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Abstract

For the quantitative analysis of ligand-receptor dynamic positron emission tomography (PET) studies, it is often desirable to apply
reference tissue methods that eliminate the need for arterial blood sampling. A common technique is to apply a simplified reference tissue
model (SRTM). Applications of this method are generally based on an analytical solution of the SRTM equation with parameters estimated
by nonlinear regression. In this study, we derive, based on the same assumptions used to derive the SRTM, a new set of operational equations
of integral form with parameters directly estimated by conventional weighted linear regression (WLR). In addition, a linear regression with
spatial constraint (LRSC) algorithm is developed for parametric imaging to reduce the effects of high noise levels in pixel time activity
curves that are typical of PET dynamic data. For comparison, conventional weighted nonlinear regression with the Marquardt algorithm
(WNLRM) and nonlinear ridge regression with spatial constraint (NLRRSC) were also implemented using the nonlinear analytical solution
of the SRTM equation. In contrast to the other three methods, LRSC reduces the percent root mean square error of the estimated parameters,
especially at higher noise levels. For estimation of binding potential (BP), WLR and LRSC show similar variance even at high noise levels,
but LRSC yields a smaller bias. Results from human studies demonstrate that LRSC produces high-quality parametric images. The variance
of R1 and k2 images generated by WLR, WNLRM, and NLRRSC can be decreased 30%–60% by using LRSC. The quality of the BP images
generated by WLR and LRSC is visually comparable, and the variance of BP images generated by WNLRM can be reduced 10%–40% by
WLR or LRSC. The BP estimates obtained using WLR are 3%–5% lower than those estimated by LRSC. We conclude that the new linear
equations yield a reliable, computationally efficient, and robust LRSC algorithm to generate parametric images of ligand-receptor dynamic
PET studies.
© 2003 Elsevier Science (USA). All rights reserved.

Introduction

Positron emission tomography (PET) studies with neu-
roreceptor radioligands enable the quantification of the dis-
tribution and the binding characteristics of brain neuro-
receptors. Compartmental modeling with a metabolite-cor-

rected arterial input function is frequently utilized to rigor-
ously quantify PET neuroreceptor studies. A typical com-
partmental modeling procedure is to describe tracer uptake
in tissue with a three compartmental model (Fig. 1), with
compartments for tracer in plasma (Cp), tracer that is free
and nonspecifically bound in tissue (CF�NS), and tracer that
is specifically bound in tissue (CSB). The model includes
first-order rate constants that describe the transport of tracer
from blood to tissue (K1 (ml/min/ml)), the efflux from tissue
to blood (k2 (min�1)), the rate of specific receptor binding
(k3 (min�1)), and the rate of dissociation from receptors (k4

(min�1)). One common measure of neuroreceptor binding is
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the total distribution volume (DVT), which is defined as the
ratio of the total tracer concentration in tissue (CT � CF�NS

� CSB) and plasma at equilibrium. In terms of the model
parameters, DVT � (K1/k2)(1�k3/k4). It is often desirable to
measure the binding potential (BP � k3/k4), which is a more
direct measure of specific binding. However, estimation of
BP requires measurement of the free � nonspecific distri-
bution volume (Ve � K1/k2), which is equal to the ratio of
CF�NS and Cp at equilibrium. It is generally assumed that Ve

is the same in all cerebral tissue regions; therefore, Ve may
be estimated from a tissue region that has no specific re-
ceptor binding (k3 � 0), in which case DVT � Ve. Such a
region that is devoid of specific receptor binding is called
either a reference region or reference tissue. In principle, a
reference region can be modeled with a single tissue com-
partment (CREF) that represents free�nonspecific binding
(Fig. 1), with blood tissue exchange parameters (K1R, k2R)
that are related to K1 and k2 (in regions with specific recep-
tor binding) by Ve � K1R/k2R � K1/k2.

Compartmental modeling with a plasma input function is
a rigorous quantitative approach. Unfortunately it is also a
laborious and complicated procedure. In addition, the re-
quired arterial sampling is a discomfort to the subject and
demands additional personnel and preparation time for the
PET study. Thus, there is strong motivation to develop
alternatives to blood-based modeling and blood-based ana-
lytical methods in general, to allow for a simpler study
protocol and to decrease the complexity of the analysis.
Several quantitative methods have been developed for PET
neuroreceptor studies that effectively apply a time–activity
curve (TAC) derived from reference tissue in lieu of an
arterial input function (Ichise et al., 1996; Lammertsma and
Hume, 1996; Lammertsma et al., 1996; Logan et al., 1996;
Patlak and Blasberg, 1985).

Appropriate reference tissues that are practically devoid
of specific receptor binding have been identified for several
neuroreceptor systems, including the cerebellum for dopa-
mine D2 ligands such as [11C]raclopride ([11C]RAC) (Farde

et al., 1989) and [11C]WIN35,428 (Wong et al., 1993), the
occipital cortex for the �-opiate agonist [11C]carfentanil
(Frost et al., 1989), and the pons for benzodiazepine recep-
tor studies using [11C]flumazenil ([11C]FMZ) (Delforge et
al., 1997; Koeppe et al., 1991; Millet et al., 2002). Thus
reference tissue-based analytical techniques are suitable for
numerous ligand-receptor PET studies (Banati et al., 1999;
Blomqvist et al., 1990, 2001; Ginovart et al., 2001; Gunn et
al., 1997, 1998, 2001; Lammertsma et al., 1996; Lopresti et
al., 2001; Parsey et al., 2001). Perhaps the simplest refer-
ence tissue technique is the ratio method for which specific
binding is estimated by dividing the tissue tracer concen-
trations in receptor-rich areas by the tracer concentration in
a reference region (Wong et al., 1984). However, the ratio
method is prone to bias (Carson et al., 1993) and is partic-
ularly not recommended when the tracer is delivered via
rapid bolus injection. A more robust technique is the graph-
ical method, which uses a transformation of the tissue data
to yield a “Logan plot” that becomes linear over time
(Logan et al., 1996) (Eq. (1)).

�0
t CT�s�ds

CT�t�
� DVR

�0
t CREF�s�ds �

CREF�t�

k� 2R

CT�t�
(1)

� int for t � t*.

When used with a reference tissue input, the Logan plot has
a slope that is approximately equal to the distribution vol-
ume ratio (DVR � DVT/DVREF), where k�2R is a population
average value of backflux rate constant from the reference
tissue to vascular space and DVT and DVREF � Ve are the
distribution volumes in specific binding and reference tissue
regions, respectively. The BP equals DVR � 1. The Logan
plot offers the convenience of obtaining a measurement
from a simple linear fit, although the approach to linearity
depends on how rapidly the tracer achieves equilibrium. The
less desirable aspects of this method include (1) the arbi-
trary choice of the apparently linear portion of the Logan
plot for measurement and (2) the need to estimate k�2R using
compartmental modeling with plasma input approach
(Holden et al., 2001; Sossi et al., 2001). An alternative
approach is to use reference tissue-based compartmental
modeling, which can be derived from blood input compart-
mental modeling of specific binding and reference tissue
regions (Lammertsma and Hume, 1996; Lammertsma et al.,
1996). From the model configurations shown in Fig. 1, a
reference tissue model can be derived that contains four
parameters (R1, k2, k3, k4), where R1 � K1/K1R (Lam-
mertsma et al., 1996). However, for some tracers rapid
equilibrium between CF�NS and CSB allows these compart-
ments to be described kinetically as a single compartment
(Ginovart et al., 2001; Koeppe et al., 1991; Lammertsma
and Hume, 1996; Lassen et al., 1996; Szabo et al, 1999). By
reducing the specific binding model to a single tissue com-
partment (Fig. 2), a reference tissue model can be derived

Fig. 1. (Top) A typical three compartmental model that is applied to
ligand-receptor studies, with compartments for plasma tracer (Cp), tracer
that is free and nonspecifically bound in tissue (CF�NS), and tracer that is
specifically bound in tissue (CSB). (Bottom) A reference region model that
uses a compartment for plasma tracer (Cp) and a single tissue compartment
(CREF) to represent free�nonspecific binding. For parameter definitions
see text.

