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of Bayesian estimation that uses prior measurements to improve the signal-to-
noise ratio of parametric images computed from dynamic PET scanning. In our method, the ordinary
weighted least squares cost function is augmented by a penalty term to yield Φ K; Sð Þ =
minKf C−f Kð Þð ÞTW−1

C C−f Kð Þð Þ + SΦ K ; S = 0ð ÞðK−K̂ ÞTW−1
K ðK−K̂ Þg, where C is a PET concentration history and

ΩC is its variance, f is the model of the concentration history, K=[k1,k2,…,km]T is the parameter vector,K̂ is the
vector of population means for the model parameters, ΩK is its covariance, ΦK(K,S=0) is the conventional
weighted sum of squares. SN0 is chosen to control the balance between the prior and new data. Data from a
prior population of subjects are analyzed with standard methods to provide maps of the mean parameter
values and their variances. As an example of this approach we used the dynamic image data of 10 normal
subjects who had previously been studied with 11C-raclopride to estimate the prior distribution. The dynamic
data were transformed to stereotactic coordinates and analyzed by standard methods. The resulting
parametric maps were used to compute the voxel-wise sample statistics. Then the cohort of priors was
analyzed as a function of S, using nonlinear least squares estimation and the cost function shown above. As S
is increased the standard error in estimating BP in single subjects was substantially reduced allowing
measurement in BP in thalamus, cortex, brain stem, etc. Additional studies demonstrate that a range of S
values exist for which the bias is not excessive, evenwhen parameter values differ markedly from the sample
mean. This method can be used with any kinetic model so long as it is possible to compute a map of a priori
mean parameters and their variances.

© 2009 Elsevier Inc. All rights reserved.
Introduction

There are a number of standard dynamic measurements that can
be made with PET, including endpoints such as cerebral blood flow,
glucose metabolism, and the binding indices of D2, DAT and other
ligands. When analyzing individual studies of animal or human
subjects, low signal-to-noise ratio (SNR) is an impediment to detailed
analysis of the three-dimensional distribution of the endpoints of
interest. Many, if not most, analyses rely on a kinetic model and least
squares parameter estimation. When a kinetic model is fit to noisy
data a large number of solutions may have similar sums of squares,
including some fits with unphysiological parameter values. As a
consequence, estimates of the model parameter have large uncertain-
ties. In fact, this is a common problem with parametric imaging
because the kinetic curves generated from single voxels are often
quite noisy. In PET studies with short lived tracers, such as 11C- and
18F-labeled compounds, the SNR of the concentration values usually
peaks early in the study and then tends to fall with time. Statistical
noise in the PET concentration data are propagated into the
parametric images. A number of techniques have been developed to
increase the effective SNR of the dynamic voxel-level data. Many of
lpert).
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these techniques use some type of spatial and/or temporal smoothing
to increase the SNR of the voxel level kinetic curves, followed by
weighted nonlinear least squares parameter estimation. Wavelet
denoising has recently been shown to be effective in increasing SNR
of the PET data without substantial loss of resolution (Millet et al.,
2000; Cselenyi et al., 2002; Turkheimer et al., 2003; Alpert et al., 2006;
Shidahara et al., 2007) Clustering of voxel histories with similar shape
has also been used to increase the SNR of the kinetic curves (Kimura
et al., 1996; 1999).

This paper focuses on a method to reduce the propagation of noise
in the estimation of parametric images. We recognize that consider-
able work has already been done and substantial progress has been
made but most of the work has involved the method of least squares.
Adding Bayesian estimation methods offers the possibility of
significant improvements.

Least squares estimation has a long history in science and
engineering and many good reviews are available (e.g. Bard, 1974;
Bevington and Robinson, 2003). The estimation problem always
involves a tradeoff between the accuracy and precision of the
parameter estimates. Muzic and Christian (2006) have recently
compared a number of estimation methodologies and found that
when analyzing noisy kinetic data, the frequently used weighted least
squares method did not perform aswell as iteratively reweighted least
squares or extended least squares. Until recent years, research in
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kinetic modeling and parametric imaging focused on computing
minimum variance, unbiased estimators. But investigators have
shown that by accepting some bias, it is possible to achieve much
lower parameter variance. An attractive heuristic is that due to the
finite resolution of the PET scanner, the parametric images values
should not vary wildly fromvoxel to voxel. This suggests that methods
falling under the general classification of penalized least squares may
perform better than the conventional method. Zhou et al. (2001, 2002,
2003) and others (O'Sullivan and Saha, 1999) have successfully used
biased estimation methods, such as ridge regression, to “regularize”
parametric images.

