The initial guesses varied

widely and randomly. (2) Of the fits that converged,

the retained results consist of those fits that met our

two-stage best-fit criteria: (i) WSSR lower than the medi-

an WSSR and (ii) of the results retained in Step 1, the

number of runs (i.e., zero-crossings in the residuals [56])

had to be greater than the median number of runs. It is

worth noting that taking this ‘‘Monte Carlo’’ approach to

estimation leads us to present multiple best DA curves

for every dataset.

Testing the Method

Our initial tests of ntPET were performed in six steps.

(i) A series of realistic simulations that closely resem-

bled our dynamic rat data were analyzed to determine

whether we could recover the true DA input that pro-

duced the simulated data—and with what accuracy and

precision. (ii) At the same time, we analyzed simulated

datasets that represented ‘‘null’’ cases to test for Type I

errors. That is, what DA curve(s) is recovered by our

method when the only differences between the base-

line and activated data are due to random noise? These

simulations were used to determine a detectability

threshold. To achieve a false-positive rate of zero, a de-

tectability threshold must be set to exclude any DA

curves that might be generated by noise alone. Because

it may not be possible to achieve perfection with our

data, we selected a detectability threshold that yielded

only one false-positive event in 10 ‘‘null’’ datasets. (iii)

Third, we tested for additional false-positive DA curves in

‘‘null’’ case simulations that also included a manufac-

tured artifact related to change in blood flow during

activation. To test the worst-case scenario, we created

data whose K1 value (only) was depressed by 25% in

the activated case. There was no true DA change in-

cluded in these simulations. The question we asked

was: Can noise and an extreme blood flow artifact yield

a DA curve that looks like our findings in animals? (iv)

The DA response was recovered from rat data ac-

quired immediately following intraperitoneal alcohol;

the precision of the parameter estimates was determined

and the overall findings were compared with published

results based on microdialysis experiments. (v) To ad-

dress concerns in the literature about prolonged effects

of drugs on number of D2/D3 receptors (aka, ‘‘receptor

internalization’’), we scanned a rat at baseline and 2.5 hr

following intraperitoneal alcohol. (vi) Finally, ntPET

was applied to rat control data which were acquired in

Figure 3. Simulated rat data from striatum (filled circles) and cerebellum (triangles) in the rest (A) and activated states (B). The data were simulated using the

plasma input curves (dashed curves, scaled) and the model in Figure 1A. The smooth curve through the striatal points is a fit of the REF model (given in Figure 1A and

B) to all the data in A and B simultaneously. The thin solid curves in A and B are the time derivatives of the cerebellum curves; these are used by the REF model in lieu

of a plasma curve. (C) The model assumption that DA is quiescent at rest is demonstrated. (D) The black curves are the resulting DA curves from best fits to the data in

A and B. The true DA takeoff and peak times are indicated by vertical arrows, the true peak height by a horizontal arrow. Note excellent correspondence in timing

between true timing characteristics and fitted ones.

ntPET for Characterizing Neurotransmitter Kinetics Morris et al. 479

Molecular Imaging . Vol. 4, No. 4, October 2005



two scans without any real stimulus during either scan

to see whether experimental variations of any sort be-

tween scans could mimic a real DA response.

Results

Simulations of Activation

Figure 3 shows a typical result of fitting the model

described in Equations 1–6 to one simulated noisy

concatenated dataset created with time-varying endog-

enous DA. Figure 3A and B constitutes a representative

fit of the model to a simulation of the striatal region in

the baseline (Figure 3A) and stimulus (Figure 3B) con-

ditions. The simulated cerebellum data (lower curves

in Figure 3A and B) are also plotted for each condi-

tion. The plasma curves used to simulate the data via

the model in Figure 1A are also shown on each of the

left-hand panels as dashed curves. During estimation,

the measured cerebellum data are not fitted explicitly

but are used as a measure of Fref(t) and its time de-

rivative (Equation 6) to substitute for a directly mea-

sured arterial input function. The derivative of the

splined cerebellum curve is shown in Figure 3A and

B because its quality dictates, in part, the quality of the

input. Figure 3C simply illustrates the assumption of

the enhanced model that DA does not change during

the baseline condition. Figure 3D displays the resulting

‘‘best’’ DA curves, selected according the to best-fit

criteria, recovered by minimizing Equation 8 over most

model parameters (Bmax, kDA
on , and kDA

off are fixed) for

the simulated dataset shown on the left-hand side of

the figure. The true DA curve takeoff time, peak time,

and peak height are indicated by arrows (true values:

takeoff = 8 min; peak time = 16.26 min; peak height

= 5.132 � baseline DA). Note that the scale of the

recovered DA curves is in fraction of baseline.

