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 29 

Puropose:  Highly constrained backprojection-local reconstruction (HYPR-LR) has made 30 

a dramatic impact on magnetic resonance angiography (MRA) and shows promise for 31 

positron emission tomography (PET) because of the improvements in the signal-to-noise 32 

ratio (SNR) it provides dynamic images. For PET in particular, HYPR-LR could improve 33 

kinetic analysis methods that are sensitive to noise. In this work, we closely examine the 34 

performance of HYPR-LR in the context of kinetic analysis, we develop an 35 

implementation of the algorithm that can be tailored to specific PET imaging tasks to 36 
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minimize bias and maximize improvement in variance, and we provide a framework for 37 

validating the use of HYPR-LR processing for a particular imaging task.  38 

Methods:  HYPR-LR can introduce errors into non-sparse PET studies that might bias 39 

kinetic parameter estimates. We propose an implementation of HYPR-LR that uses 40 

multiple temporally summed composite images that are formed based on the kinetics of 41 

the tracer being studied (HYPR-LR-MC), and study the effects of HYPR-LR-MC and of 42 

HYPR-LR using a full composite formed with all the frames in the study (HYPR-LR-FC) on 43 

the kinetic analysis of Pittsburgh compound-B ([11C]-PIB) data. We compare HYPR-LR 44 

processing to spatial smoothing. HYPR-LR processing was evaluated using both 45 

simulated and human studies. Non-displaceable binding potential (BPND) parametric 46 

images were generated from fifty noise realizations of the same numerical phantom and 47 

eight [11C]-PIB positive human scans before and after HYPR-LR processing or smoothing 48 

using the reference region Logan graphical method and receptor parametric mapping 49 

(RPM2). The bias and coefficient of variation in the frontal and parietal cortex in the 50 

simulated parametric images were calculated to evaluate the absolute performance of 51 

HYPR-LR processing. Bias in the human data was evaluated using Logan estimates of the 52 

BPND in large regions of interest (ROIs) in the frontal and parietal cortices as a standard 53 

to compare parametric image ROI values to. Variance was assessed qualitatively in the 54 

parametric images and semi-quantitatively by studying the correlation between voxel 55 

BPND estimates from Logan analysis and RPM2. 56 

Results:  Both the simulated and human data show that HYPR-LR-FC overestimates BPND 57 

values in regions of high [11C]-PIB uptake. HYPR-LR-MC virtually eliminates this bias. 58 

Both implementations of HYPR-LR reduce variance in the parametric images generated 59 

with both Logan analysis and RPM2, and HYPR-LR-FC provides a greater reduction in 60 
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variance. This reduction in variance nearly eliminates the noise-dependent Logan bias. 61 

The variance reduction is greater for the Logan method, particularly for HYPR-LR-MC, 62 

and the variance in the resulting Logan images is comparable to the images generated 63 

with RPM2. HYPR-LR processing compares favorably with spatial smoothing, particularly 64 

when the data are analyzed with the Logan method, as it provides a reduction in 65 

variance with no loss of spatial resolution. 66 

Conclusions: HYPR-LR processing shows significant potential for reducing variance in 67 

parametric images, and can eliminate the noise-dependent Logan bias. HYPR-LR-FC 68 

processing provides the greatest reduction in variance but introduces a positive bias into 69 

the BPND of high-uptake border regions. Our proposed method for forming HYPR 70 

composite images, HYPR-LR-MC, eliminates this bias at the cost of less variance 71 

reduction. 72 

 73 
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I. INTRODUCTION 76 

HighlY constrained backPRojection (HYPR) is a family of image reconstruction and post-processing 77 

algorithms that have made a large impact on magnetic resonance angiography (MRA), allowing for 78 

undersampling factors on the order of several hundred fold and dramatic signal-to-noise ratio (SNR) 79 

improvements in dynamic datasets.1-3 The central idea of HYPR is to estimate individual frames in a 80 

dynamic study by weighting a temporally summed composite image. In the ideal case, individual frames 81 

will take on the noise properties of the composite image. It is the potential improvement in the SNR that 82 

makes HYPR an attractive tool for other imaging modalities, and we have recently applied the post-83 



4 
 

processing version, HYPR-LR (for Local Reconstruction), to positron emission tomography (PET) with 84 

promising results.4 85 

One of the primary motivations for applying HYPR-LR to PET data is to improve the kinetic analysis 86 

methods used to analyze dynamic PET data, all of which are sensitive to noise to some degree. In our 87 

previous work, we demonstrated this with simple parameters estimated from phantom studies (e.g. 88 

non-linear least squares fitting to estimate radionuclide decay constants).4 In these studies, we summed 89 

all the frames of the study to form the composite image, as this will provide the greatest enhancement 90 

in the SNR. However, it is well understood that differences between the composite image and the frame 91 

of interest can distort the temporal signals of neighboring regions with different temporal behaviors. 1 In 92 

the context of quantitative kinetic analysis, the bias caused by HYPR-LR processing may have an impact 93 

on the analysis, which should be accounted for and controlled as best as possible. Traditionally, bias in 94 

HYPR processing has been minimized by using a sliding composite window, so that composite images are 95 

more similar to their corresponding frames.1 While such an approach may potentially be effective for 96 

dynamic PET data, it is arbitrary, and the optimal implementation of HYPR-LR will likely be dependent on 97 

the specific imaging task. In addition, as the noise reduction provided by HYPR-LR will be dependent on 98 

the number of counts in the composite (i.e. its temporal duration) relative to the frame of interest,1,2 it 99 

will provide the greatest benefit when the composites are made using as long an integration time as 100 

possible without introducing any bias. If composite images are shorter than this, they will provide no 101 

increased benefit in terms of reduced bias, and if they are made larger than this the additional noise 102 

improvements gained will come at the cost of bias. 103 

In this work, we aim to develop an optimized implementation of HYPR-LR that can be tailored to 104 

individual PET studies such that it will provide the greatest reduction in variance while minimizing bias 105 

introduced by the algorithm, and to closely evaluate the performance of HYPR-LR processing in the 106 

context of quantitative kinetic analysis. We attempt to fulfill these aims using a combination of 107 
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simulated and real human data of a tracer of interest to us, [11C]-Pittsburgh compound-B (PIB). [11C]-PIB 108 

is amenable to analysis using a number of techniques, including Logan graphical analysis,5 a data driven 109 

method with a well-known noise-dependent bias,6-8 and simplified reference tissue model (SRTM) 110 

methods,9 which are model based and not sensitive to bias.10-12 The basis function implementation of 111 

SRTM, so called receptor parametric mapping (RPM or RPM2), is regarded as more robust than the 112 

Logan method with respect to both variance and bias.9 We examine the effects of our proposed 113 

implementation of HYPR-LR processing on both the bias and precision of non-displaceable binding 114 

potential (BPND) estimates obtained with both Logan graphical analysis and RPM2. We do this in the 115 

context of parametric image generation, as single voxel analysis will be the most sensitive to noise. 116 