There is another heuristic approach that seems appealing— the use
of prior experience or information to adjust the estimates. The most
famous example of this approach is Bayes' rule

P Cð ÞP HjCð Þ = P CjHð ÞP Hð Þ ð1Þ
Eq. (1) is a general symbolic formula but for the purpose of this paper
we can identify the symbols as follows: P(C|H) is the conditional
probability of the PET concentration data, C, given the hypothesis,H. P(C)
is the a priori probability of the data. P(H) is the a priori probability of
the hypothesis. In our case, the hypothesis is expressed as a
particular kinetic model, f, with parameter vector K which predicts
the experiment experimental data as f(K). In the following develop-
ment P(K|C) denotes the conditional probability of the hypothesis H
given the data.

Bayes' theorem can be used to extend the method of weighted
least squares. Earlier applications to tracer kinetics and dynamic MR
include those by Chen et al. (1988) and Yu et al. (1995) but to our
knowledge it has not been applied to parametric imaging. A brief
review of the theory of Bayesian regression is followed by the
development of modifications needed for parametric imaging. As an
example of Bayesian regression we measure raclopride binding
potential in striatal and extrastriatal brain regions from parametric
images but we emphasize that the technique is completely general
with respect to kinetic model.

Methods

To describe the theory, we employ a notation where C is a vector
representing the concentration history in a representative voxel from
a four-dimensional PET image data set. In effect, C represents a
concentration history from a single voxel, with m elements, namely
C=[c1,c2,…,cm]T. The kinetic model, f, has r parameters denoted by K=
[k1,k2,…,kr]T, with rbm.

Consider the likelihood of measuring the concentration history in a
representative voxel of the image array. The concentration data may
be spatially correlated due to the process of image reconstruction, but
due to the nature of radioactive decay, the temporal data for any voxel,
measured in separate time epochs (i.e. frames), are statistically
independent. For this work we assume each datum is normally

distributed with expected values Ĉ = ĉ1;ĉ2; N ;ĉm
h iT

and variances ∑=

[σ1
2,σ2

2,…,σm
2 ]T. The statistical model is written as

C = f Kð Þ + ε ð2Þ

where ɛ is an m×1 row vector of normally distributed random noise
with mean zero and variance ∑. The expected values of the
concentrations are generally unknown but they are modeled as
known functions of the parameters, f(K). Now, suppose that in
addition to the experimental data, we have a cohort of prior data, for
example an ensemble of parametric images. As we explain later, the
ensemble can be used to compute the voxel-by-voxel sample mean
and covariance of the parametric images, yielding an estimate of the
populationmean and covariance. Assume that the prior distribution of
parameters can be described by a multivariate Gaussian distribution
with the mean for a representative voxel given by K̂ = k̂1;k̂2; N ;k̂r

h iT
and its population covariance matrix given byWK j , an r by r array. The
theory of maximum likelihood can then be used to obtain the “best”
estimate of the parameters by maximizing P(K|C). Since the
concentration history is assumed to be normally distributed and
statistically independent,

P CjKð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det W−1

C
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Substituting according to Eq. (1) and dividing by P(C) yields the
likelihood function

P Kð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det WCð Þp

P Cð Þ 2πð Þ r + mð Þ=2

� exp −
1
2

C−f Kð Þð ÞT + 1
2

K−K̂
� �T

W−1
K K−K̂
� �� �

ð5Þ

Then, the Bayesian regression estimate of K is obtained by minimizing
the log-likelihood

Φ Kð Þ = min
K

C−f Kð Þð ÞTW−1
C C−f Kð Þð Þ + K−K̂

� �T
W−1

K K−K̂
� �	 


ð6Þ

where, for simplicity, we have omitted factors independent of K, as
they do not affect the result. We see that Eq. (6) is made up of two
terms, call them Ψ and β : The first term, Ψ, is the usual cost function
for weighted least squares. The second term, β, is the “Bayes'” term,
due to the inclusion of prior data.