The model fits to the particular simulated data shown

in Figure 3 yielded highly precise estimates of takeoff

time (9.96 ± 0.35 min), peak time (18.00 ± 0.17 min),

and relative peak height (5.14 ± 0.22). Figure 3D

contains 27 best DA curves selected from 80 fits that

converged out of 100 tries.

The estimates of DA characteristics based on the

entire group of 10 simulated datasets were: takeoff

time (8.70 ± 4.24 min), peak time (16.73 ± 3.67 min),

and peak height (6.89 ± 9.85); removing one dataset

whose fits converged consistently to two different so-

lutions yields a more consistent average peak time:

17.64 ± 2.44 min. The average parameter values for

all 10 simulations were calculated as the overall means of

the 10 average values for that parameter regardless of

how many best curves had been selected for a given

dataset. The results of examining all 10 datasets sug-

gest a slight positive bias in our ability to locate the DA

curve in time. The peak height for a group of simula-

tions appears not to be as precisely determined as the

timing parameters. The results in Figure 3 are entirely

representative of the results from fitting each of the

simulation sets. On average, starting from 100 initial

guesses, 76.8 ± 3.7 trials converged and from those con-

verged fits, 28 ± 6.9 sets were retained by our best-fit

criteria.

Although the DA curves were the same in each

simulation, the resulting PET curves were different in

each because the tracer parameters, QRAC, varied across

simulations. Thus, the error in the ensemble averages

can be thought of as representing the variability we

could expect to see in groups of animals, provided that

±10% variability in parameters across subjects is reason-

able. The greater precision of the individual case (e.g.,

for the data in Figure 3) should be understood to

represent the reliability of the specific estimates (i.e.,

the fit) for a given dataset.

Control (‘‘Null’’) Simulations

The control experiment (Rat C) is a necessary check

for random changes in experimental conditions be-

tween the first and second scans that might be mistaken

for DA changes. However, it is not the only necessary

check. The signal-to-noise ratio in the control experi-

ment will not always be identical to that of an alcohol

challenge experiment (there is unavoidable variability

in activity dose). Because the error in the DA pa-

rameters will be related to the signal-to-noise level in

the PET data, there needs to be a theoretical means

of creating ‘‘controls’’ for the appropriate noise level.

Thus, a simulation experiment must be conducted—at

the observed noise level—to properly evaluate the

estimated responses that are found in each alcohol

challenge experiment.

As mentioned in the Materials and Methods section,

we simulated 98 datasets representing baseline and

‘‘activation’’ scans with no DA change during activation.

We call these datasets simulations of the ‘‘null’’ case. In

these data, we reproduced the signal-to-noise ratio

observed in Rat A. The result of analyzing these simula-

tion sets can be interpreted as the possible Type I errors

(DA curves) that could result solely from the random

noise observed in a given experiment.

As stated previously, each of 98 datasets was fit

starting from 100 different randomized initial guesses.

For the null simulations, the mean number of conver-

gences was 53.4 ± 10.1 and the mean number retained
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after best-fit culling was 23.6 ± 5.4. Figure 4 shows

typical results from the analysis of a null case simulation.

As we will see below, the null responses are much

smaller in magnitude than the response found in the

alcohol challenge in Rat A. This figure is a prototype

for how we shall analyze all future data with the ntPET

method. From the faux DA responses in Figure 4D and

other null cases, we chose to set our detectability

threshold on relative peak height at twice the baseline

DA or less. That is, any response whose peak does

not exceed this threshold will be considered an unverifi-

able event.