Simulated data are used to illustrate the trade-off between bias and variance in absolute terms where 117 

the truth is known, and human data are used to illustrate the algorithm’s properties in the context of a 118 

real imaging task. While we focus on two analysis methods for [11C]-PIB data here, we also intend to 119 

provide a framework for determining the optimal implementation of HYPR-LR for a given imaging task 120 

that can be generalized to other tracers and analysis methods. 121 

II. THEORY 122 

All of the formulations of HYPR make use of a temporally summed composite image in a dynamic set 123 

of images to provide a low-noise estimate of the true image at an individual time frame. This composite 124 

is weighted by a low resolution spatial comparison of each frame and the composite image. In the case 125 

of HYPR-LR, the spatial comparison is achieved by convolving the frame of interest and the composite 126 

image with a filtering kernel: 127 
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where Ht is the HYPR-LR estimate of an individual frame at time t, Ct is the composite image used for 129 

time t, Wt is the weighting image, It is an initial reconstruction of the frame, F is the filtering kernel and 130 
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  represents the convolution operation. When images are sparse, as they are in angiography, so long 131 

as two objects with different temporal behaviors do not overlap in the filtering process, they will be 132 

perfectly reproduced.2 Unfortunately, in non-sparse images, such as those in PET, regions with different 133 

temporal behavior will invariably overlap in the filtering process, potentially creating a bias. This bias will 134 

manifest itself at high-frequency boundaries since the weighting image is formed by a low-frequency 135 

comparison. 136 

The only way for the HYPR-LR estimate of a PET frame to be perfectly accurate is if the contrast 137 

between objects present in an individual frame is the same as the contrast between those objects in the 138 

frame’s composite image. Failing this, errors at high-frequency boundaries will depend on the difference 139 

in contrast between neighboring regions and the size of the kernel used (Fig. 1). 140 

Quantitatively accurate application of HYPR-LR to PET data may still be possible because of the 141 

predictable behavior of PET tracers. This predictable behavior can be used to form composite images 142 

that more closely fulfill our criteria of having the same contrast between objects as their corresponding 143 

frames, and our proposed optimized implementation of HYPR-LR for PET data attempts to achieve this. 144 

We divide a typical tracer’s behavior into three phases: uptake, specific retention, and equilibrium. 145 

Immediately after a tracer’s injection, during the brief uptake phase, the activity in all regions will be 146 

increasing at a relatively constant rate. As a tracer is retained in regions of specific avidity, these regions 147 

begin to distinguish themselves from the background in a predictable manner. Finally, the tracer will 148 

reach a time of equilibrium, known as t*, the attainment of which is required for application of graphical 149 

analysis methods and after which the image changes very little.6,7,13,14 Fig. 2a illustrates these behaviors 150 

for [11C]-PIB for different regions of the brain. A composite image could thus be formed for the uptake 151 

and equilibrium phases by summing all the frames in these phases. A sliding composite could be used 152 

during the retention phase such that the change in contrast is nearly linear for the frames used, creating 153 

a composite very similar to the individual frame being processed.  154 
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The formation of the composite images can thus be described as: 155 
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Note that t denotes frame, not time. The phases of the study are demarcated here by tuptake, the frame at 159 

which the uptake phase ends, t*, the frame at which the steady state begins, and tmax, the final frame of 160 

the study. The parameter  determines the number of frames to be used in the sliding composite during 161 

the specific retention phase, and t is the duration of frame t. It is also important to note that data 162 

should not be decay corrected so that each frame is weighted based on counts in its contribution to the 163 

composite image. Decay correction is applied after HYPR-LR processing. 164 

The temporal parameters in Eq. 2 must be determined from the data to be analyzed. We propose 165 

doing this on a region of interest (ROI) level. Specifically, ROIs should be drawn over structures in the 166 

image, and the ratios of neighboring structures must be examined. More emphasis can be put on 167 

structures of relevance. We illustrate this here with the parietal cortex and its surrounding structures in 168 

the case of a real [11C]-PIB dataset (Fig. 2b). The parameters tuptake and t* can be determined by 169 

identifying the end of the flat uptake phase and the start of the flat equilibrium phase, respectively.  is 170 

more arbitrary, and we propose selecting a value such that the composite image is 10 to 20 minutes (5-7 171 

frames) in duration for a typical PET imaging study. The frames at the beginning and end of the 172 

retention phase will largely determine the size of , and  should be made as large as possible while 173 

keeping the contrast in the composite images for these frames as close as possible to the contrast in the 174 
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frames themselves. This process could be performed for individual patients, or for a general population 175 

for whom a tracer’s temporal behavior is relatively consistent. 176 

The size of the kernel, F, used in the formation of the weighting image is the other parameter which 177 

must be determined. The size of the kernel will determine the degree to which regions with disparate 178 

temporal behaviors overlap and contribute to bias, and also determine the spatial frequencies of 179 

individual frames that effectively take on the noise properties of their composite images. If our 180 

composite scheme is implemented correctly and the contrast between objects in individual frames and 181 

their respective composites is nearly the same, overlap between regions should contribute little to 182 

temporal errors. A larger kernel should thus be desirable, as it will suppress noise at a wide range of 183 

spatial frequencies. In this work, the largest kernel used was a 3-D Gaussian with a FWHM 184 

approximately double the resolution of the scanner, 9 mm in this case. If the composite images do not 185 

match their respective frames, a relatively small kernel should be used to limit bias. The smallest kernel 186 

use in this work was a 3-D Gaussian with a FWHM of 3mm, close to the thickness of the cortex, the 187 

primary object of interest for [11C]-PIB. We evaluate the effects of different kernel sizes as outlined in 188 

our methods. 189 

Our proposed method of forming multiple composite images will itself be limited in a number of 190 

respects. For one, it will likely not be possible to perfectly fulfill our criterion of having composite images 191 

having the same contrast between objects as in their respective frames. However, so long as there is not 192 

substantial bias introduced into multiple frames, having a few frames slightly biased by imperfect 193 

composite images should not affect kinetic analysis a great deal. Secondly, not all dynamic PET studies 194 

will be amenable to our particular method of forming composites described in Eq. 2, for example tracers 195 

with a washout phase. Finally, using shorter composite images will of course increase the variance in 196 

individual frames, and in parametric images as well. Nevertheless, the ratio of the activities of 197 

neighboring regions should at least be examined to provide insight into what time-series data will 198 
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produce composite images with contrasts between objects close to the contrasts between those objects 199 

in the respective frames. We believe this will allow for the maximum benefit in terms of variance 200 

reduction while minimizing bias for a given PET tracer and imaging task. 201 

III. METHODS 202 

III.A.  Creation of Numerical Phantoms 203 

As HYPR-LR uses data in both space and time to provide an estimate of each voxel value in time-204 

series PET data, a realistic spatial distribution of time activity curves (TACs) must be used for simulated 205 

data. The spatial and temporal distribution of added noise must also reasonably represent what would 206 

be expected in a PET acquisition. We created spatial distributions of TACs using the Zubal brain 207 

phantom, 15 and TACs from a human [11C]-PIB acquisition. The [11C]-PIB TACs used were taken from a 208 