There are two practical problems to solve before the theory of
Bayesian Regression can be applied to PET and parametric images: 1.
Additional approximations are required to make the application of Eq.
(6) tractable. 2. The values of K̂ and ΩK must be determined for each
voxel in the parametric image space.

The reason for additional approximations and development arise
because the least squares term Ψ usually includes an arbitrary scale
factor. This is due to the fact that ΩC is difficult to compute, a point we
discuss in more detail later in this paper. Thus, the relationship
between Ψ and β is not easily calculated. To overcome this problem
we propose an approximate method by defining a scaling parameter
for each voxel in the parametric image space. In the work that follows
we use the approximation formula

Φ K; Sð Þ =
minK C−f Kð Þð ÞTW−1

C C−f Kð Þð Þ + SΦ K; S = 0ð Þ K−K̂
� �T

W−1
K K−K̂
� �	 


ð7Þ
where S is a constant, independent of voxel location, chosen
empirically by a process discussed later; whereas, Φ(K,S=0) is
essentially the residual sum of squares after fitting the model by
conventional weighted nonlinear least squares. Φ(K,S=0) is deter-
mined at each voxel by weighted least squares fitting; accordingly, the
product, SΦ(K,S=0), is a scaling factor determining the (approximate)
relationship between the Ψ and β terms in Eq. (6).

We included the effect of prior data in Bayesian regression by use of
stereotactic sample statistics. The basic procedure requires a standard
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kinetic model, with parameter estimation effected by least squares, and
a representative cohort of subjects. In principle, the cohort should be
large enough to support a reliable estimate of the sampledistributionsof
the parameters.We assumed the parameterswere normally distributed,
characterized by their sample means and variances. Each subject in the
cohort is analyzedwith the standard kinetic method to formparametric
images, one for each parameter in themodel. The parametric images are
spatially normalized to a standard size and spatial orientation, using the
MNI stereotactic coordinate system (Collins, et al., 1994; Evans et al.,
1997). The voxelwise sample mean and standard deviation of each
parametric image type is formed and stored for later use. Note that we
have employed the sample standard deviation, rather than the complete
covariance matrix. This is an expedient simplification but not a
fundamental aspect of our method.

To illustrate the use of prior data we provide a demonstration of
Bayesian regression applied to parametric imaging of raclopride. A
cohort of raclopride measurements were obtained from 11 young
normal subjects participating in prior research studies. Ten subjects
were used to construct the a priori data and one data set was set
aside to further explore the use of Bayesian regression. The details of
subject selection and data acquisition are given in Badgaiyan et al.
(2007). Briefly, subjects in this study were young healthy males
Fig. 1. The table is organized as a four-by-fourmatrix, with cells labeled by row (A, B, C, D) and col
and 2 present theparametric images derived by the standardmethod andBayesian estimation, re
each parameter andmethod. Note the reduction in standard deviation for Bayesian estimation. Th
(n=5) and females (n=6) with mean age 22.7 years. Fifteen mCi of
11C raclopride were administered over a period of 1 min via
intravenous injection while the subject lay in the supine position in
the ECAT HR+ PET scanner, with head restrained by a custom-
molded head holder. PET data were acquired over a 90 min period,
with frame durations of 15 s for the first 5 min and 60 s thereafter.
Image data were reconstructed with a conventional filtered back
projection algorithm, including corrections for attenuation, scatter,
dead time, detector nonuniformity and random coincidences.
Following reconstruction, data were realigned, frame by frame, to
reduce the effect of residual head movement (Alpert et al., 2003). A
sum image was formed from the first 17 frames and used in SPM99
to determine the transformation needed to spatially to normalize
the data in the MNI coordinate system. These same parameters were
used to transform the dynamic PET data, frame-by-frame, to the
MNI stereotactic coordinate system.