At the noise level chosen (based on our present

small animal data), this threshold level yields a false-

positive incidence of better than 1 in 10 (9/98) for DA

peaks that occur later than 5 min and earlier than 50 min

(excludes last two time frames) following raclopride

injection. The false-positive incidence is approximately

1 in 20 (5/98) if we restrict our view to the window after

5 min and earlier than 45 min. When our method does

find false DA peaks in the null data, they appear to occur

before time zero or after time 50 min. These observa-

tions suggest that the fits may be sensitive to inadequa-

cies of the model at early points and to increasingly

noisy data at the end of the scan session. Recall (1) for

our REF formulation to be strictly valid, the cerebellum

data must be only due to radioactivity in the free

compartment, FRef(t), and (2) as we lose signal due to

radioactive decay, the signal-to-noise ratio of our data

declines.

Control Simulation with Decrease in K1. To further

evaluate the plausibility of our experimental results,

we analyzed a second type of null case simulation. As

stated in Materials and Methods, these simulations were

created identically to the other null case data except that

the K1 parameter, which controls the influx of tracer

from the plasma to the tissue space, was fixed 25% lower

in the second (‘‘activation’’) scan than in the baseline

scan. Because K1 and k2 both depend on blood flow, it is

highly unlikely that only one parameter would change to

this extent and become decoupled from the other.

Nevertheless, we examined these simulations to explore

a worst-case scenario for how phenomena unrelated to

change in DA might cause a very large and temporally

precise apparent response of DA. Figure 5 shows the

results of a typical null case that includes change in K1.

Using the peak detectability threshold of twice the

baseline DA between 5 and 45 min, the 10 simulations

that included a drop in K1 value yielded two false-

positive results. But even in these two cases of false

DA findings that exceeded the threshold, the best-fit DA

curves were highly variable in time and some solutions

were implausible. In summary, none of the null data

Figure 4. Fit of simulated null case. A and B are simulated data for the striatum (filled circles) and cerebellum (triangles) with DA maintained at baseline during

both rest and activation. The data are fitted simultaneously with REF model as described in text. Smooth curve through points in A and B is all one fit. Thin curves are

the derivatives of the cerebellum. (C) Assumption of constant DA in rest condition. (D) Fitted DA curves from best fits to data. Negligible DA response found by model in

null case simulations like this indicates low likelihood of false-positive findings for our method and helps to establish proper detectability threshold for a given

(realistic) noise level. Temporal incoherence of best fits is also typical of estimated responses in null case.
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with K1 decreased in activation gave responses that

looked like the results from simulated data with real

DA change (shown in Figure 3). Nor did they give results

that look like the experimental response to alcohol,

shown below.

Alcohol Challenge Experiments

Based on the microdialysis literature cited above, we

anticipated that intraperitoneal alcohol would induce a

measurable increase in striatal DA. Figure 6 shows the

fitting results for the striatum (left and right pooled

Figure 5. Fit of simulated null case with decrease in K1 during activation. A and B are simulated data for the striatum (filled circles) and cerebellum (triangles) with

DA maintained at baseline during both rest and activation. The data are fitted simultaneously with REF model as described in text. Smooth curve through points in A

and B is all one fit. Thin curves are the derivatives of the cerebellum. (C) Assumption of constant DA in rest condition. (D) Fitted DA curves from best fits to data. Small

DA response found by model to this null case is typical when fitting simulations of this type. Decreased K1 in activation condition (B) relative to baseline condition does

not appear to mimic the authentic response observed in simulated data (Figure 3D) or the robust response observed in Rat A (Figure 6D).

Figure 6. Real rat data from alcohol experiment (Rat A). Pooled left and right striatum (filled circles) and cerebellum (triangles) data in the baseline (A) and

activated states (B). Rat A received (0.5 g/kg ip) alcohol 11 min prior to scan. The smooth curves through the striatal points is one fit of the REF model to all the data in A

and B simultaneously. The thin solid curves in A and B are the time derivatives of the cerebellum curves. Some noise in the fitted curves can be attributed to the noise

in the cerebellum data which are used as the input. (C) Assumption of constant DA in rest condition. (D) The black curves are the resulting DA curves from best fits to

the data in A and B. Note good temporal consistency of the best fits.
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together) of Rat A. The solid curves in Figure 6A and B

constitute a representative ‘‘best fit’’ to the striatal PET

data (solid circles) from the baseline and intraperitoneal

alcohol conditions (fitted simultaneously according to

Equation 8). Noise in the fitted curve for the alcohol

condition (Figure 6B) is a direct consequence of noise in

the cerebellum curve obtained in the same condition

(cerebellar data are shown as open triangles). Figure 6D

is the set of best DA curves according to the best-fit

criteria described in Materials and Methods and thresh-

olded at the detectability threshold of two times base-

line. The mean peak time of the recovered DA curves is

18.27 ± 1.24 min post-[11C]RAC injection (~29 min post

alcohol challenge).