[11C]-PIB positive human scan acquired at our center over 70 minutes with 5x2 minute and 12x5 minute 209 

frames. ROIs were drawn over the frontal cortex, parietal cortex, occipital cortex, temporal cortex, white 210 

matter, and cerebellum on a temporally summed image (Fig. 2).  The resulting temporal patterns were 211 

used to create a noise-free dynamic image set by impressing the TAC values into their corresponding 212 

regions in the Zubal phantom image. 213 

A PET acquisition on an ECAT HR+ scanner was then approximated using published performance 214 

information about the scanner model.16,17 Data were first resampled to voxel sizes of 2.2x2.2x2.45mm, 215 

and then smoothed with a 4.39x4.39x5.10 mm3 full-width-at-half-maximum (FWHM) Gaussian to 216 

approximate the resolution of the scanner. The activity distributions in the smoothed noise-free 217 

phantoms were converted into expected counts by multiplying by factors for decay correction, frame 218 

duration, and voxel volume. Data in each slice were then forward projected at 160 angles spaced at 219 

1.125 degrees using MATLAB’s (The MathWorks®) 2-dimensional radon transform function (i.e. a 2 220 

dimensional acquisition). An attenuation map for each slice was created by assigning all voxels identified 221 

as bone in the Zubal brain phantom an attenuation coefficient of bone, and all voxels identified as other 222 
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tissues an attenuation coefficient of water at 511 keV. The attenuation map was then resampled to the 223 

same matrix size as the PET images, thus creating some voxels with intermediate attenuation 224 

coefficients, and forward projected at the same angles as the emission data. Each simulated emission 225 

sinogram was multiplied by its corresponding attenuation sinogram and the published sensitivity of the 226 

scanner. Scatter was not modeled, but the sinograms were multiplied by the expected scatter fraction 227 

for the amount of activity used in the simulation. While this does not accurately model scatter, it will 228 

reduce the counts in the simulated sinograms to a similar degree as a true scatter correction algorithm 229 

so that the added count-dependent Poisson noise is appropriately scaled. A noisy data value was then 230 

generated at each position in the resulting sinograms by generating a random number from a Poisson 231 

distribution with a mean equal the value of that position in the noise-free sinograms. The resulting noisy 232 

sinograms were reconstructed with filtered backprojection (FBP) using a ramp filter with a cut-off at 233 

0.75 the Nyquist frequency after correcting for attenuation, and values in the resulting images were 234 

converted back to activity units (Bq/ml). Fifty noisy realizations of the same simulated [11C]-PIB dataset 235 

were produced in this way. The noise-free sinograms were also reconstructed with FBP to generate a 236 

standard to compare the HYPR-LR processed data to. FBP reconstruction was used as it is an analytical 237 

method that does not introduce any bias of its own, unlike iterative reconstructions like expectation-238 

maximization (EM) and maximum a posteriori (MAP). This will allow for a more thorough evaluation of 239 

the bias and variance properties of HYPR-LR that is not confounded by the tradeoff between bias and 240 

variance in the reconstruction itself. 241 

III.B.  Acquisition of Real Data 242 

Eight human [11C]-PIB datasets were evaluated to illustrate the potential of HYPR-LR to improve the 243 

kinetic analysis of real data. These datasets were selected as a representation of [11C]-PIB positive scans 244 

from approximately 150 human studies performed at our institution to date. All data were obtained in 245 

accordance with our human subjects research protocol approved by our institutional review board. 246 
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Briefly, the PET data were acquired using a Siemens HR+ scanner in 3-D mode (septa retracted). A five 247 

minute transmission scan was first acquired for attenuation correction, followed by a 70 minute 248 

dynamic emission scan initiated with a 30 second bolus infusion of radiotracer (518-585 MBq). The data 249 

were divided into 5x2 minute frames and 12x5 minute frames and reconstructed using a filtered 250 

backprojection algorithm using a ramp filter to a voxel size of 2.0x2.0x4.25 mm3 and corrected for 251 

random events, attenuation of annihilation radiation, dead-time, scanner normalization, and scatter 252 

radiation.  253 

III.C.  HYPR-LR Processing and Smoothing 254 

Both the real data and the simulated data were processed with HYPR-LR using either a full 255 

composite formed from all the data in the study (HYPR-LR-FC), or our proposed method of forming 256 

multiple composites (HYPR-LR-MC). The relevant temporal parameters for Eq. 2 were determined in the 257 

same manner demonstrated in Fig. 2. After examining the ratios of the activities of neighboring regions 258 

in both the simulated data and all the human datasets, we determined that the same temporal 259 

parameters could be used for all the data. Namely, tuptake was set at frame 3 (6 minutes),  was set to 2 260 

frames (5 frames total in the sliding window), and t* was set at frame 12 (40 minutes). To study the 261 

impact of kernel size, we used 3-dimensional Gaussian filtering kernels with a FWHM in each spatial 262 

dimension of three different sizes: 3, 6, and 9 mm. The 9x9x9 mm3 FWHM kernel was used to process all 263 

of the human data to examine both the maximum improvement in variance and the maximum bias to 264 

be expected from HYPR-LR processing. It is important to note that some protection against small 265 

numbers in the denominator of Eq. 1 must be implemented. We do this by setting all voxels in the 266 

blurred composite image whose values fall below 1% of the maximum of the unblurred composite image 267 

to zero. All voxels in the weighting image whose value includes a division by zero are also set to zero. 268 

Table 1 summarizes HYPR-LR terminology used frequently in this work. 269 
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Simulated and real data were also smoothed (after reconstruction) to provide a simple denoising 270 

method to compare HYPR-LR processing to. Both real and simulated data were smoothed with 3x3x3 271 

and 6x6x6 mm3 FWHM Gaussian kernels. Although not as sophisticated as other denoising techniques, 272 

smoothing either within or after the reconstruction process is still one of the most widely used denoising 273 

methods. And while the improvement in noise obtained with HYPR-LR processing comes from the 274 

composite image,2 we refrain from comparing HYPR-LR to simple filtering in the time domain as this will 275 

distort TACs by introducing temporal correlations. HYPR-LR processing does have the potential to distort 276 

TACs, but one of the explicitly stated aims of this work is to determine how to minimize such distortions.   277 