976 Y. Zhou et al. / NeuroImage 18 (2003) 975–989



that contains only three parameters (R1, k2, BP) (Lam-
mertsma et al., 1996). The three-parameter model is called
the simplified reference tissue model (SRTM) and con-
verges much more reliably than the four-parameter model.
The differential equations for SRTM yield an analytical
solution for the total tissue activity, CT, given by

CT�t� � R1CREF�t� � �k2 � R1k2/�1 � BP��CREF�t�

�� exp(�k2t/�1 � BP�), (2)

where �� represents mathematical convolution and CT(t)
and CREF(t) are the tracer radioactivity concentrations mea-
sured for the target and reference tissues, respectively.

The operational equation for SRTM (Eq. (2)) includes a
nonlinear macroparameter (k2/(1�BP)) of SRTM and thus
is usually solved by nonlinear regression when fitting TACs
derived from a region of interest (ROI). Since ROI TACs
are obtained by averaging over multiple pixels, the noise
levels are relatively small which makes it practical to apply
nonlinear fitting. However, in many cases it is desirable to
perform parametric analysis on pixelwise data, which have
much higher noise levels than ROI data. Although paramet-
ric imaging has been applied effectively using both linear
(Blomqvist, 1984; Blomqvist et al., 1990; Carson et al.,
1986; Chen et al., 1998; Feng et al., 1993; Gunn et al., 1997;
Koeppe et al., 1996) and nonlinear regression (Herholz,
1987; Huang and Zhou, 1998; Kimura et al., 2002;
O’Sullivan, 1994; Zhou et al., 2002c), conventional nonlin-
ear regression is less desirable because it tends to be time
consuming and provides parametric images of poor images
quality, that is, either too much noise or too much resolution
loss if spatial smoothing is applied. To avoid nonlinear
regression for SRTM when applying Eq. (2), a basis func-
tion method has been developed by sampling discrete values
of the nonlinear macroparameter (k2/(1�BP)) and eliminat-
ing the two linear parameters (R1 and k2 � R1k2/(1 � BP))
by regular linear regression (Gunn et al., 1997; Lawton and
Sylvestre, 1971). The basis function method is both more
computationally efficient and more robust than conventional

nonlinear regression, although the sampling procedure may
introduce some bias in parameter estimates. As an alterna-
tive to using the nonlinear analytical solution of SRTM, we
derive a new set of equations that are completely linear and
thus can be solved using weighted linear regression directly.
For comparison we have applied weighted nonlinear regres-
sion using the analytical SRTM equation. In addition, to
reduce the effects of the high noise levels of the pixel TACs,
parametric images generated by conventional linear or non-
linear regression can be improved by applying spatial con-
straints into the model fitting process (Zhou et al., 2001,
2002c). To examine this effect, we have implemented spa-
tial constraint methods for both linear and nonlinear regres-
sion. These methods have been evaluated by computer sim-
ulation and with 16 human [11C]RAC and 9 human
[11C]FMZ dynamic PET studies.

Materials and methods

SRTM

To obtain differential equations for SRTM, the net tracer
fluxes for the specific binding (dCT/dt) and reference tissue
(dCREF/dt) regions (Fig. 2) are expressed in terms of the
model parameters and tissue concentrations (Eqs. (3) and
(4)).

dCT�t�

dt
� K1Cp�t� � k	2CT�t� (3)

dCREF�t�

dt
� K1RCp�t� � k2RCREF�t� (4)

k	2 � k2/�1 � BP� (5)

K1R

k2R
�

K1

k2
. (6)

By solving for Cp(t) in Eq. (4), Cp(t) can be eliminated from
Eq. (3), and then with Eqs. (5) and (6) the net rate of change
of the total tissue activity dCT/dt can be expressed in terms
of CREF(t), R1, k2, and BP (Eq. (7)).

dCT�t�

dt
� R1

dCREF�t�

dt
� k2CREF�t�

�
k2

1 � BP
CT�t�. (7)

An analytical solution of the differential equation is given
by Eq. (2). Alternatively, by applying the initial condition of
CT(0) � CREF(0) � 0, Eq. (7) can be integrated to give

Fig. 2. The model formulations used to derive the simplified reference
tissue model (SRTM). Under the assumption of rapid equilibrium between
CF�NS and CSB (see Fig. 1), the total tracer concentration in specific
binding regions can be modeled with a single compartment with concen-
tration CT � CF�NS�CSB. The reference tissue region is modeled with a
single compartment (CREF).
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CT�t� � R1CREF�t� � k2�
0

t

CREF�s�ds

�k	2 �
0

t

CT�s�ds. (8)

The parameter that is of greatest interest is BP; however,
when using Eq. (8) two regression coefficients (k2, k2	) must
be estimated, and then BP can be calculated as k2/k2	 � 1.
For pixel-based computations, the high variance of esti-
mates of k2	 and k2 can result in the large error propagation
that is associated with division. To achieve the desired
equation that enables direct estimation of BP without un-
stable division calculations, both sides of Eq. (8) can be
multiplied through by (1 � BP)/k2 and then rearranged to
give

�
0

t

CT�s�ds � DVR�
0

t

CREF�s�ds

� �DVR/�k2/R1��CREF�t� (9)

� �DVR/k2�CT�t�.

Using Eq. (9), BP can be estimated directly as
BP � DVR � 1.

Linear regression with spatial constraint (LRSC)

Eqs. (8) and (9) can be used to efficiently generate
parametric images of R1, k2, and BP by ordinary weighted
linear regression (WLR). However, we have found previ-
ously that parametric images generated by WLR may be
improved by incorporating spatial information into the
model fitting process (Zhou et al., 2001). The methods
developed in this section are based on consideration of the
propagation of measurement noise in Eqs. (8) and (9). The
variables in Eqs. (8) and (9) include CREF and �0

t CREF�s�ds,
which are based on tissue ROIs, and thus should have little
noise as they are obtained from averaging multiple pixels.
The variable CT will have more noise than �0

t CT�s�ds, be-
cause integration is effectively a smoothing operation.
Therefore, CT is expected to be the major source of noise
affecting the quality of the parametric images of R1, k2, and
BP. Furthermore, the noise in CT is expected to propagate
differently into the parameter estimates using Eqs. (8) and
(9), since in Eq. (8) CT is the dependent variable, whereas in
Eq. (9) it appears as an independent variable for linear
regression. Consequently, we apply different noise reduc-
tion techniques to estimate the parameters of the SRTM
with Eqs. (8) and (9).

Parametric image generation algorithm using Eq. (8)

We note that Eq. (8) is similar to the operational equation
used to generate parametric images in H2

15O dynamic PET

studies, which are improved by a linear general ridge re-
gression with spatial constraint technique (GRRSC) (Zhou
et al., 2001). More specifically, as mentioned above CT in
Eq. (8) is expected to be the largest noise contributor and is
the dependent variable of linear regression, with the vari-
ables of lower noise appearing in the regression coefficient
matrix A � � 
CREF�t� �0

t CREF�s�ds �0
t CT�s�ds��. Thus, we

chose to adapt the GRRSC technique to Eq. (8). Based on
the theory of GRRSC, the columnwise parameter vector
(mx1, here m � 3) � � [R1, k2, k2	]	 is determined by
minimizing the following least squares,

Q��� � �Y � X��	W�Y � X��

� �� � �sc�	H�� � �sc�, (10)

where 	 is the matrix transpose operation; Y is a measured
tissue time activity vector (nx1); X is an nxm matrix deter-
mined by the tracer kinetic model; W is a diagonal matrix
(nxn) with positive diagonal element wii � (duration of ith
frame of dynamic PET scanning) for human studies; H is a
diagonal matrix with nonnegative diagonal elements h1, h2,
and h3 (called ridge parameters); and �sc is a pixelwise
preestimated constraint. The term (Y � X�)	W(Y � X�) in
the cost function Q(�) is the residual sum of squares for
conventional WLR. In addition, Q(�) includes a penalty
term (� � �sc)	H(� � �sc), which we compute from spa-
tially smoothed a priori parameter estimates obtained using
WLR. Thus there are two steps to obtain parametric images
by GRRSC as follows.