Figure 6D illustrates the consistency of the ‘‘best-fit’’

DA curves generated from this experiment. Notice par-

ticularly the great temporal coherence of the curves. The

mean peak height for this experiment was found to be

3.79 ± 1.05 (=279% above basal DA). The latency of the

DA response (i.e., DA takeoff time, tD) in the animal’s

striatum was 8.79 ± 2.86 min following [11C]RAC) (or

~20 min following intraperitoneal alcohol challenge).

Mean values are based on 21 best fits culled from

77 converged.

Early Alcohol Experiment. The results of fitting the

PET data from Rat B (left and right pooled) striatum are

shown in Figure 7A (rest) and Figure 7B (activation).

Analyzing these data yielded no DA curve (Figure 7D).

Intraperitoneal alcohol was administered 2.5 hr before

[11C]RAC injection to look for prolonged effects of

alcohol on either DA or possibly on receptor number.

It has been speculated that internalization of D2/D3

receptors is part of the response to large doses of

amphetamine [57] and that those internalized receptors

are no longer available to bind to endogenous DA or

to free raclopride. If that were the case with alcohol as

well, then Bmax would appear to be diminished, which

might be detected by our model as increased DA. The

ntPET results from Rat B suggest, preliminarily, that

such is not the case.

We note that the fitted curves in Figure 7A and B

(thick solid curves) look quite different in shape. These

differences (i.e., the plateau in Figure 7B) can be traced

to differences in the injections between the baseline and

activation studies rather than to any alteration of kinetics

by DA. The respective cerebellum curves (triangles) for

each condition serve as indicators of the time course of

tracer concentration in the plasma, which was more

prolonged in the case of the activation condition for

Rat B (Figure 7B). In summary, ntPET does not find any

effect of alcohol administered 2.5 hr prior to the

[11C]RAC activation scan. This finding (Figure 7D) is

consistent with microdialysis data that show dialysate DA

Figure 7. Real rat data from delayed activation experiment (Rat B). Animal received intraperitoneal alcohol 2.5 hr prior to second scan. (A) Pooled data from the left

and right striatum (filled circles) and the cerebellum (triangles) in the first rest (A) and in the ‘‘postactivation’’ state (B). The smooth curves through the striatal points

is a fit of the REF model to all the data in A and B simultaneously. (C) Model assumption on DA at rest. (D) DA curves generated by best fits of model to data. Absence of

any DA curve indicates that the model can fit data well without any need to invoke activation of DA, that is, there is no apparent long-term effect of intraperitoneal

alcohol (1.5 g/kg) on the DA system.
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levels returning to baseline within 120 min of adminis-

tration of (2.0 g/kg) alcohol [19,22,25].

Control Experiment

In this experiment, which combined two scans in the

baseline condition, no increases in DA concentration

were expected. Figure 8A and B shows the model-fitted

PET curves to striatum TACs of the control animal

(Rat C). The absence of a peak in Figure 8D indicates

that the model required no DA activity at all to achieve a

simultaneous fit of the data from both scans (relative

peak height = 1 ± 0; based on 24 best fits out of 49

converged). Because the G parameter in the expression

for free DA (Equation 5) was constrained to be non-

negative, we were only looking for positive excursions

of the DA curve that would explain the data. This is,

however, the correct way to analyze the control because

the real alcohol challenge and simulation data were

also fitted by limiting G to non-negative values (i.e., we

only looked for transient rises in DA during the activa-

tion scan in response to a stimulus).