III.D.  Kinetic Analysis 278 

Parametric images of both the simulated and human data were created using the data driven 279 

reference region Logan graphical method and the model based RPM2 method. Logan graphical analysis 280 

is relatively easy to implement, assumes no particular model, and can provide reliable and robust BPND 281 

estimates when data are noise-free.7 However, when the data are noisy, as they are when single voxel 282 

analysis is performed, Logan estimates of BPND are beset by bias and variance.8 RPM2 is regarded as 283 

having more favorable properties than the Logan method with regards to both bias and variance,11,12 284 

and although it assumes a single tissue compartment model, it has proven to be an effective method for 285 

generating parametric images of [11C]-PIB studies.9 We focus on parametric images as single voxel 286 

analysis will be very sensitive to noise and loss of resolution. HYPR-LR processing could thus be of great 287 

benefit to parametric imaging as it improves noise without sacrificing spatial resolution. HYPR-LR 288 

denoising could also improve ROI analysis, but the benefits of the algorithm will diminish as ROI size 289 

increases and the effects of noise decrease.  290 

III.D.1  Logan Graphical Analysis 291 

Simulated and human data were evaluated with the reference tissue Logan graphical method,7 using 292 

the cerebellum as a reference region. For all [11C]-PIB data, a reference tissue efflux constant, k2REF, of 293 
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0.144min-1
 was used,5,18 and the equilibrium time, t*, was determined from the data and set at 40 294 

minutes. The distribution volume ratios (DVRs) generated at each voxel were converted to BPND values 295 

(BPND = DVR-1) to give a parametric image of the non-displaceable binding potential. For the simulated 296 

data, the parametric image generated from the noise-free FBP reconstruction was used as a standard 297 

parametric image to which all parametric images generated from the noisy simulated data were 298 

compared. The reference region Logan method is data driven and assumes no model, and therefore 299 

should be the least biased of any reference tissue method when there is no noise in the data. 300 

III.D.2.  Receptor Parametric Mapping (RPM2) 301 

Parametric images of the simulated and real datasets were also generated using the basis function 302 

implementation of SRTM using a fixed k2REF (RPM2).11,12 This method assumes that all TACs in the data 303 

can be fit to the simplified reference tissue model using Eq. 3a: 304 
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where CTAC(t) is the TAC, CREF(t) is the reference tissue TAC, 1 and K1’ are the influx rate constants for 308 

the TAC and the reference tissue, respectively,and k2 and k2REF are the efflux rate constants for the TAC 309 

and the reference tissue, respectively. RPM2 creates a set of exponential basis functions over a range of 310 

k2 values to simplify the fitting process. For the [11C]-PIB data, we used a k2minof 0.02min-1 anda k2maxof 311 

0.1min-1, with 50 basis functions. These minimum and maximum values for k2 were derived from non-312 

linear least squares fits to Eq. 3 of several ROI TACs from both real and simulated data. Our minimum k2 313 

value falls slightly above the value obtained from non-linear least squares fits to some of the data, but 314 

gives results that are most consistent when compared with the Logan results. After an initial fitting of 315 

each voxel in the image using Eq. 3, k2REFis fixed to the median k2REF value of all voxels with a BPND> 0 316 
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and a second fitting is performed. We concerned ourselves only with the BPND parametric images 317 

generated by RPM2. 318 

RPM2 requires that each frame be weighted by its duration and the total number of counts in the 319 

frame (without decay correction):11 320 

framein  counts Total

duration) (Frame
  Weight Frame

2

                 (4) 321 

The unprocessed data were weighted in this fashion, but a different weighting scheme is required for 322 

the HYPR-LR processed data, as the variance in each frame will no longer be determined by the number 323 

of counts in the frame, but by the number of counts in the composite image. The frames in the HYPR-LR 324 

processed data were therefore weighted as (again, without decay correction): 325 

compositein  counts Total

duration) (Composite
  Weight Frame LR-HYPR

2

               (5) 326 

Fits to the HYPR-LR-FC data will thus be uniformly weighted as the same composite is used for each 327 

frame. 328 

III.E.  Data Evaluation  329 

III.E.1. Bias and Variance in the Simulated Data 330 

We studied the impact of HYPR-LR processing on kinetic analysis methods in absolute terms by 331 

evaluating the bias and variance of the parametric images generated from the simulated data with the 332 

reference region Logan method and RPM2. The bias at each voxel in the parametric images was taken as 333 

the percentage difference between the mean voxel values over the 50 noise realizations and the voxel 334 

values in the reference Logan parametric image generated from the noise-free FBP reconstruction. Bias 335 

in the parametric image voxels can be described as: 336 

100  (%) bias x 



x

x
                           (6) 337 

where x is the mean voxel value over all noise realizations and x is the true voxel value. 338 
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The variance in the data was evaluated using the coefficient of variation (COV) at each voxel: 339 

x

x




cov

                   

(7) 340 

where x is the standard deviation of a voxel over all noise realizations. The mean bias and COV of all 341 

voxels in the parietal and frontal cortices is reported (11794 voxels). 342 

III.E.2  Evaluation of Human Data 343 

A ROI based kinetic analysis was used to evaluate bias in the parametric images of the human data. 344 

For each dataset, ROIs were drawn over the frontal and parietal cortex (regions of particular interest in 345 

[11C]-PIB scans) on temporally summed images. ROIs contained 2648 voxels on average (range 1150-346 

4385 voxels). The TACs from these ROIs were analyzed with the reference Logan graphical method with 347 

the same parameters described above to generate an average BPND value for the entire corresponding 348 

region. Over such a large region, the Logan estimates of the BPND should be relatively unbiased as there 349 

is little noise in the TAC and a single tissue compartment model is not assumed. These BPND values were 350 

thus used as a standard and compared with the BPND values from the same regions in the parametric 351 

images. In the ideal case, the BPND values taken from the parametric images will match the ROI Logan 352 

estimates exactly. A bias will appear as a deviation from unity in the slope of a linear fit to the data, or a 353 

deviation from zero in the y-intercept. 354 

The values of individual voxels in the parietal and frontal cortex of the parametric images generated 355 

with the reference Logan method and RPM2 were also compared before and after processing to give an 356 

indication of variance in the images. For each human [11C]-PIB dataset, the voxel values obtained with 357 

each method were plotted against each other and fit to a straight line. The Pearson correlation 358 

coefficient (r) of the resulting fits should provide an indication of the variance in the parametric images. 359 

The use of correlation between the results of two analysis methods to indicate variance assumes that 360 

the effect of noise in the time-series data on the BPND estimates is independent for Logan analysis and 361 
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RPM2. This approach therefore only gives a semi-quantitative estimate of the variance in the parametric 362 

images. The correlation coefficients obtained from each dataset were compared between the original 363 

data, smoothing with a 3x3x3 mm3 FWHM Gaussian, HYPR-LR-MC, and HYPR-LR-FC using paired t-tests. 364 