Step 1
Estimate the images of �0 and the variance �̂2 by WLR,

where �0 � (X	WX)�1X	WY and �̂2 � (Y � X�0)	W(Y �
X�0)/(n � m). �sc is then obtained by applying a spatial
linear filter (5 � 5, same weighting for all pixels of the
filter) to �0. The diagonal elements hi are calculated by
applying the same spatial smoothing filter to the initial
parameter estimates h0i, where h0i � m�̂2/((�0i � �sci)	(�0i

� �sci)) (i � 1, 2, 3), and �0i and �sci are the ith elements
of vector �0 and �sc, respectively. Note that the value of the
ridge parameter h0i is automatically adjusted by the noise
level of tracer kinetics and the spatial constraint is incorpo-
rated into the parametric images via ridge regression. There-
fore, GRRSC is less stringent in the spatial constraint and
the “smoothing” of parametric images by GRRSC is mini-
mal and nonuniform.

Step 2
Generate parametric images of � using Eq. (11).

� � �X	WX � H��1�X	WY � H�sc�. (11)

Parametric image generation algorithm using Eq. (9)

In contrast to Eq. (8), the noisiest term (CT) appears on the
right-hand side of Eq. (9) and is therefore an independent
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variable of linear regression. Thus the error in BP estimates
obtained using Eq. (9) is expected to be dominated by the bias
introduced from the errors in the measurement of the nxm
regression matrix A � � 
�0

t CREF�s�ds CT�t� CREF�t���. To re-
duce the bias of BP estimates obtained by linear regression,
the CT on the right-hand side of Eq. (9) is substituted by its
spatially smoothed value using the same spatial smoothing
filter as in algorithm A. Theoretically, if the smoothed CT

values are close to a constant within a ROI, then the matrix
A can be approximated to be the same over all pixels of the
ROI, such that the mean ROI BP value obtained from
parametric BP images is close to the value estimated from
ROI kinetics. This can be seen from the following algebraic
operation:

BP (ROI parametric) � �¥�A	iWAi�
�1A	iWYi�/n �

�A	WA��1A	W�¥Yi/n� � BP (ROI kinetic) if Ai � A for all
pixels of the ROI.

In this study, the BP estimates obtained using Eq. (8) are
compared to those estimated using Eq. (9) in the computer
simulation and human studies. For reporting the BP values
estimated by WLR or LRSC it is implicit that Eq. (9) is
used. When Eq. (8) is used it will be stated explicitly.

Computer simulations

We performed computer simulations utilizing human
[11C]FMZ dynamic PET studies. It was assumed that
[11C]FMZ kinetics are accurately described by SRTM;
therefore, Eq. (2) was used to simulate tissue [11C]FMZ
kinetics. We utilized the R1, k2, and BP images of one slice
(128 � 128) in the middle level of brain with one reference
TAC adapted from one human [11C]FMZ dynamic study to
simulate dynamic images using Eq. (2). The R1, k2, and BP
images were obtained by applying a 6 � 6 � 6 full-width at
half-maximum (FWHM) Gaussian filter to the parametric
images generated by weighted nonlinear ridge regression
with spatial constraint (NLRRSC) algorithm (Zhou et al.,
2002c) in a human study. A smooth reference TAC was
obtained by fitting the pons TAC to a sum of exponential
functions. The scanning protocol (4 � 0.25, 4 � 0.5, 3 � 1,
2 � 2, 5 � 4, 6 � 5 total 60 min, 24 frames) is the same as
used in human studies. Gaussian noise with zero mean and
variance �i

2 � �C�ti�exp(0.693ti/�)/�ti was added to the
pixel kinetics, where C(ti) is the mean of brain activities at
frame i (i.e., the same variance was added to all pixels), �
(� 20.4 min) is the physical half-life of the tracer, �ti is the
length of the PET scanning interval of frame i, and ti is the
midtime of frame i. Three � values (0.01, 0.09, and 0.36)
were used to simulate three different noise levels, which we
refer to as low, middle, and high noise levels. The low noise
level is comparable to that of human ROI TACs, and the
middle level is similar to the noise level in pixel TACs.
When � � 0.09, then mean 
 SD of 100�i/C(ti) � 76.6 


47.0%. The simulated noise level of the reference TAC
corresponded to � � 0.016, which gave a noise level that is
higher than that seen in pons for [11C]FMZ and cerebellum
for [11C]RAC. When � � 0.016, then mean 
 SD of
100�i/C(ti) � 22.1 
 8.7%. One-hundred realizations for
each noise level were obtained to evaluate the statistical
properties of the estimates of the parametric images. We
calculated variance, bias, and root mean square error per-
cent (RMSE%) of each pixelwise estimate. The bias and
RMSE% are defined as

Bias � �
i�1

N � pi � p�

N

RMSE% �
1

p
��

i�1

N

� pi � p�2

N � 1
,

where pi is the parameter estimate, p is the “true” value
(from noise free parametric image), and N is the number of
repeated realizations. Note that mean square error (MSE)
consists of two components, squared bias and variance, that
is, MSE � Bias2 � Variance.

As a comparison, in addition to LRSC and WLR,
weighted nonlinear regression using the Marquardt (WN-
LRM) (Marquardt, 1963) algorithm and NLRRSC (Zhou et
al., 2002c) were also implemented. The initial parameter
estimates were obtained by fitting SRTM to spatially
smoothed (window size 10 � 10 pixel2, equal weighting for
all pixels) dynamic images using WNLRM with Eq. (2).
The spatial parameter constraints used for NLRRSC were
same as initial estimates. To derive the ridge parameters for
NLRRSC, a 2-D spatial linear smoothing filter (window
size 5 � 5 pixel2, equal weighting for all pixels) was used.
The 2-D spatial linear smoothing filter is also used for
LRSC (Zhou et al., 2001). Since the noise has known
variance, the weighting matrix W of the diagonal element
wii � 1/�i

2 was used for all four parametric imaging meth-
ods (LRSC, WLR, NLRRSC, and WNLRM). Eq. (2) was
used for WNLRM and NLRRSC. BP images calculated as
k2/k	2 �1 by WLR and LRSC using Eq. (8) were compared
to those estimated directly using Eq. (9). Upper bounds
were applied to WNLRM after convergence. Upper bounds
were also applied to BP estimates by WLR and LRSC using
Eq. (8).