Discussion

We have demonstrated that ntPET—a new method for

identifying and characterizing temporal characteristics

of neurotransmitter release induced by a stimulus—is a

feasible analysis for use with dynamic small-animal im-

aging. We have named our new method ntPET (neuro-

tansmitter PET) to emphasize the analogy with fMRI

(functional MRI), a method for finding temporal pat-

terns in dynamic MR data. We have no doubt that

human imaging will yield even better (more precise)

results and even lower detectability thresholds due

to better signal-to-noise ratios in the TACs. Although

we chose to focus on the dopaminergic system, this

method can be applied to other neurotransmitter sys-

tems as well, given a displaceable radioligand that

competes observably with the particular neurotransmit-

ter of interest. Just as we expect human data to be

even more amenable to ntPET analysis, we anticipate

that further advances in sensitivity and spatial resolu-

tion for small-animal scanners will lead to more pre-

cise DA parameter estimates and lower incidences of

false positives of any kind. Tests with multiple simu-

lations of rat data (allowing for variation across sub-

jects) show that the temporal precision of ntPET (i.e.,

the ability to locate and resolve DA peaks in time) may

be as good as 2–4 min. We cannot say anything about

the true shape of the DA curve in experimental data

because we have fixed our choice of DA curves to be

those of the family of gamma-variate curves consistent

with Equation 5.

Based on simulations, the uncertainty in estimates of

DA parameters for any given dataset appears to be in the

range of 1 min. The precision of the estimates for Rat A

is consistent with this assessment. Recall that across

simulations, the tracer parameters used to create the

Figure 8. Real rat data from a control experiment (Rat C). (A) Pooled data from the left and right striatum (filled circles) and the cerebellum (triangles) in the first rest

(A) and in the second rest state (B). The smooth curves through the striatal points is a single fit of the REF model to all the data in A and B simultaneously. (C) Model

assumption on DA at rest. (D) DA curves generated by best fits of model to data. Absence of any DA curve indicates the model can fit data well without any need to

invoke activation of DA.
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data were varied by ±10%. Within datasets, only the

noise accounts for variability in the estimates. Hence, we

would expect greater variability across subjects than

within subjects.

The null case analyses allow us to set detectability

thresholds for our method. The simulations and fits of

98 null cases (there was no DA release included in the

simulated data) suggest that artifactually recovered DA

responses due to noise in the data will be acceptably

rare over a defined time window from 5 to 50 min

(~10%) or 5 to 45 min (~5%) of the scan. For noise

levels comparable to our rat data presented here, we can

safely say that any peak DA response that exceeds our

threshold (100% above baseline) in the window between

5 and 45 min of the scan is unlikely to be merely the

model’s attempt to fit noise spikes in the activation scan

data and therefore is likely to correspond to an actual

release of synaptic DA. One need not be troubled by

‘‘throwing away’’ subthreshold responses that are gen-

erated by the present method. By way of comparison,

we cite the example of multilead EEG, another mathe-

matical inverse method, used to generate hundreds of

dipoles (‘‘source localization’’) in the brain from po-

tentials recorded on the skull, only to have most of

them thresholded away as being unphysiological or

likely due to noise. We fully admit that experimental

variables other than alcohol could cause DA to be ele-

vated. To rule out all of these factors (e.g., stress of in-

jection), we will need to replicate and expand on our

array of control experiments.

Our predictions of false positives based on null case

simulations may, in fact, be overly cautious. (1) We note

that only 1 time out of 98 was the peak of a false result

recovered within a few minutes of the time that we

observed the peak DA response to alcohol in Rat A. (2)

Bonafide DA responses tend to be much more robust

(higher) and temporally coherent (greater agreement

among ‘‘best’’ fits) when there is really a DA curve to be

found than when there is none. Thus, we predict that

it will be unlikely that a false response due to noise

alone will be confused with real DA activation. In the

future, we may be able to improve our ability to reject

false fits by incorporating a penalty on incoherence

(high standard deviation) of the peak time and peak

height estimates.

Comparison with Microdialysis Data

Our preliminary finding that ntPET recovered an

alcohol-induced striatal DA response that peaked

29 min post alcohol administration is perfectly consist-

ent with the findings in several microdialysis and vol-

tammetry studies in both anesthetized [24,26] and

freely moving animals [18,20,22,25,27]. We are optimis-

tic that the method will prove to be a valuable tool for

probing the second-to-minute time scale for temporal

aspects of dopaminergic responses to pharmacological

challenges in preclinical experiments. The believability

of our findings in Rat A are bolstered by the lack of

finding in Rat B (alcohol long before the scan) or in

Rat C (no alcohol in either scan).