IV. RESULTS 365 

IV.A.  Evaluation Bias and Variance in the Simulated Data  366 

The simulated data were used as a means for illustrating the potential bias that HYPR-LR can 367 

introduce, and to precisely define the tradeoff between bias and variance when using the HYPR-LR 368 

algorithm in the context of quantitative kinetic analysis for parametric image generation. The noise-free 369 

simulated data give insight into the bias that can be introduced into TACs, and hence quantitative kinetic 370 

parameters, by HYPR-LR processing. In the case of the simulated [11C]-PIB data studied here, HYPR-LR-FC 371 

processing increases the BPND in regions of high uptake and decreases BPND in neighboring voxels with 372 

lower uptake, whereas the proposed method of multiple composite images (HYPR-LR-MC) introduces no 373 

obvious bias. This is seen in parametric images generated from the noise-free data with both the 374 

reference region Logan method and RPM2 (Fig. 3 a-f). The bias caused by HYPR-LR-FC is due to 375 

distortions in the TACs, which are eliminated with HYPR-LR-MC (Fig. 3 g). It is also interesting to note 376 

that RPM2 globally increases BPND values, particularly in the white matter. This may be due to the 377 

inappropriateness of the simplified reference tissue model for the white matter. 378 

Both HYPR-LR-MC and HYPR-LR-FC substantially improve the parametric images generated from the 379 

noisy simulated data with the reference Logan graphical method, both in terms of bias and variance. 380 

Greater reduction in both the noise-dependent Logan bias and the coefficient of variation of the binding 381 

potentials is achieved with larger filtering kernels (Fig. 4a). For example, HYPR-LR-MC with a 9x9x9 mm3 382 

FWHM Gaussian kernel reduces the mean bias in the frontal and parietal cortex from -37.1% to -0.21% 383 

and the average COV from 33.1% to 11.0%. HYPR-LR-FC with the same kernel further reduces the COV to 384 

6.37% and introduces a slight positive bias of 2.45%. This positive bias is consistent with what is 385 
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observed in Fig 3. The parametric Logan images generated from the HYPR-LR processed data compare 386 

very favorably with the images generated from the data that were smoothed with Gaussian filtering 387 

kernels. The 3x3x3 mm3 FWHM Gaussian smoothing reduces the average bias to -22.7% and the average 388 

COV to 29.5%, and the 6x6x6 mm3 FWHM Gaussian smoothing reduces the average bias to -24.6%, and 389 

the average COV to 10.0%. The bias in the data smoothed with the 6x6x6 mm3 kernel is due mostly to 390 

the substantial blurring of the data. 391 

HYPR-LR-MC and HYPR-LR-FC processing also reduce the variance in the parametric images 392 

generated with RPM2. The variance reduction provided by HYPR-LR-MC processing is not as great as in 393 

the Logan images, but it does provide an improvement while introducing little bias. Variance reduction 394 

increases as larger kernels are used and little additional bias is introduced (Fig. 4b). For example, the 395 

average COV is reduced from 16.6% to 14% following HYPR-LR-MC processing with the largest kernel 396 

used, while the average bias relative to the Logan BPND values rises from 1.2% to 3.73%. HYPR-LR-FC 397 

processing reduces noise more dramatically, but at the cost of introduced bias (Fig 4b). The tradeoff 398 

between bias and noise is closely related to kernel size for HYPR-LR-FC. When a 3x3x3 mm3 kernel is 399 

used, the average COV is reduced to 8.7% and average bias increases to 5.39%, and when a 9x9x9 mm3 400 

kernel is used, average COV drops to 5.37% and average bias increases to 11.4%. Simple smoothing does 401 

reduce the variance in the parametric images generated with RPM2 relatively well. Smoothing with the 402 

3x3x3 mm3 FWHM Gaussian reduces the average COV to 10.5% and creates a negative bias of -2.92% 403 

relative to the baseline of 1.2%.  404 

HYPR-LR can be used alongside simple smoothing to provide even greater noise reduction without 405 

any additional loss of spatial resolution. For example, smoothing with a 3x3x3 mm3 FWHM Gaussian 406 

followed by HYPR-LR-MC processing using a 9x9x9 mm3 Gaussian kernel reduces the average COV in the 407 

Logan parametric images to 7.19%, albeit while increasing bias to -6.98%, and reduces the variance in 408 

the RPM2 parametric images to 8.55% with a bias of -1.03%. 409 
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IV.B.  Evaluation of Human [11C]-PIB Data 410 

An illustrative example of parametric images generated from a human PIB dataset with both the 411 

reference region Logan method (Fig. 5 top row) and RPM2 (Fig. 5 bottom row) qualitatively 412 

demonstrates the relative tradeoff between noise and (in the case of the Logan method) bias reduction, 413 

and introduced bias from HYPR-LR processing or simple spatial smoothing. These images are consistent 414 

with the data presented from the numerical simulations. HYPR-LR-MC reduces the variance in both the 415 

Logan and RPM2 parametric images, though the variance reduction is notably greater for the Logan 416 

images. HYPR-LR-MC processing also globally increases the BPND values in the Logan images, indicating a 417 

reduction of the noise-dependent bias. HYPR-LR-FC provides the greatest reduction in variance for both 418 

the reference Logan method and RPM2 in exchange for a slight inappropriate enhancement of the 419 

contrast between white matter and the cortex. HYPR-LR-FC likewise reduces the noise-dependent Logan 420 

bias. Smoothing with a 3x3x3 mm3 FWHM Gaussian results in some improvement of the variance and 421 

bias of the Logan image, and qualitatively improves the variance in the RPM2 image to a similar degree 422 

as HYPR-LR-MC processing at the cost of some blurring. HYPR-LR processing can be done in addition to 423 

simple smoothing to further reduce variance. This is demonstrated in Fig. 5 with HYPR-LR-MC.  424 

To evaluate bias in the real data, the average BPND values of voxels in ROIs drawn on the frontal and 425 

parietal cortices of eight parametric images were compared with the standard BPND values of TACs 426 

obtained from the same ROIs using the reference Logan method. The results from the reference Logan 427 

parametric images show that HYPR-LR-FC and HYPR-LR-MC reduce both the bias and variance of the 428 

parametric image derived BPND values as the slopes of the linear fits approach unity and all the data 429 

points fall closely around their respective fits (Fig. 6). Simple smoothing also reduces some of the noise-430 

dependent Logan bias, but much less than the HYPR-LR processing methods. The results from the RPM2 431 

parametric images largely reflect what is seen in the simulated data. There appears to be little bias in 432 

the RPM2 images of the original data and the HYPR-LR-MC processed data. HYPR-LR-FC does introduce a 433 
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positive bias, seen in the increased BPND values and the increase of the slope of the fit from 0.97 to 1.1. 434 

Smoothing does not bias the slope of the fit, but it does reduce the y-intercept of the fit from 0.063 to 435 

0.028, and all of the smoothed BPND values fall slightly below the original values. 436 