Parametric images of raclopride binding parameters were com-
puted using the simplified reference region model (SRRM) of Gunn et
al. (1997). The SRRM has three parameters: R, k2 and k3. Binding
potential, BP, was determined as BP=k2 /k3+R−1. Spatially normalized
dynamic data sets were read into MATLAB 7 (The Mathworks, Natick,
MA). The four dimensional data set was processed as an m×N array,
umn (1, 2, 3, 4) descriptors. The columns depict colormaps related to R, k2, k3 and BP. Row 1
spectively;whereas, Rows 3 and4 present the correspondingmaps of standard deviation for
e relative relationship of the colors is depicted in the color table on the far right of the figure.



Table 1
Binding potential and standard deviation for selected voxels

Anatomic label X
(mm)

Y
(mm)

Z
(mm)

BP (Gunn) BP (Bayes)

Mean Std. Dev. Mean Std. Dev.

Putamen −26 4 −6.6 3.68 0.505 3.75 0.465
Caudate −11 13 −6.6 3.033 0.376 3.075 0.36
Thalamus −11 −26 0 0.43 0.216 0.433 0.145
Subtantia nigra 4 −29 −33 0.164 0.118 0.169 0.087
Amygdala 35 −18 −11 1.194 0.372 1.288 0.299
Anterior cingulate 11 29 42 0.229 0.178 0.221 0.11
Superior parietal 37 −57 51 0.167 0.123 0.179 0.075
Superior frontal 26 46 24 0.186 0.112 0.225 0.084
MTG 53 2 −24 0.276 0.107 0.286 0.097
IFG −40 33 −18 0.321 0.147 0.284 0.081
Occipital 9 −92 −13 0.267 0.148 0.312 0.04

Voxel locations X,Y,Z in millimeters from the intersection of the midsagittal plane and
the anterior commissure. Anatomic label is nominal. BP refers to voxel-level binding
potential estimated by the method of Gunn et al., 1997 or Bayesian regression, as
discussed herein.
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where m=85 is the number of time points and N is the number of
voxels (128×128×63). The ensemble of 10 parametric images was
used to compute the sample mean and standard deviation parametric
images. Fig. 1, rows A and C, shows one slice from the mean and
standard deviation parametric images of the SRRM.

For this demonstration example, we set the off-diagonal elements

of the parameter covariance matrix to zero, W −1
K

� �
i;j =

1=ρ 2
j i = j

0 i≠j

	
.

By choosing S to be a small positive number, one emphasizes the
conventional least squares solution and there is little effect from prior
measurements but as S→∞, K→K̂ . In our work we varied the value of
S in discrete steps over the range 0–20. The criterion for choosing S
was to take the smallest value of S that substantially reduced the
parameter variances of the cohort. Bayesian regression was computed
by a simple modification of an existing nonlinear least squares
algorithm. The basic idea is to add r new values to the concentration

history, the mean parameter values multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SΦ K ;0ð Þ=ρjk̂j

q
, and

augment the kinetic model to include the r values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SΦ K;0ð Þ=ρjkj

q
.

The results shown below employed the “lsqcurvefit” module in the
MATLAB Optimization Toolbox (Version 4.1). No constraints were
placed on the parameters during the optimization. All computations
were performed voxel-by-voxel on an AMD Opteron personal
computer with 8 GB of memory under 64-bit Linux in the MATLAB
7 computational environment. Computation times were long, about
8 h for roughly 30,000 voxel histories.

Bayesian regressionwas computed for all eleven subjects, based on
the priors discussed above. Fig. 2 compares parametric images of
binding potential for subject 11 with both standard and Bayesian
estimation.