To put the results from our alcohol challenge experi-

ments into context, we present our findings for Rat A

superimposed on published microdialysis results de-

rived from an experimental setup very similar to ours

(see Figure 9). Heidbreder and De Witte [26] assayed for

DA in microdialysis samples from the nucleus ac-

cumbens of rats following 1.0 g/kg ip alcohol. Like our

rats, theirs were anesthetized. Consistent with our Rat A

data, the average DA response as measured by micro-

dialysis peaked in the 20–40 min time bin (post alco-

hol). Of course, microdialysis sampling is very slow

which is reflected in the width (20 min each) of the

bars in Figure 9. This figure is our reformatting of the

data in Figure 1 of Heidbreder. Because their data were

based on 21 rats, it is quite reasonable to expect that

the bars reflect interanimal variability in take off and

peak time. One can easily imagine that the bar graph in

Figure 9. DA response to alcohol in striatum of Rat A measured by ntPET

compared with published microdialysis results. Abscissa is time (min) from

dose of alcohol. Gray bars are adapted from Figure 3 of Heidebreder and

deWitte (1993) who used assayed extracellular DA in the nucleus accumbens

via microdialysis in 21 anesthetized rats following 1.0 g/kg alcohol ip. Width

of bars is 20 min because microdialysis sampling technique used required

20 min per sample. Note nearly perfect agreement between our Rat A and the

group of rats studied by Heidebreder. Note also that with ntPET we can localize

the DA peak time of an individual rat to within 25 sec, whereas this type of

microdialysis assay can only locate the average peak of the group to within

20 min.
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Figure 9 is the average of many results such as Rat A,

some of whom would have takeoff and peak times

earlier and broader, and others would have been later

and sharper than Rat A. It is also not unreasonable that

the ntPET result for Rat A peaks at a higher fraction of

baseline than does the ‘‘peak’’ (20–40 min) microdial-

ysis measurement in Figure 9 aside from interanimal

variation. Although it is true that the placement of

microdialysis probes can be targeted to a particular

nucleus (e.g., precisely in the nucleus accumbens),

whereas the PET signal is based on an ROI encompass-

ing the whole striatum (which would tend to dilute any

local effect that originates in a small striatal subregion),

there are many obstacles to microdialysis sampling that

might cause it to detect lower effective concentrations

of DA than ntPET. As stated above, the PET signal

responds to competition at the D2/D3 receptors which

are largely, if not exclusively, intrasynaptic. The micro-

dialysis probe is distant from the synapse and so it will

only detect DA that manages to (a) diffuse out of the

synapse (b) avoid uptake by DA transporters, (c) avoid

metabolism by catechol-O-methyltransferase and other

enzymes, and (d) diffuse across the probe membrane.

Not only will there be a considerable gradient between

the high intrasynaptic concentration and the lower

extracellular one, but the insertion of the microdialysis

probe causes disruption of the tissue that creates a

further concentration gradient from the unaffected

tissue down to a yet lower concentration at the probe

membrane surface [58].

Given the temporal variability between rats’ DA re-

sponses that we postulate with regard to the Heidbreder

data, it is also possible that reanalyzing previously pub-

lished studies in humans and animals with the present

method would reveal considerable temporal variation

in neurotransmitter dynamics across subjects. If the hy-

pothesized variability in temporal responses of the DA

system to drugs is borne out (after scanning many sub-

jects), and our method continues to perform with better

than 4 min uncertainty in the estimate of DA timing,

then we believe this represents an opportunity to delve

deeper than previously possible into the neurochemical

workings of the brain.

Spatial Resolution Limitations

A consequence related to the limited spatial resolu-

tion of PET may be that our images will necessarily suffer

from partial volume (PV) error, and therefore, our TACs

may not reflect the true shape of the concentration of

tracer in a given tissue over time. We have not yet inves-

tigated the effect of PV error on recovery of DA curves. It

seems likely that such an error, if uncorrected, could

lead to a bias in DA timing parameter estimates but not

to outright false positives. For one thing, whatever effect

of PV exists, it is present during both scans. Thus, even

if uncorrected data yield biased timing results, it is our

expectation that the bias will be fairly consistent across

time and across scans and that early neurotransmitter

release will be distinguishable from late release. We

must emphasize that standard analysis methods that

rely on differences in BP are unable even to make such

early versus late distinctions. As we continue to refine

our method, it will be important to assess the impact of

PV error and to explore the use of established correction

methods in conjunction with the ntPET methodology

presented here.