Finally, we attempted to further study variance in the real data by plotting voxel values from Logan 437 

and RPM2 parametric images against each other. Assuming that noise in time-series data generates 438 

variance in the parametric images that does not perfectly co-vary between the Logan and RPM2 439 

methods, the correlation between the BPND values obtained with the two methods should provide an 440 

indication of variance. We do this here using the Pearson correlation coefficient. An illustrative example 441 

of voxels in the parietal and frontal cortex of the same data set shown in Fig. 5 indicates that HYPR-LR 442 

does provide a substantial increase in the correlation between BPND values derived from the different 443 

analysis methods (Fig. 7). When the correlation coefficients of all the [11C]-PIB datasets are compared 444 

following smoothing and HYPR-LR processing using paired t-tests, all of the denoising methods 445 

significantly increase the correlation between BPND values obtained with Logan analysis and RPM2 446 

(p<0.01) (Table 2). There is not a significant difference in the correlation coefficients between HYPR-LR-447 

MC and HYPR-LR-FC (p>0.05), but HYPR-LR-MC and HYPR-LR-FC both significantly increase the 448 

correlation over smoothing with a 3x3x3 mm3 Gaussian. Examination of the parametric images (Fig. 5) 449 

indicates that the lower correlation coefficient of the smoothed data is due mostly to the higher noise in 450 

the Logan parametric images. 451 

V. DISCUSSION 452 

HYPR-LR is a promising denoising technique for PET, and here we have attempted to illustrate its 453 

ability to improve the variance and bias of parametric images derived from kinetic analysis techniques. 454 

In order to maximize the improvement in variance and bias while minimizing the error introduced by 455 

HYPR-LR processing, we have proposed a method of forming multiple, time dependent, composite 456 

images (HYPR-LR-MC) that minimizes the difference of the contrast between objects in each frame of 457 
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the study and the frame’s respective composite image. Such an approach will provide less of an 458 

improvement in noise and introduce less bias than using all the frames in the study to form the 459 

composite image. It is also less arbitrary than the traditional approach of using a sliding composite 460 

window.1 461 

Bias introduced by HYPR-LR processing will be dependent on differences in contrast that do exist 462 

between frames of interest and their respective composite. In the case of the simulated and human 463 

[11C]-PIB presented here, HYPR-LR-FC  processing distorts TACs (Fig. 3g) and thus inappropriately 464 

increases the BPND values obtained with both Logan graphical analysis and RPM2 in regions of high 465 

uptake where they border regions of lower uptake, and decreases the BPND values of the surrounding 466 

voxels. This bias can be visualized in the parametric images generated from the noise-free simulated 467 

data processed with HYPR-LR-FC (Fig. 3), and can also be seen in the overestimated BPND values of the 468 

frontal and parietal cortices in the parametric images generated from the noisy simulated data 469 

processed with HYPR-LR-FC (Fig. 4), and in the BPND values of these same regions in the parametric 470 

images of the human datasets (Fig. 6). HYPR-LR-MC processing virtually eliminates the bias caused by 471 

HYPR-LR (Fig. 3), as it almost completely removes the noise-dependent Logan bias without 472 

overestimating BPND values, and introduces little bias into parameters obtained with RPM2 (Figs. 4 & 6). 473 

Bias can also be limited with HYPR-LR-FC if a smaller kernel size is used. In this work, the smallest kernel 474 

used was a Gaussian with a FWHM of 3x3x3 mm3, only slightly larger than the thickness of the cerebral 475 

cortex, our primary object of interest. For the simulated data studied here, HYPR-LR-FC with this size 476 

kernel performed particularly well when the data were analyzed with RPM2, only introducing slightly 477 

more bias than HYPR-LR-MC with a large 9 mm FWHM filtering kernel (5.39% versus 3.73%). HYPR-LR-FC 478 

with the smaller kernel size did not provide as much of a benefit to the data analyzed with the Logan 479 

graphical method, as BPND values are still relatively biased (Fig. 4). 480 
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Both methods of implementing HYPR-LR demonstrate an ability to reduce variance in the parametric 481 

images presented here. HYPR-LR-FC processing with a larger filtering kernel in particular substantially 482 

reduces the variance in parametric images generated with both the Logan graphical method and RPM2 483 

(Fig. 4, 5, & 7). This is not surprising, as each individual frame in a study is given the noise properties of 484 

the fully summed composite image. Processing with our proposed HYPR-LR-MC method reduces 485 

variance more substantially in parametric images generated with the Logan graphical method (Figs. 4, 5, 486 

& 7). HYPR-LR-MC also reduces variance in the parametric images created with RPM2, but more 487 

moderately, particularly in the simulated data (Fig. 4). The results from the real data are more promising 488 

and show that HYPR-LR-MC processing visually reduces the variance seen in the example parametric 489 

image (Fig. 5), and increases the correlation between BPND values obtained with the reference Logan 490 

method and RPM2 (Fig. 7 & Table 2). As expected, a larger kernel size results in better variance 491 

reduction with the HYPR-LR-MC algorithm while introducing little or no additional bias. A larger kernel 492 

likewise improves the variance reduction with the HYPR-LR-FC algorithm, but more bias is introduced as 493 

a result (Fig. 4). Using HYPR-LR-FC with a small filtering kernel may therefore be desirable in some 494 

applications. For example, when the simulated data are analyzed with RPM2, HYPR-LR-FC with a smaller 495 

kernel still achieves good variance reduction (from 16.6% to 8.7%) while introducing little bias, as 496 

discussed above.  497 

In this work, we have compared HYPR-LR processing to simple spatial smoothing. While many other 498 

denoising methods have been developed, spatial smoothing, either within image reconstruction or 499 

afterwards, remains one of the most common ways to control noise in PET data. In addition, the 500 

processing time required for HYPR-LR will not be substantially longer than the time required to spatially 501 

smooth each frame, as processing time will largely be determined by the number of convolution 502 

operations that must be performed. In this work, the number of convolutions required for HYPR-LR-MC 503 

processing is 1.6 times greater than spatially smoothing each frame. HYPR-LR processing compares very 504 
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favorably to smoothing when the data are analyzed with the reference Logan graphical method. HYPR-505 

LR-MC and HYPR-LR-FC control both bias and variance very well, whereas smoothing with the 3x3x3 506 

mm3 FWHM Gaussian only slightly improves the bias and variance, and smoothing with the 6x6x6 mm3 507 

Gaussian controls variance very well but introduces a substantial bias of its own because of excessive 508 

blurring (Fig. 4, 5, & 6). The improvements offered by HYPR-LR are less dramatic compared to simple 509 

smoothing when parametric images are created with RPM2. In the simulated data, smoothing with a 510 