Since the variance of simulated noise is spatially uni-
form, the RMSE% of estimates is inversely proportional to
the true parameter values. To obtain the accuracy of the
parameter estimates as a function of simulated noise levels,
the ROI of whole gray matter region within the selected
slice is applied to the images of mean, MSE, variance,
Bias2, and RMSE%.
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Applications to human ligand-receptor dynamic
PET studies

[11C]RAC and [11C]FMZ human dynamic PET studies
were used to evaluate the performance of LRSC, WLR,
WNLRM, and NLRRSC for comparison. While [11C]RAC
is used to measure D2-receptor density (Blomqvist et al,
1990; Endres and Carson, 1998; Farde et al., 1989; Mintun
et al., 1984; Wagner et al., 1983), [11C]FMZ is used to
measure central benzodiazepine receptor density (Delforge
et al., 1997; Koeppe et al., 1991; Lassen et al., 1995; Price
et al., 1993; Millet et al., 2002). Although [11C]RAC and
[11C]FMZ exhibit a rapid uptake and a high specific/non-
specific ratio, the spatial distribution of the receptor density
is markedly different (Delforge et al., 1997). We performed
dynamic PET scans after intravenous bolus injection of
[11C]RAC (20.4 
 3.6 mCi (mean 
 SD) of high specific
activity (5.8 
 3.7 Ci/�mol at time of injection) in 16
healthy human adult volunteers (age mean 
 SD, 29 
 8
years). We also performed dynamic PET scans after intra-
venous bolus injection of [11C]FMZ (activity 13.8 
 0.6
mCi, sp. act 5.4 
 1.4 Ci/�mol at time of injection) in 9
healthy adult volunteers (age mean 
 SD, 35 
 6 years).
Dynamic PET scans were performed on a GE advance
scanner with acquisition protocols of 4 � 0.25, 4 � 0.5, 3
� 1, 2 � 2, 5 � 4, and 12 � 5 min (total 90 min, 30 frames)
and 4 � 0.25, 4 � 0.5, 3 � 1, 2 � 2, 5 � 4, and 6 � 5
frames (total 60 min, 24 frames) for [11C]RAC and
[11C]FMZ, respectively. To facilitate the coregistration of
the magnetic resonance imaging (MRI) and the PET scans
and to minimize movement during the MRI and PET scans,
subjects were fitted with thermoplastic face masks. The
thermoplastic face mask was worn during the MRI and PET
scans to maintain the head in the same position throughout
each scan. Data were collected in 3-D acquisition mode.
Ten-minute 68Ge transmission scans acquired in 2-D mode
were used for attenuation correction of the emission scans.
Scatter correction of the 3-D emission is based on interpo-
lation of the tails of the sinogram and then subtracting from
the emission data in sinogram space (Cherry et al., 1993).
Dynamic images were reconstructed using filtered back
projection with a ramp filter (image size 128 � 128, pixel
size 2 � 2 mm2, slice thickness 4.25 mm), which resulted in
a spatial resolution of about 4.5 mm FWHM at the center of
the field of view. The decay-corrected reconstructed dy-
namic images are expressed in microcuries per milliliter.
MRI scans were also obtained with a 1.5-T GE Signa
system for each subject. T1-weighted magnetic resonance
images were coregistered to the mean of all frames’ dy-
namic PET images. The image registration program Regis-
ter developed by the Montreal Neurologic Institute was used
for MRI to PET image registration (Evans et al., 1991). The
ROIs were defined on the coregistered MRI images and
copied to the dynamic PET images to obtain ROI TACs for
kinetic modeling. To minimize partial volume effects in the
PET-MRI space, slices containing only edges of structures

were omitted, and regions were drawn within the apparent
margins of structures. The caudate, putamen, and cerebel-
lum (reference tissue) were drawn for [11C]RAC dynamic
PET studies; cerebellum, frontal cortex, pons (reference
tissue), and occipital cortex were drawn for [11C]FMZ dy-
namic PET studies.

The parametric imaging methods (LRSC, WLR, NL-
RRSC, and WNLRM) were evaluated with human dynamic
PET studies. The LRSC and NLRRSC used in human stud-
ies are the same as those performed for computer simula-
tions. Since the variance of dynamic images is not known,
the weighting matrix was determined by our parametric
imaging experience. The diagonal element wii of weighting
matrix W equals the duration of the ith frame of the dynamic
PET scan (Zhou et al., 2001, 2002c). The weighting matrix
W for regression was used for the four parametric imaging
methods and ROI kinetic modeling. Mask images were used
for nonlinear parametric imaging (NLRRSC and WNLRM)
to decrease computational cost. Both the standard ROI ki-
netic modeling and the parametric imaging using spatial
normalization were used for evaluation. For comparison,
ROIs were applied to both dynamic images and parametric
images. The parameters estimated by fitting ROI TACs and
mean ROI values on parametric images were then obtained.
To evaluate the precision of Eq. (8) at low noise levels, we
compare (1) parameter values estimated by fitting ROI ki-
netics using Eq. (2) with WNLRM and (2) parameter values
estimated by fitting ROI kinetics using Eq. (8) with WLR.
To compare LRSC and WLR parametric imaging results
with ROI kinetic modeling, we calculate the percentage of
difference between the ROI values obtained directly from
the parametric images by WLR or LRSC and those esti-
mated from ROI kinetics with WNLRM. The percentage of
difference (diff%) is defined as 100 � (ROI(parametric
image)-ROI(kinetic))/ROI(kinetic). For imagewise-based
evaluation, all the parametric images were spatially normal-
ized to the standard stereotaxic (Talairach) space (pixel size
2 � 2 mm2, slice thickness 2 mm) using SPM99 (statistical
parametric mapping software; Wellcome Department of
Cognitive Neurology, London, UK). Because more struc-
tural information is contained in the R1 images, the R1

images generated by LRSC were used to determine the
parameters of spatial normalization and applied to all gen-
erated parametric images for each subject. Two iterations of
the spatial normalization process were performed: (1) the
parameters obtained by normalizing R1 images to the cere-
bral blood flow template provided by SPM99 and (2) the
means of R1 images obtained by the first iteration were used
as a template for the second iteration. The sinc interpolation
method was used to minimize the smoothing effect of spa-
tial normalization. The mean and variance of R1, k2, and BP
parametric images for all four methods were calculated in
stereotaxic space. The variance analysis in human studies is
based on two assumptions: (1) the variance of estimates in
standard space consists of two linear components, the vari-
ance of estimates in the original PET image space and the
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variance due to the spatial normalization process, and (2)
the variance from the spatial normalization process is the
same over different parametric imaging methods. Let Vi be
the pixel value of variance images generated in the standard
space, V0i be the variance of estimates in the original PET
image space, and Vsn be the variance from the spatial nor-
malization process. Then based on the above assumptions,
we have Vi � V0i � Vsn, and the difference in variance
between parametric imaging methods i and j in the standard
space Vi � Vj equals the variance difference V0i � V0j in the
original PET image space. Consequently, we use 100(Vi �
Vj)/Vi to approximate 100(V0i � V0j)/V0i to describe the
difference in variance of estimates obtained with the differ-
ent methods. A few ROIs or brain tissues used to represent
low- and high-receptor-density regions are defined on the
PET template in the standard stereotaxic (Talairach) space.
ROIs of the caudate putamen are utilized for [11C]RAC, and
ROIs of cerebellum, frontal cortex, occipital cortex, and
thalamus are utilized for [11C]FMZ. ROI values are ob-
tained by copying ROI to parametric mean and variance
images.

All parametric imaging methods were written in MAT-
LAB (The MathWorks Inc.) code and implemented on an
Ultra 60 SPARC workstation.