Model Assumptions

Our model is built on certain assumptions such as the

constancy of tracer parameters, QRAC, across conditions.

This would seem not to be too restrictive as long as the

animal is scanned twice within a reasonable period

(perhaps 1–2 weeks) in a well-controlled environment

and at the same time of day. Strictly speaking, a violation

of this assumption would be caused by an alteration to

blood flow due to drug, but even this violation would

not necessarily lead to artifacts. Comparable change in

K1 and k2 would not affect the shape of the TACs

appreciably [3,4], whereas a decoupled change in one

without a change in the other is probably unphys-

iological. An implicit assumption of the model is that

the neurotransmitter and the tracer obey competitive

binding rules at the receptor site. Anything that would

cause this condition to be violated might invalidate

the model. If significant numbers of receptors were

internalized or otherwise became inaccessible to DA

while remaining bound to raclopride (or vice versa), the

method might fail. From a modeling standpoint, one

might address such a phenomenon—if it were reliably

demonstrated— by incorporating a concentration- or

time-dependency into the model term for available

receptors. Frankly, though, we are probably at the limit

of allowable number of parameters already. Outside the

need for constancy of tracer parameters across condi-

tions, we note that all PET methods and models are

potentially invalidated by time-varying parameters or

noncompetitive binding when these phenomena are

assumed not to occur.

Parameter Identifiability

Our model, a reference region (REF) formulation of

the enhanced endogenous tracer kinetic model (Fig-

ure 1), contains a large number (10) of unknown
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parameters compared to typical PET kinetic models.

With so many parameters being estimated, it is proper

to question if they can each be uniquely identified. One

must bear in mind, the primary goal of ntPET is to

identify uniquely the temporal parameters of the DA

function (Equation 5). Our results with simulations and

real data are the appropriate tests for feasibility and

from a theoretical standpoint, we are confident in our

estimates for four reasons: (i) We are primarily inter-

ested in parameters that govern DA timing. For us, QRAC

and QREF are ‘‘nuisance’’ parameters. (ii) We observe

the system in two conditions: baseline and stimulus, but

fit all the data simultaneously. (iii) We add a prior (i.e., a

penalty function) to the objective function to limit the

search space for feasible parameter choices. (iv) It can

be demonstrated that the sensitivity of the PET signal

(baseline and activation data together) to changes in

DA parameters is distinct from its sensitivity to changes

in tracer parameters [59]. There are other ways of im-

proving parameter identifiability and precision that we

are currently investigating. One way is to impose tighter

bounds or other penalties on the estimates of some

parameters based on literature values. Another may be

to acquire arterial blood samples to get a better esti-

mate of the plasma input function [60].

Conclusions

We demonstrate the feasibility of noninvasive recovery

of DA kinetics in the rat striatum following an intra-

peritoneal alcohol (or other drug) challenge. This in-

formation is not available from standard PET imaging

studies which use changes in apparent BP before and

after challenge to infer average concentrations of DA.

Results from our numerous simulation case studies sug-

gest that the kinetic parameters describing DA re-

lease can be estimated accurately and precisely, and

that the observed DA responses are unlikely to have

happened by chance. The new parameter estimation

method we introduce for probing neurotransmitter

fluctuations (‘‘ntPET’’) requires dynamic PET data in

two conditions, is noninvasive, reflects intrasynaptic

neurotransmitter activation, and has at least 1- to 2 min

(within-subject) temporal resolution. Our efforts to val-

idate this new method in small animals will continue

with experiments using different drugs and routes of

administration known to result in temporally distinct

increases in DA concentration. ntPET should achieve

even more precise estimates of neurotransmitter timing

when applied to higher quality human data (better

signal-to-noise ratio). The new method that we present

possesses clear advantages over the invasive probe-

based approaches presently used in preclinical neuro-

chemical research. Given the potential precision of

ntPET, we foresee the ability to identify and discrimi-

nate different temporal patterns in neurotransmitter

release induced by pharmacological and possibly behav-

ioral stimuli.
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