3x3x3 mm3 FWHM Gaussian improves variance more than HYPR-LR-MC (10.5% versus 14.0%), though 511 

the smoothed BPND values are more biased relative to the unprocessed data as there is a loss of spatial 512 

resolution (Fig. 4). HYPR-LR-FC using a 3x3x3 mm3 Gaussian kernel does provide more variance reduction 513 

than simply smoothing with a 3x3x3 mm3 Gaussian (8.7% versus 10.5%) for a comparable amount of bias 514 

relative to the original data (Fig. 4), although the bias caused by HYPR-LR-FC is not due to any loss of 515 

spatial resolution. The human data are consistent with this, demonstrating that simple smoothing with 516 

3x3x3 mm3 FWHM Gaussian reduces the variance in the RPM2 images to a greater degree than HYPR-517 

LR-MC while only modestly blurring the data (Fig. 5 & 6). There is still substantial variance in the Logan 518 

images following smoothing with the 3x3x3 mm3 FWHM Gaussian, which is reflected in the lower 519 

correlation coefficient between the BPND values obtained with RPM2 and the Logan graphical method 520 

(Fig. 7). HYPR-LR processing can also be done in addition to simple smoothing to provide further 521 

reductions in variance in the parametric images without introducing any additional loss of spatial 522 

resolution (Fig. 4 & 5). 523 

In the future, HYPR-LR denoising must be considered more fully in the context of other denoising 524 

methods, for example wavelet denoising and iterative image reconstruction algorithms, including the 525 

numerous proposed approaches to 4-dimensional PET reconstruction, which have previously been 526 

explored as a means of improving kinetic analysis and parametric image generation.19-25 As HYPR-LR uses 527 

temporally integrated data to reduce noise, comparing it to denoising methods that likewise utilize the 528 
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time domain, such 4-D reconstructions, will be particularly important. Iterative reconstructions, wavelet 529 

denoising, and HYPR-LR have all demonstrated an ability to substantially reduce noise, but each also has 530 

drawbacks. A full comparison between HYPR-LR and these other denoising processes, explicitly 531 

examining the pros and cons of each, is beyond the scope of the current study and will likely depend on 532 

the specific imaging task. Furthermore, as demonstrated here with spatial smoothing, as a post-533 

processing technique that is fast and relatively simple to implement, HYPR-LR could easily complement 534 

these other denoising techniques. This is particularly relevant for performing HYPR-LR on OSEM 535 

reconstructions, which are now routinely done on both clinical and research scanners and provide some 536 

noise control themselves. 537 

In this work, we have shown that following HYPR-LR processing, Logan and RPM2 analysis perform 538 

quite comparably. After denoising the simulated data with HYPR-LR-MC and HYPR-LR-FC processing with 539 

larger filtering kernels, both the coefficient of variation and the bias are similar between the Logan 540 

method and RPM2 (Fig. 4). If anything, after HYPR-LR processing the greater bias is seen with RPM2 with 541 

little additional benefit in variance reduction. The human data confirm this, showing little bias in the 542 

BPND values obtained with either Logan analysis or RPM2 after HYPR-LR-MC processing, and greater bias 543 

in the RPM2 data following HYPR-LR-FC processing (Fig. 6). The level of variance in the parametric 544 

images generated from the human data with the two analysis methods also appears to be comparable 545 

following HYPR-LR processing (Fig. 5 & 7). In addition, we found the performance of RPM2 to be more 546 

variable and sensitive to user selected parameters. In particular, we selected a minimum k2 slightly 547 

greater than that predicted by some of the non-linear SRTM fits to the ROI TACs, and greater than the 548 

value previously reported for [11C]-PIB analysis.9 We also see a slight positive bias in the BPND values 549 

obtained with RPM2 in the simulations (Fig. 4). This might be because the assumption of a simplified 550 

reference tissue model does not adequately describe the kinetics of [11C]-PIB in this case.5  551 
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While our objective here is not to determine the best way to analyze [11C]-PIB data, the increased 552 

reliability and greater robustness seen with Logan analysis following HYPR-LR processing may prove 553 

valuable, as the Logan method is easy to implement, does not assume any particular model, and does 554 

not require imposing limits on the data, for example the range of k2 in RPM2. HYPR-LR processing does 555 

also improve the parametric images created with RPM2, albeit not as dramatically relative to simple 556 

smoothing. Presumably, HYPR-LR processing should also improve other data driven methods, such as 557 

the multi-linear regression methods that are not susceptible to a noise-sensitive bias but do exhibit 558 

greater variance than the Logan graphical method.26,27 Likewise, it should improve other model based 559 

methods like compartmental analysis. 560 

The results presented here demonstrate that both the proposed method for forming multiple time 561 

dependent composites and simply using all the frames in the composite formation may have value in 562 

different contexts. HYPR-LR-MC introduces minimal bias into the data, but the bias introduced by HYPR-563 

LR-FC is not that great in the data studied here, particularly when a smaller filtering kernel is used. And 564 

while HYPR-LR-MC certainly reduces variance, HYPR-LR-FC does so to a greater degree. When the focus 565 

is on relatively large regions of high uptake in [11C]-PIB data, HYPR-LR-FC appears to perform relatively 566 

well. However, we still urge caution in using all frames of the study for forming the composite image. In 567 

the case of [11C]-PIB, it appears as if the bias caused by HYPR-LR-FC results in greater contrast between 568 

structures in the brain. While such an image may be appealing to look at, it may be a misleading result. 569 

Bias caused by HYPR-LR will also likely be greater in studies that have greater contrast between areas of 570 

interest and their surrounding background, for example [11C]-raclopride or any of a number of tracers 571 

used to study tumor biology. It is clear that using HYPR-LR with composite images that have been 572 

formed in a way that accounts for the kinetic behavior of the tracer being studied can certainly provide 573 

an improvement in the variance of kinetic parameters while introducing very little bias. 574 
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While we have focused on the application of HYPR-LR processing to [11C]-PIB data, a tracer of 575 

interest in the neuroscience community, the approach that we have presented here should be 576 

generalizable to other tracers and other applications outside the brain. Indeed, the fairly detailed 577 

structure of the brain, and of the cortex in particular, provides a good means of testing HYPR-LR 578 

processing. HYPR-LR processing may prove particularly valuable for providing more detailed physiologic 579 

information on a smaller anatomical scale for cardiac and oncology applications of dynamic PET imaging. 580 

Not all tracers will follow the exact uptake pattern we have described, and the optimal composite 581 

scheme, including simply using a fully summed composite, will depend on the application. Nevertheless, 582 

examining the ratio of the activities of neighboring regions over time will still provide valuable insight as 583 

to how HYPR-LR can be applied to maximize variance reduction while minimizing introduced bias. 584 