Results

Computer simulations

Comparison of accuracy and precision of estimates is
illustrated in Table 1. Table 1 is the gray matter-averaged
mean, squared bias, variance, and RMSE% of parameter
estimates at different noise levels. The squared bias, vari-
ance, mean square error, and RMSE% increase as noise
level increases for all estimates, and LRSC estimates (for
BP, Eq. (9) used) is of lowest increasing rate. Comparing
the BP estimates obtained by LRSC using Eq. (8) to those
using Eq. (9), the BP estimates obtained using Eq. (8) show
more variance and higher RMSE%, although the bias was
reduced at middle (� � 0.09) and high noise (� � 0.16)
levels. A similar increase in BP variance and RMSE% with
Eq. (8) was found with WLR, except when fitting a low-
noise (� � 0.01) TAC for which WLR using Eq. (8) gave
almost same RMSE% with WLR using Eq. (9). The BP
estimates obtained with WLR and LRSC showed similar
variance, which was lower than the variance measured with
the nonlinear methods (NLRRSC, WLNRM) at middle and
high noise levels. Both NLRRSC and WLNRM performed
well with low TAC noise; however, the large variances
measured at middle and high noise levels indicates that
these methods are not as suitable for modeling pixel data.
As expected, NLRRSC and WLNRM do show lower bias
than WLR. In fact the squared bias of NLRRSC and WL-
NRM BP estimates is less than 10% of MSE for all simu-
lated noise levels. By contrast, the squared bias of WLR BP

estimates is about 60%–82% of MSE at different noise
levels. Thus the error in BP estimates obtained by WLR
(using Eq. (9)) is mostly due to bias. The squared bias of BP
estimated with WLR can be decreased by 60%–95% if
LRSC is used without increased variance. The BP is under-
estimated by both WLR and LRSC, and the underestimation
tends to be larger as the noise level of the TAC increases. At
the middle noise level, the Bias% of the BP WLR estimates
in gray matter ranges from �5% to �25% with mean of
�11.9%, and the mean of underestimation is reduced to
�4.4% by LRSC with ranges �0% to 10%. On average, the
BP estimated by WLR is �3%–8% lower than those esti-
mated by LRSC for gray matter for different noise level.
The LRSC method also gave the lowest RMSE% for R1 and
k2. In comparing LRSC and WLR, the larger RMSE% for
R1 and k2 found with WLR is mostly due to a larger
variance. This is in contrast with the results for estimating
BP for which LRSC and WLR showed similar variance, but
WLR had a larger bias. The average RMSE% of LRSC
estimates of R1 and k2 is about 40%–60% less than those of
WLR, NLRRSC, and WNLRM at the middle noise level.

Table 1 also shows that all methods give a similar rela-
tive increase in RMSE% because of noise in the reference
TAC. Noise in the reference TAC increases both the bias
and the variance of estimates, although a greater effect is
seen in the bias, especially for pixel TACs with low noise
levels. For pixel TACs with low noise levels, RMSE% of
BP estimates obtained with middle noise level of reference
TAC is about double those estimated with noise free refer-
ence TAC. The variance of estimates of k2 is more sensitive
to the middle or high noise in the tissue TAC. As the noise
level of pixel TAC increases, the variance of estimates of R1

or BP contributed by the errors in the reference TAC tends
to decrease, while the variance of the estimates of k2 con-
tributed by the errors in the reference TAC keeps increasing.
We also performed simulation study with the reference
TAC of low noise level, which is comparable to the noise
level of ROI TACs. The results from reference TAC of low
noise level (� � 0.01) are almost same as those obtained
with reference TAC of noise free.

Human studies

Fig. 3 illustrates that the nonlinear estimators of R1, k2,
and BP using Eq. (2) are almost identical to those estimated
by fitting ROI kinetics using Eq. (8) with conventional
WLR. This result is consistent with that obtained in the
computer simulation and demonstrates that the bias intro-
duced from the linear operational equation is negligible
when applied to data of low noise level.

For comparison the results of LRSC and WLR and ROI
kinetic analysis are illustrated in Figs. 4 and 5. Fig. 4 shows
that for both [11C]RAC and [11C]FMZ dynamic PET stud-
ies, the ROI values calculated directly from parametric
images generated by LRSC have high linear correlations
with those estimated from ROI kinetics by WNLRM using

981Y. Zhou et al. / NeuroImage 18 (2003) 975–989



Eq. (2), especially for BP with R2 � 0.99. In addition, all the
slopes of regression in Fig. 4 are not significantly different
from 1 (T test, P � 0.7 for [11C]FMZ; P � 0.13, 0.16, and
0.67 for R1, k2, and BP, respectively, for [11C]RAC). Fig. 5
shows that the percent differences between the ROI estima-
tors of parametric imaging and conventional ROI kinetic
modeling are less than 10%. The LRSC parametric imaging
method provides a smaller difference (�5%) when com-
pared to the WLR parametric imaging method for R1, k2,
and BP. As predicted from the theory, there is no significant
difference (paired T test, P � 0.90 for all ROIs) between the
ROI BP values obtained from ROI kinetic analysis and

those obtained from the parametric images generated by
LRSC. However, the ROI BP values generated by WLR are
significantly (paired T test, P � 0.0001) lower than those
estimated by ROI kinetic modeling. Figs. 3 and 4 show that
at low noise levels, the BP values estimated using either Eq.
(8) or Eq. (9) are same as those estimated by ROI kinetic
modeling with Eq. (2). However, differences between Eq.
(8) and Eq. (9) for estimating BP are easily seen when they
are applied to high noise level pixel TACs. As a specific
example, Fig. 6 shows that the BP images generated by
linear regression using Eq. (9), and NLRRSC are visually
comparable with a similar noise level. By contrast, the BP

Table 1
Gray matter averaged mean, mean square error, squared bias, variance, and RMSE% of estimates from [11C]FMZ simulation studies with
100 realizations for each noise level

Estimates Noise
level �

Reference TAC of noise free Reference TAC of noise level of ��0.016

Mean MSE Bias2

(% of MSE)
Variance
(% of MSE)

RMSE% Mean MSE Bias2

(% of MSE)
Variance
(% of MSE)

RMSE%

BP by LRSC 0.01 2.81 0.0046 0.0007 (15.4) 0.0039 (84.6) 2.9 2.64 0.0613 0.0392 (64.3) 0.0217 (35.7) 8.7
0.09 2.70 0.0523 0.0219 (42.1) 0.0301 (57.9) 9.2 2.59 0.1122 0.0658 (58.9) 0.0458 (41.1) 12.5
0.36 2.56 0.1915 0.0955 (50.1) 0.0950 (49.9) 17.2 2.52 0.2384 0.1247 (52.6) 0.1124 (47.4) 18.8

BP by LRSC
(Eq. (8))

0.01 2.86 0.0077 0.0019 (24.1) 0.0059 (75.9) 3.7 2.81 0.0346 0.0014 (4.1) 0.0332 (95.9) 7.2
0.09 2.93 0.0742 0.0145 (19.5) 0.0596 (80.5) 12.8 2.88 0.1513 0.0076 (5.0) 0.1437 (95.0) 18.8
0.36 3.27 1.2141 0.2834 (23.4) 0.9278 (76.6) 56.1 3.17 1.6072 0.1964 (12.2) 1.4088 (87.8) 63.0

BP by WLR 0.01 2.73 0.0186 0.0111 (60.1) 0.0074 (39.9) 5.1 2.60 0.0823 0.0578 (70.7) 0.0239 (29.3) 10.2
0.09 2.48 0.1768 0.1443 (82.3) 0.0310 (17.7) 14.9 2.45 0.2215 0.1697 (77.2) 0.0501 (22.8) 16.7
0.36 2.40 0.3349 0.2444 (73.5) 0.0881 (26.5) 21.0 2.39 0.3689 0.2542 (69.4) 0.1122 (30.6) 22.1

BP by WLR
(Eq. (8))

0.01 2.85 0.0089 0.0008 (8.7) 0.0081 (91.3) 4.0 2.79 0.0410 0.0016 (4.0) 0.0394 (96.0) 8.4
0.09 2.94 0.3133 0.0251 (8.0) 0.2880 (92.0) 28.1 2.87 0.4339 0.0185 (4.3) 0.4152 (95.7) 32.0
0.36 3.17 3.3945 0.3406 (10.0) 3.0504 (90.0) 88.1 3.05 3.3643 0.2865 (8.5) 3.0750 (91.5) 87.6