Questions about the degree of bias incurred by Bayesian estimation
are not easy to answer. One approach is to compare mean and
standard deviation for the cohort using standard and Bayesian
estimation. Table 1 presents data for a range of anatomic locations.
Fig. 2. Illustration of Bayesian estimation. Coronal (top row) and axial (bottom row)
projections. Column 1 shows the result of standard estimation of binding potential in
subject 11. Column 2 shows the result with Bayesian regression. The images are
rendered following a square root transformation to facilitate visualization of both
striatal and extrastriatal binding. The Bayesian estimate has increased signal-to-noise
ratio with minimal loss of spatial resolution.
Fig. 1 (rows B and D) also presents the mean and standard deviation
maps for the Bayesian estimates of the parameters and binding
potential. The basic result is that means for the parameters are similar
for standard and Bayesian estimation but standard deviation is
reduced for the Bayesian estimates, particularly in cortical and
subcortical regions with low binding potential. For example examina-
tion of Table 1 shows that mean binding potential is virtually the same
in the thalamus, as estimated by either method, but the standard
deviation is about 30% less for Bayesian estimation. Bias is a particular
area of concern in situations where the subject under analysis has
brain regions that systematically and truly differ from the priors. An
example, in the case of raclopride, would be regions with abnormal
binding, as might be found in a pathological state. Accordingly, we
investigated this case by simulation. We replaced voxel histories in
putamen, thalamus, and cortical regions with histories computed to
have altered kinetics and binding. Specifically, we generated kinetic
curves with the SRRM and to simulate typical noise levels, we added
the residuals from real data, obtained from fitting the original voxel
curves to the SRRM-generated curves. Two cases were studied,
binding potential increased or decreased. Binding potential was
increased or decreased by scaling the k2 parameter of the SRRM by
25%. In the case of the putamen, the binding potential difference was
large compared to the variance and the Bayes' term was more
significant than for other regions. The results for decreased k2
parameter are illustrated graphically in Fig. 3 for S=0, 4 and 8 and
additional details are in Table 2. In simulations of extrastriatal binding
the results were similar. In all cases simulated, k2 and k3 increased and
R1 decreased, but there was little change in binding potential.

Discussion and conclusions

We have reviewed the theory of Bayesian regression, adding
modifications specifically designed for parametric imagingwith PETor
SPECT. We also conducted a pilot study to evaluate its potential to
increase SNR of parametric images of raclopride binding. Our method
has its roots in Bayes' theorem, a fundamental pillar of statistical
theory. It is general in that it can be applied to any kinetic model and
parametric imaging task, provided only that prior information is
available about the expected values and statistical distribution of the
parameters. In the case of parametric imaging it is advantageous to
include the spatial variation in prior parameter values, as this
additional information may substantially reduce the random variation
in the parameter estimates. It is important to understandwhyBayesian
regression can be useful in parametric imaging but this subject is
complicated by issues unique to dynamic imaging with radionuclides.

The first issue to be discussed is the relation between conventional
least squares estimation and Bayesian regression. In conventional



Fig. 3. Simulation study of Bayesian estimation when the data and the prior do not match. The circles are data simulated from a voxel in the putamen with mean (n=10) BP=3.4 and
standard deviation 0.2. With data from subject 11, the voxel time-history was analysed with the simplified reference region model and least squares fitting. After decreasing the k2
value by 25%, the model used to simulate a new time history and the residuals were added to simulate the noise. The solid line represents the new fit with s=0, equivalent to the
simplified reference region model prediction. The square and x symbols represent the result of Bayes regression, with s=4 and 8 respectively.
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nonlinear least squares estimation, the weighted sum of the squared
differences, Ψ, between the model prediction and the measured data
is treated as a mathematical function of the parameters. Theoretically,
theminimum ofΨ determines a single set of parameters referred to as
the least squares estimate. However, because Ψ also depends on the
experimental data we are not dealing with a mathematical function,
but rather a random variable. Because the measured data may include
a substantial amount of random noise, theminimum of the functionΨ
can become quite shallow and ill-defined; there may even be more
than one local minimum. This is equivalent to saying that, due to
noise, there are many sets of parameters that yield model curves that
fall within the “cloud” of data points. When the minimum is shallow,
many sets of parameters yield similar values of Ψ and consequently
the parameters have large variances. Based on prior history, Bayesian
regression considers parameter sets for which β = ðK−K̂ÞTΩ−1

K ðK−K̂Þ
is large to be of low probability (see Eq. (4)). In Bayesian regression,
another parameter set, with somewhat larger Ψ will be selected if it
causes β to be small enough to lower Φ(K,S). In effect, the Bayes' term
provides better conditioning for the problem.