VI. CONCLUSION 585 

HYPR-LR is a promising denoising technique for a number of medical imaging modalities, and we 586 

have previously demonstrated its potential for denoising dynamic PET data. In this work, we have shown 587 

that HYPR-LR processing can improve kinetic analysis techniques used for processing dynamic PET data, 588 

and we have introduced a method for forming multiple time-dependent composite images that 589 

minimizes the bias the HYPR-LR algorithm causes while maximizing the improvement in variance it 590 

provides. This implementation of HYPR-LR could thus improve the kinetic analysis of dynamic PET data 591 

without sacrificing accuracy. In addition, our comparison between Logan graphical analysis and RPM2 592 

before and after HYPR-LR processing provides a framework for testing the validity of HYPR-LR processing 593 

in the context of a given tracer and two methods of analysis. We envision HYPR-LR being particularly 594 

valuable in PET applications that suffer from high noise, such as PET scans requiring high spatial or 595 

temporal resolution, vulnerable patient populations who require less radiation dose, tracers used to 596 

screen large populations, and tracers utilizing unique but dosimetry limited radionuclides such as 124I 597 
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and 64Cu. HYPR-LR is a simple denoising tool, and our proposed method for its quantitatively accurate 598 

implementation could easily be implemented for different tracer behaviors, or for individual studies. 599 
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TABLES 670 

 671 

Term Definition 

HYPR-LR HighlY constrained backPRojection-Local Reconstruction  

Composite Image Temporally summed (i.e. time-averaged) image used in the 

estimation of individual frames in HYPR-LR processing 

Weighting Image Spatial comparison of an individual frame with its composite image 

used to weight the composite image 

F, Filtering Kernel The smoothing kernel used to make the spatial comparison between 

an individual frame and its composite image 

HYPR-LR-MC HYPR-LR with Multiple Composite images 

HYPR-LR-FC HYPR-LR with a Full Composite image (summed over all frames) 

 672 

 673 

  674 

 
Original Data Smoothed HYPR-LR-MC HYPR-LR-FC 

Mean Pearson-r 

(Range) 
0.62 (0.42-0.88) 0.71* (0.51-0.82) 0.94*

+
 (0.91-0.98) 0.93*

+
 (0.89-0.98) 

 

Table 2. The mean and range of Pearson correlation coefficients obtained from a linear fit to the voxel-

by-voxel comparisons of the reference region Logan method and RPM2 for each of the 8 human [11C]-

PIB datasets studied. The mean correlation coefficient was significantly improved with each of the 

denoising methods over the original data (*p<0.01). There was no difference between the two 

implementations of HYPR-LR (p>0.05), but they both increased the mean correlation coefficient more 

than simple smoothing (+p<0.01). 

Table 1. A summary of HYPR-LR terminology. 
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FIGURE CAPTIONS 675 

 676 

 677 

 678 

Fig. 3. Parametric images generated from the noise-free simulated data with either the reference 

region Logan graphical method (a-c) or RPM2 (d-f). RPM2 tends to overestimate BPND values in some 

regions, particularly the white matter. The parametric images generated from the data processed 

with the proposed method of forming composite images, HYPR-LR-MC (b&e), differ little from the 

parametric images generated from the unprocessed data (a&d). The parametric images generated 

from the data processed using HYPR-LR-FC (c&f) show greater contrast between the high uptake 

regions of cortex and the surrounding white matter. The biased BPND values seen with HYPR-LR-FC are 

due to changes in the TACs, demonstrated here for a small ROI (g). HYPR-LR-MC eliminates the bias in 

the TACs. 

Fig. 2. [11C]-PIB time activity curves (TACs) for regions of the brain from a [11C]-PIB positive human 

study (a), and the ratio of the activities of neighboring regions at each time point (b). The phases of 

the tracer’s temporal behavior can be used to form more appropriate temporally dependent 

composite images for HYPR-LR. (PAR = parietal cortex, FRT = frontal cortex, TMP = temporal cortex, 

OCC = occipital cortex, WM = white matter, CER = cerebellum). 

 

Fig. 1. Illustration of the errors HYPR-LR can cause. The original image in this case is uniform (a), but a 

region of high uptake is revealed in the composite image (b). As a result, the weighting image (c) is 

inappropriately blurred, creating errors in the HYPR-LR result (d). 
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Fig. 5.  An illustrative example of the effects of HYPR-LR processing on parametric images generated 

from a human [11C]-PIB data set.  The unprocessed data are predictably noisy and the Logan image (a) 

appears biased compared to the RPM2 image (f). HYPR-LR processing with a 9 mm FWHM Gaussian 

kernel improves the variance of both Logan and RPM2 parametric images (b,c,g,&h). HYPR-LR-MC 

processing results in parametric images that have more variance (b & g) than when all the frames of 

the study are used to form the composite (c & h), but they are also likely less biased. Spatial 

smoothing with a 3x3x3 mm3 Gaussian results in improved variance with a corresponding loss of 

spatial resolution (d & i). HYPR-LR processing can also be done following smoothing to provide a 

further improvement in variance without any additional loss of spatial resolution, demonstrated here 

with HYPR-LR-MC (e & j). 

Fig. 4. The relationship between bias and variance for the BPND parametric images generated from 

the noisy simulated data with the reference region Logan graphical method (a) and RPM2 (b).  The 

mean bias and coefficient of variation of voxels in the frontal and parietal cortices are shown for the 

parametric images generated from the original data, the data smoothed spatially with 3x3x3 and 

6x6x6 mm3 FWHM Gaussians, and for the data processed with HYPR-LR-MC and HYPR-LR-FC using 

smoothing kernels with either a 3 mm FWHM (open shapes), a 6 mm FWHM (half-open shapes), or a 

9 mm FWHM Gaussian (solid shapes). The mean bias and coefficient of variation following both 

spatial smoothing with a 3 mm FWHM Gaussian and HYPR-LR-MC and HYPR-LR-FC processing with a 

9 mm FWHM Gaussian kernel are also shown. 
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Fig. 7. Voxel BPND values obtained with the Logan graphical method and RPM2 plotted against each 

other from a representative [11C]-PIB study. The parametric images generated from the original data 

(a) are compared with those generated from the data smoothed with a 3x3x3 mm3 FWHM Gaussian 

(b), HYPR-LR-MC (c), and HYPR-LR-FC (d). The correlation between the two analysis methods, measured 

here with the Pearson correlation coefficient (r), gives an indication of the variance present in the 

parametric images. 

Fig. 6. BPND values obtained from ROIs drawn on the parametric Logan (a) and RPM2 (b) images 

compared with the BPND values obtained from the TACs of the same ROIs with the reference region 

Logan graphical method. Each point on the graphs represents the BPND from either the frontal or 

parietal cortex of one of the eight [11C]-PIB positive scans studied. Linear fits to the BPND values 

obtained using different types of processing are also shown with their corresponding equations  (      = 

original data,  _    = smoothed,       = HYPR-LR-MC,       = HYPR-LR-FC). A deviation of the slope from unity 

or a y intercept other than zero indicates the presence of a bias. 
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Figure 1 687 

 688 

Figure 2 689 



33 
 

 690 

Figure 3 691 
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Figure 4 693 
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Figure 5 695 
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Figure 6 697 
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Figure 7  699 
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