BP by NLRRSC 0.01 2.83 0.0076 0.0033 (43.0) 0.0043 (57.0) 3.8 2.73 0.0421 0.0130 (31.0) 0.0289 (69.0) 7.7
0.09 2.85 0.0445 0.0044 (9.9) 0.0401 (90.1) 9.2 2.73 0.0747 0.0136 (18.3) 0.0609 (81.7) 11.0
0.36 2.90 0.2014 0.0172 (8.5) 0.1840 (91.5) 19.7 2.78 0.1991 0.0146 (7.3) 0.1843 (92.7) 19.0

BP by WNLRM 0.01 2.82 0.0088 0.0001 (1.2) 0.0087 (98.8) 3.9 2.70 0.0494 0.0152 (30.8) 0.0341 (69.2) 9.0
0.09 2.87 0.1400 0.0050 (3.6) 0.1350 (96.4) 16.6 2.74 0.1468 0.0099 (6.7) 0.1368 (93.3) 16.5
0.36 3.14 1.2750 0.1318 (10.3) 1.1419 (89.7) 50.2 2.94 0.9595 0.0362 (3.8) 0.9229 (96.2) 42.8

R1 by LRSC 0.01 1.29 0.0026 0.0016 (62.2) 0.0010 (37.8) 3.9 1.14 0.0575 0.0265 (46.3) 0.0307 (53.7) 17.9
0.09 1.36 0.0160 0.0094 (59.0) 0.0065 (41.0) 9.9 1.22 0.0479 0.0109 (22.7) 0.0369 (77.3) 16.7
0.36 1.53 0.0825 0.0648 (79.2) 0.0171 (20.8) 23.5 1.38 0.0621 0.0147 (23.7) 0.0473 (76.3) 20.2

R1 by WLR 0.01 1.31 0.0108 0.0009 (8.8) 0.0099 (91.2) 8.4 1.16 0.0596 0.0186 (31.4) 0.0407 (68.6) 18.7
0.09 1.38 0.0897 0.0120 (13.4) 0.0775 (86.6) 24.0 1.23 0.1116 0.0070 (6.3) 0.1045 (93.7) 26.4
0.36 1.55 0.2915 0.0752 (25.8) 0.2156 (74.2) 43.6 1.40 0.2519 0.0177 (7.0) 0.2340 (93.0) 40.2

R1 by NLRRSC 0.01 1.35 0.0152 0.0067 (44.3) 0.0085 (55.7) 9.7 1.14 0.0658 0.0238 (36.2) 0.0418 (63.8) 20.0
0.09 1.37 0.0798 0.0083 (10.4) 0.0714 (89.6) 22.7 1.16 0.1215 0.0187 (15.4) 0.1026 (84.6) 27.6
0.36 1.47 0.2527 0.0356 (14.1) 0.2167 (85.9) 40.4 1.27 0.2530 0.0063 (2.5) 0.2466 (97.5) 40.0

R1 by WNLRM 0.01 1.29 0.0118 0.0001 (1.1) 0.0117 (98.9) 8.8 1.06 0.1053 0.0567 (54.2) 0.0480 (45.8) 24.4
0.09 1.28 0.1015 0.0014 (1.4) 0.1001 (98.6) 25.6 1.07 0.1883 0.0553 (29.5) 0.1324 (70.5) 33.7
0.36 1.37 0.3133 0.0116 (3.7) 0.3016 (96.3) 44.9 1.15 0.3537 0.0311 (8.8) 0.3222 (91.2) 46.8

k2 by LRSC 0.01 0.26 0.0002 0.0001 (59.9) 0.0001 (40.1) 4.2 0.29 0.0037 0.0009 (25.7) 0.0027 (74.3) 19.5
0.09 0.25 0.0026 0.0021 (81.6) 0.0005 (18.4) 11.8 0.27 0.0043 0.0019 (43.0) 0.0025 (57.0) 20.2
0.36 0.20 0.0116 0.0104 (90.2) 0.0011 (9.8) 27.8 0.22 0.0129 0.0099 (77.4) 0.0029 (22.6) 30.0

k2 by WLR 0.01 0.27 0.0008 0.0001 (8.5) 0.0008 (91.5) 8.9 0.30 0.0054 0.0013 (23.3) 0.0042 (76.7) 22.7
0.09 0.25 0.0067 0.0020 (29.2) 0.0047 (70.8) 25.9 0.28 0.0111 0.0021 (18.7) 0.0090 (81.3) 33.7
0.36 0.21 0.0227 0.0101 (44.5) 0.0125 (55.5) 50.0 0.23 0.0288 0.0100 (34.8) 0.0187 (65.2) 56.3

k2 by NLRRSC 0.01 0.26 0.0011 0.0005 (49.1) 0.0005 (50.9) 9.7 0.32 0.0105 0.0035 (33.6) 0.0070 (66.4) 33.2
0.09 0.26 0.0053 0.0004 (8.5) 0.0048 (91.5) 25.6 0.31 0.0148 0.0031 (20.8) 0.0117 (79.2) 43.0
0.36 0.26 0.0138 0.0007 (5.4) 0.0130 (94.6) 43.1 0.31 0.0256 0.0028 (10.9) 0.0228 (89.1) 60.7

k2 by WNLRM 0.01 0.27 0.0016 0.0000 (2.9) 0.0015 (97.1) 11.0 0.33 0.0170 0.0069 (40.6) 0.0100 (59.4) 38.2
0.09 0.28 0.0118 0.0005 (3.8) 0.0113 (96.2) 34.7 0.33 0.0247 0.0059 (24.1) 0.0187 (75.9) 54.9
0.36 0.28 0.0297 0.0007 (2.3) 0.0290 (97.7) 65.3 0.33 0.0445 0.0053 (12.0) 0.0391 (88.0) 82.0
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images generated with either linear regression using Eq. (8)
or WNLRM show outliers (bounds applied for image dis-
play purpose) that are due to error propagation. The distri-
bution of these outliers is mostly on the white matter or
outside of brain, the regions of lower signal-to-noise ratio,
but is not limited in these regions. The pixel values of the
BP image estimated by WLR using Eq. (9) are approxi-
mately 3%–5% lower than those generated by LRSC using
Eq. (9) (Fig. 5). These results are further verified by the
statistical analysis of parametric images in the following
section.

The pixelwise evaluation of parametric imaging methods
is shown in Fig. 7, which shows one plane of mean (Fig.
7A) and variance (Fig. 7B) images of R1, k2, and BP gen-
erated from nine human [11C]FMZ dynamic PET studies.

The BP images generated with LRSC, WLR, and NLRSSC
show similar image quality and magnitude of variance. For
R1 and k2, LRSC provides parametric images of lowest
variance, with comparable or better visual quality of mean
images. For all parameters, images generated using WN-
LRM showed the largest variance. Similar results were
obtained for the mean and variance of parametric images
generated from [11C]RAC human dynamic studies. The
volumes of ROIs shown in Table 2 are comparable to the
ROI volumes obtained in the original PET-MRI space. The
ROI values from the parametric mean and variance images
are listed in Table 2. For [11C]FMZ the frontal and occipital
cortices have high BP, while the caudate and putamen have
low BP. Usually, BP is directly proportional to the receptor
density, and the noise level of TAC in low-receptor-density

Fig. 3. R1, k2, and BP estimated by weighted nonlinear regression with the Marquardt (WNLRM) algorithm with Eq. (2) versus those estimated by weighted
linear regression (WLR) using Eq. (8) for the kinetic analysis of regions of interest (ROIs, see materials and methods for ROIs determination).