A closely related question is: How can Bayesian regression be used
to improve parametric imaging? The first problem in applying
Bayesian regression is the computation of Eq. (6). The relative
magnitude of Ψ and β are usually not well defined in parametric
Table 2
Simulation study: BP differs from prior by 25%

S Parameters

R1 k2 k3 BP

Simulation 1.279 0.165 0.0700 2.638
0 1.262 0.170 0.0719 2.630
4 1.092 0.202 0.0800 2.612
8 1.080 0.204 0.0795 2.639

Note: The priors for this simulation were R1: 1.079±0.282, k2: 0.218±0.025 and k3:
0.637±0.011.
imaging. One expects the magnitude of β to be about one and,
theoretically, Ψ should have similar magnitude when the model fits
the data. But as we mentioned earlier, Ψ depends on the concentra-
tion variance ΩC which is a function of position within the image
volume. In conventional nonlinear least squares ΩC is usually
approximated from the number of counts in the projection data,
ignoring its spatial variation and the effects of attenuation, scatter
and random coincidences. In nonlinear least squares, the absolute
magnitude of the concentration variances is not important because it
does not affect the minimum of the cost function. Numerous
approximations of ΩC have been used with success in conventional
least squares because the implementation of that algorithm depends
only on the “shape” of ΩC, not its absolute magnitude (c.f. Mazoyer et
al., 1986). It is possible to reconstruct quantitative images of ΩC when
performing filtered back projection reconstruction but that is rarely
done (Alpert et al., 1982; Alpert et al., 1991). Currently, there is no
standard method for computing ΩC when performing iterative
reconstructions. To facilitate computation, some standard algorithms
for parametric imaging set ΩC equal to the identity matrix. Ψ also
depends on the scale of the data; that is if more activity is injected Ψ
will be proportionately larger. To mitigate this problem we modified
Eq. (6), scaling the Bayesian term in the cost function by the product
SΦK(K,S=0), where S is a global strength parameter to be chosen by
the investigator. Using this approximation, S becomes independent of
position in the image volume while ΦK(K,S=0) is computed at each
voxel, retaining the desirable features of Bayesian regression. The
tradeoff is that we cannot claim that the estimates are optimal in a
statistical sense and S must be chosen based on empirical criteria,
such as we described in the demonstration example or perhaps by
Monte Carlo simulation.

The next complication is that we expect that parametric images
will exhibit spatial patterns associated with the underlying anatomy
and physiology. A method is needed to match the spatial patterns
in the prior information to the data at hand. A complete solution to
this problem is not available, but tractable approximations can be
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made in brain imaging. In our example of raclopride binding
studies, we used a cohort of normal subjects studied in previous
work (Badgaiyan et al., 2007). Within the limitations of spatial
normalization, it is possible to transform an individual's parametric
images to a standard orientation, size and position in space. Spatial
normalization is not perfect. It is well known that there is residual
anatomic and functional variability, particularly in some cortical
areas (Rajkowska and Goldman-Rakic, 1995; Thompson et al., 1996,
1997; Evans et al. 1997; Grachev et al. 1999). Once the transforma-
tions are effected, it is a simple matter to form sample mean and
standard deviation or covariance images for the cohort's parametric
images.

There is another consideration and it may be themost important of
all. We must decide what prior information to use. What should the
characteristics of the prior distribution be when one is studying
subjects with known or expected pathology? It is clear that Bayesian
estimation will have the largest influence when analyzing voxel
histories that are very noisy, the ones for which conventional least
squares estimates are, in a sense, ambiguous. But it does this by
biasing the result toward the expected value. This is likely to be
acceptable in normal cohorts or fairly homogeneous control groups. It
may be more controversial in situations where a decision about a
single individual is wanted (Bromiley et al., 2003). Priors incorporat-
ing the probability of regional abnormalities may be difficult to
construct because they may require very large sample size. This is an
area that may be illuminated by future research with Monte Carlo
simulation. Even when the choice of prior is clear cut, it is important
that the cohort of priors and data undergoing Bayesian regression be
very similar. The investigators should also ensure that the new
subjects match the priors in terms of activity injected, acquisition
protocol, reconstruction details and scanner characteristics. Other-
wise, the underlying assumptions of Bayesian regression will be
violated, the distribution of the parameter values will differ from
those measured in the new experiment and the estimates may be
biased in ways that cannot be anticipated.