Fig. 4. Linear correlation between the region of interest (ROI, see Materials and methods for ROI determination) values calculated directly from parametric
images generated by linear regression with spatial constraint (LRSC) and the values estimated from ROI kinetics by a weighted nonlinear regression with
the Marquardt (WNLRM) algorithm.
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regions is higher than those at high receptor density regions
(Endres and Carson, 1998; Koeppe et al., 1991; Slifstein and
Laruelle, 2000). With [11C]FMZ BP estimates obtained
using WNLRM taken as “true” values, the estimated Bias%
of BP obtained with WLR, LRSC, and NLRRSC is found to
be higher in caudate and putamen than in frontal and oc-
cipital cortices. Overall, the parametric images generated by
LRSC are of lowest variance. The BP images generated by
WLR and LRSC show similar variance which is �10%–
40% lower than that generated by WNLRM. Table 2 also

shows that the variance of BP images generated by WLR or
LRSC with Eq. (8) is more than 20% larger compared to the
variance obtained with Eq. (9). The reduced variance that is
obtained with Eq. (9), in addition to the decreased occur-
rence of outliers (Fig. 6), supports our initial assertion that
Eq. (9) is preferable to Eq. (8) for estimation of BP. The BP
estimates obtained using WLR are �3%–5% lower than
those estimated by LRSC. For R1 and k2, the variance of
WLR, NLRRSC, and WNLRM can be decreased about
30%–60% by using LRSC. These results are quite consis-

Fig. 5. The mean 
 standard error of mean (n � 9 and n � 16 for [11C]RAC and [11C]FMZ respectively) of percent difference (diff%) between (1) the region
of interest (ROI, see Materials and methods for ROI determination) values calculated directly from the parametric images by weighted linear regression
(WLR) and linear regression with spatial constraint (LRSC) and (2) those estimated from ROI kinetics by a weighted nonlinear regression with the Marquardt
(WNLRM) algorithm.

Fig. 6. (Left to right) Binding potential images generated by weighted linear regression (WLR), WLR using Eq. (8), linear regression with spatial constraint
(LRSC), LRSC using Eq. (8), nonlinear ridge regression with spatial constraint (NLRRSC), and weighted nonlinear regression with the Marquardt (WNLRM)
algorithm in one human [11C]flumazenil (top row) and one human [11C]raclopride (bottom row) dynamic PET studies.
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tent with the results from the comparison between linear
parametric imaging methods and ROI kinetic analysis (see
Fig. 5), as well as our computer simulations (Table 1).

For each human study, it takes about 20–30 s to gener-
ate parametric images by LRSC or WLR for each plane.
NLRRSC and WNLRM take about three to six times longer
to run than LRSC or WLR on Ultra 60 SPARC workstation.

Discussion

The derivation of the SRTM includes the assumption that
the free�nonspecific and specific binding compartments are
in rapid equilibrium. It is further assumed that there is
negligible specific binding in the reference region. All meth-
ods based on SRTM, including nonlinear methods and the
linear methods presented here, will be similarly affected by
the limitations of these assumptions. In addition, the blood
volume term is ignored in the SRTM, producing a system-
atic underestimation of BP regardless of which SRTM
method is implemented. For example, the BP estimates
obtained by SRTM underestimate the BP estimates obtained
using a standard two-tissue compartmental model (Fig. 1).
The underestimation may result from model simplification
and assumption of the negligible radioactivity of vascular
space in both reference tissue and target tissue. For
[11C]FMZ studies, the pons may not be completely devoid
of specific receptor binding (Delforge et al., 1997; Price et
al., 1993). The correction of the bias due to specific binding
in the reference tissue is usually based on a more complex
experimental protocol with additional scans to estimate BP
or nonspecific distribution volume of the reference tissue
(Delforge et al., 1997; Lopresti et al., 2001). However, the
theoretical linear relationship verified by our studies (Fig. 8)
and other previous studies (Gunn et al., 1997, 2001; Lam-

mertsma and Hume, 1996; Millet al., 2002) demonstrate
that SRTM is a reliable quantification method for studying
the changes in BP induced by psychological stimulation or
pharmacological challenges.

The results from computer simulation of [11C]FMZ in
the present study are generally consistent with those ob-
tained from human [11C]FMZ PET data. In the computer
simulation, we found that high noise in the reference TAC
can add both bias and variance to the parameter estimates,
especially for a tissue TAC of low noise level. In this study,
we also simulated the reference TAC of low noise level (�
� 0.01) and found that the effects on estimates is almost
negligible. This suggests that some preprocessing, such as
smoothing the reference tissue TAC, may be helpful in
some special situations. For example, if the reference TAC
derived from a small region such as pons is quite noisy due
to movement during PET scan, then movement correction
or temporal smoothing technique, such as fitting mutliex-
ponentionals to the reference TACs should be performed.

The operation equations (Eqs. (8) and (9)) are first de-
rived to generate parametric images of SRTM. Both com-
puter simulation and human studies show that conventional
nonlinear regression with operational Eq. (2) and linear
regression with Eq. (8) is comparable for estimating the
parameters of SRTM from low noise level of TAC. LRSC
is suggested for high noise level of TAC or parametric
imaging of SRTM model. Although the BP images gener-
ated by WLR with Eq. (9) are of comparable image quality
with LRSC, which is consistent with their similar variance,
the WLR estimates show more bias than LRSC, especially
for pixel TAC of high noise level or ROI TAC of lower
receptor density and small volume. It is worth noting that
the noise introduced bias (underestimation) was also studied
for DV estimation in ligand-receptor PET or single-photon
emission computed tomography (SPECT) studies (Slifstein

Fig. 7. Pixelwise mean (A) and variance (B) of estimates of R1 (top row), k2 (middle row), and binding potential (BP) (bottom) generated from the nine human
[11C]flumazenil ([11C]FMZ) dynamic PET studies. (Left to right) Linear regression with spatial constraint (LRSC), weighted linear regression (WLR),
nonlinear ridge regression with spatial constraint (NLRRSC), and weighted nonlinear regression with the Marquardt (WNLRM) algorithm.
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and Laruelle, 2000). It was reported that the bias can be
introduced by noise of TAC if DV estimated by Logan
graphical analysis with plasma input function (Logan et al.,
1990), and this underestimation is positively correlated to
the high noise level of TAC, which usually occurred at
lower receptor density regions. For DV estimated by two-
compartmental model (plasma and tissue) with conventional

linear regression, DV was also underestimated if TACs have
high noise level (Zhou et al., 2002a).

In fact, Eq. (9) is very similar to the Logan plot with
reference TAC as input function (see Eq. (1)). A multilinear
method has been derived from the Logan plot (Ichise et al.,
1996, 1997) that is fundamentally the same as Eq. (9), since
it is also a multilinear equation with three linear components

Table 2
The ROI values on the mean and variance of parametric images generated from 9 human [11C]FMZ and 16 human [11C]RAC dynamic PET studies

Estimates [11C]FMZ [11C]RAC

ROIs: Caudate Cerebellum Frontal Occipital Putamen Thalamus Caudate Putamen
Volume (mm3): 1960 17520 16784 9544 4008 4496 1960 4008

BP by LRSC Mean 1.38 1.99 3.48 3.89 1.55 2.00 2.15 2.39
Variance 0.2334 0.5601 0.1374 0.1708 0.1371 0.6353 0.5329 0.7583

BP by LRSC
(Eq. (8))

Mean 1.50 2.07 3.58 3.98 1.65 2.12 2.29 2.53
Variance 0.3026 0.7476 0.4275 0.6747 0.2653 0.8416 0.7323 1.0051

BP by WLR Mean 1.34 1.92 3.30 3.68 1.49 1.94 2.05 2.28
Variance 0.2504 0.6517 0.1421 0.1773 0.1404 0.7397 0.5694 0.8011

BP by WLR
(Eq. (8))

Mean 1.15 2.07 3.60 4.00 1.43 2.00 2.28 2.52
Variance 0.5113 0.7763 1.4743 1.8578 0.9773 0.8744 0.9247 1.2205

BP by
NLRRSC

Mean 1.42 2.00 3.39 3.83 1.70 1.96 2.05 2.26
Variance 0.2643 0.6743 0.1551 0.1910 0.1537 0.7646 0.5329 0.7583

BP by
WNLRM

Mean 1.46 2.08 3.57 3.97 1.65 2.08 2.27 2.51
Variance 0.3890 0.7680 0.4195 0.4538 0.3804 0.8412 0.8042 1.0768

R1 by LRSC Mean 1.27 1.19 1.14 1.19 1.36 1.46 0.85 0.92
Variance 0.0276 0.0257 0.0344 0.0486 0.0412 0.0284 0.0674 0.0719

R1 by WLR Mean 1.33 1.20 1.16 1.21 1.39 1.48 0.88 0.92
Variance 0.0625 0.0798 0.1061 0.1337 0.1506 0.0813 0.1342 0.1269

R1 by
NLRRSC

Mean 1.24 1.24 1.29 1.31 1.30 1.40 0.78 0.83
Variance 0.0544 0.0791 0.0670 0.0946 0.1018 0.0889 0.0950 0.0939

R1 by
WNLRM

Mean 1.07 1.14 1.14 1.19 1.16 1.24 0.80 0.85
Variance 0.0723 0.0826 0.1225 0.1349 0.1616 0.0838 0.1200 0.1183

k2 by LRSC Mean 0.20 0.26 0.32 0.29 0.31 0.23 0.18 0.18
Variance 0.0040 0.0027 0.0057 0.0071 0.0044 0.0034 0.0044 0.0045

k2 by WLR Mean 0.21 0.26 0.33 0.29 0.32 0.23 0.19 0.19
Variance 0.0081 0.0054 0.0176 0.0197 0.0181 0.0063 0.0064 0.0063

k2 by
NLRRSC

Mean 0.31 0.28 0.33 0.29 0.31 0.32 0.20 0.20
Variance 0.0078 0.0043 0.0165 0.0136 0.0206 0.0049 0.0055 0.0055

k2 by
WNLRM

Mean 0.39 0.30 0.34 0.30 0.32 0.39 0.20 0.21
Variance 0.0145 0.0062 0.0378 0.0379 0.0379 0.0075 0.0083 0.0087

Fig. 8. Based on ROI (see materials and method for ROI determination) kinetic analysis, a strong linear correlation is found between BP estimates obtained
using the plasma input model shown in Figs. 1 and SRTM in 9 human [11C]flumazenil ([11C]FMZ) and 16 human [11C]raclopride ([11C]RAC) dynamic PET
studies. For plasma input modeling, the value of K1/k2 was fixed to the distribution volume measured in reference tissue.
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with one of the parameters being DVR. In fact, using refer-
ence TAC as input, the Logan plot as well as its variations
can be considered as a special case of SRTM. This can be
easily seen by the following equation resulted from dividing
Eq. (9) by CT:

�0
t CT�s�ds

CT�t�
� DVR

�0
t CREF�s�ds

CT�t�

� DVR/�k2/R1�
CREF�t�

CT�t�
� �DVR/k2�.

Note that k2R � k2/R1. Thus, for tissue time activity curves
of low noise level, the Logan plot and the Eq. (9) derived
from SRTM are fundamentally the same equation for BP
estimation. Statistically, the BP estimated using Eq. (9) or
the above equation derived from Logan plot can be consid-
ered as a special technique to minimize the variance of
estimates by estimating ratio without division, if it is com-
pared to the BP estimated using Eq. (8) (Lange, 1999).
Based on conventional ROI kinetic analysis, the Logan plot
and SRTM with Eq. (2) provides almost identical estimates
of BP (Sossi et al., 2001). It is expected that the BP is also
underestimated by Logan plot or its variation (Ichise et al.,
1996, 1997), and this underestimation is also due to noise of
TAC and model approximation.

In this study, the parameters estimated by conventional
nonlinear regression using operational Eq. (2) were com-
pared to those estimated by linear regression and LRSC
using computer simulation, a lower noise level of ROI
TACs, and a high noise level of pixel TAC. At the lower
noise level of simulated data or ROI TACs, all methods give
almost same estimates. Nonlinear regression is very sensi-
tive to the noise level of tissue TAC, which can result in
intrinsic nonlinear problems such as local minimums and
convergence, nonlinear estimators can also become biased
estimators at a high noise level of TACs. In this study we
have demonstrated that the linear estimator is more accurate
than a nonlinear estimator although there is a small bias
contributed from integration into the linear estimator. We
also found that the accuracy of conventional WLR estimates
of R1 and k2 is markedly improved by general ridge regres-
sion with spatial constraint. It is necessary to clarify, how-
ever, that greater accuracy of parameter estimates does not
necessarily correspond to the best fit of measured TAC. In
fact a better fit, as judged by a lower residual sum square in
kinetic space, is usually at the cost of higher spatial varia-
tion in parameter space (Zhou et al., 2002c).

When applying the linear GRRSC algorithm used in
LRSC, a high-pass filter is recommended to be used in the
filtered backprojection reconstruction to maintain high spa-
tial resolution in the dynamic images. This ensures optimal
trade-off between noise depression and spatial resolution
loss that can be produced by GRRSC when generating

parametric images. In addition, the spatial smoothing filter
(equal weighting over all pixels within given window in
plane) selected for LRSC in the current study originated
from the criterion of minimizing local variation in the para-
metric image. In fact, any filter could be used in the LRSC,
and its selection is always dependent on the noise level of
the dynamic images. Note that LRSC is not sensitive to the
smoothing filter, and this is consistent with results obtained
in our previous studies (Zhou et al., 2001, 2002a, 2002b,
2002c). Although the smoothing filter for spatial constraint
is the same for the parametric image generation algorithms
using Eqs. (8) and (9) of LRSC, they have different effects
on the parametric images. For R1 and k2, the spatial con-
straint is automatically adjusted by both the variance of
pixel kinetics and the variance of estimates, based on the
GRRSC theory. Therefore, the resolution loss of R1 and k2

images due to spatial constraint is not spatially uniform, and
the k2 images have lower spatial resolution. For the BP, the
selection of the applied smoothing filter is somewhat arbi-
trary. However, based on the theory (see subsection “Para-
metric image generation algorithm using Eq. (9)”), and the
results (WLR versus LRSC) of computer simulations and
human studies, the BP estimates obtained with LRSC are
quite robust to the spatial constraint in terms of the variance
and resolution loss. In fact, the results from human studies
demonstrate that the resolution of BP images generated by
LRSC and WLR is visually comparable. Additionally, BP
obtained using Eq. (9) is not sensitive to the weighting for
linear regression, since the output measurements �0

tCT�s�ds
is of low noise level (see Materials and methods). Note that
the regression weighting for model fitting is chosen to be
proportional to the scan length in the present study. Strictly
speaking, Wii, as chosen in our computer simulation, should
be related to the scan length of the frame and is inversely
related to the average counts in the frame for parameter
estimation using Eq. (2) or Eq. (8) (Chen et al., 1991). In
practice, however, we find that the use of the scan length to
approximate Wii gives good and robust results for generat-
ing parametric images (Zhou et al., 2001, 2002a, 2002b,
2002c).

In summary, in contrast to nonlinear regression using Eq.
(2), utilization of the operational Eqs. (8) and (9) of integral
form derived from a simplified reference tissue model are
simpler, more robust, and more computationally efficient
for parameter estimation. For LRSC, results from computer
simulations and human studies show that the variance of
estimates is reduced by ridge regression while the bias of
estimates is limited by the spatial constraint. This finding is
consistent with ridge regression theory (Hoerl and Kennard,
1970a, 1970b), and the results obtained in the previous
studies (Zhou et al., 2001, 2002c). We conclude that the
new linear equations yield a reliable, computationally effi-
cient, and robust LRSC algorithm that is suggested to gen-
erate parametric images of ligand-receptor dynamic PET
studies with SRTM.
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