In our pilot study we used ten subjects to form the prior. Ideally a
much larger cohort should be used. In this pilot study, we had to
assume that the voxel data followed Gaussian statistics as described
by their mean and variance. If larger cohorts of prior data are available,
one can test the hypothesis about Gaussian distributions or fall back
on the empirical distributions mined from the cohort. It should be
noted that prior parameter distributions formed by stereotactic
averaging include both statistical and anatomic variability. The
anatomic variability may be a significant problem in some brain
regions, possibly making the results invalid. In the pilot study,
distortions were noted in some areas with large admixtures of
white and gray matter. On the other hand, once these regions are
identified, they can be eliminated from consideration and conven-
tional estimation techniques can be used for those voxels.

The methodology employed in the pilot study was not ideal. The
demonstration would have been more rigorous and credible had we
had analyzed a large prior population and a correspondingly large test
population. As it is, we used the sample population to form the priors
and evaluate bias and noise reduction. However, the analysis of a
single subject not included in the prior population also showed the
expected noise reduction without obvious increase in bias. When
analyzed in this way, the same population analyzed by nonlinear least
squares and our Bayesian regression exhibited significant noise
reduction. Standard deviation of grey matter binding potentials
decreased by at least 25%.

We noted earlier in this paper that some investigators had used
penalized least squares to reduce the noise propagation in parametric
imaging. Bayesian regression is also a form of penalized least squares
and, so, it is fair to ask how it differs from techniques such as ridge
regression? An examination of the operational equations for ridge
regression and Bayesian regression shows that they are formally
identical! In the method described by Zhou et al., the penalty term
ðK−K̂ ÞTW−1ðK−K̂ Þ is approximated by estimating K̂ and Ω for a given
voxel by averaging over nearby, surrounding voxels. Estimating Ω by
sample statistics on nearby voxels assumes that the voxel data are
statistically independent, but this is not true for reconstructed data.
An advantage of the ridge regression method is that it requires no
additional data. For better, or worse, K̂ and Ω−1 are determined from
the data at hand. The improvement in SNR depends entirely on the
local averaging employed in the calculation of K̂ and Ω−1. The
disadvantage for ridge regression is that averaging over a larger
volume gains SNR at the expense of resolution and bias.

Our data do not provide a definitive conclusion about the bias
introduced by Bayesian regression. Therefore, bias should be assessed
whenever new applications are considered. Table 1 lists binding
potential, computed by Bayesian and standard regression, for a
sampling of cortical and subcortical regions. The percent differences
(standard-Bayes) in the mean of the model parameters is 4.4% for BP.
Data on the differences by method for the other model parameters
(not shown for) the other model parameters, R, k2 and k3 are similar:
2.5% for R, −4.7% for k2 and 7.2% for k3. Because the parametric images
are noisy, these percent differences should be interpreted with care
since the standard errors of the mean are of the same order of
magnitude as the differences.

In the pilot study of raclopride binding parameters comparing
standard and Bayesian estimation, the SNRwas, as expected, increased
with Bayesian estimation. In our implementation we used a “Bayes
parameter” S=8, based on empirical observation. We found that the
improvements in SNR depended on the local noise level in the
standard least squares estimation procedure. Areas of lower SNR
benefited most; whereas, there were more modest improvements, for
example, in the striatum. This finding can be understood by
considering the sources of noise in the formation of the image
cohorts: These include the statistical fluctuations in the voxel-level
concentrations values, the functional variations from subject to
subject, and the residual anatomic variation after stereotactic normal-
ization. This variability is least in the striatum and highest in cortical
grey matter and goes some way in explaining our findings.

Our method of parametric imaging with Bayesian regression has a
unique advantage. It retains the original resolution of the study. It does
not employ smoothing in any direct way, neither spatially nor
temporally. It improves the SNRof the estimated parameters by favoring
solutions that are in accord with the prior distribution of parameters at
each location in stereotactic space. There is, however, no free lunch.
Improved SNR involves choosing SN0. In the limit of very large values of
S, the parametric images become identical to the sample mean of the
prior distribution. A reasonable choice of S involves empirical study or
realistic simulation. In the example of raclopride binding potential, we
see that there is about 10 to 1 difference between cortical grey matter
and striatum.Asonewould expect, the biggest improvement in SNR is in
the noisiest regions. In its present state of development, and considering
the caveats discussed above, the method is best suited for research
studieswhich employgroups of normal subjects. Under suchconditions,
our method of Bayesian regression is capable of significant increase in
the signal-to-noise ratio of parametric images.
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