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inetic Modeling in Support
f Radionuclide Dose Assessment

aolo Vicini, PhD,* A. Bertrand Brill, MD, PhD,† Michael G. Stabin, PhD, CHP,† and
ldo Rescigno, PhD‡

In this review, we trace the origins of mathematical modeling methods and pay particular
attention to radiotracer applications. Nuclear medicine has been advanced greatly by the
efforts of the Society of Nuclear Medicine’s Medical Internal Radiation Dose Committee.
Well-developed mathematical methods and tools have been created in support of a wide
range of applications. Applications of mathematical modeling extend well beyond biology
and medicine and are essential to analysis is a wide range of fields that rely on numerical
predictions, eg, weather, economic, and various gaming applications. We start with the
discovery of radioactivity and radioactive transformations and illustrate selected applica-
tions in biology, physiology, and pharmacology. We discuss compartment models as tools
used to frame the context of specific problems. A definition of terms, methods, and
examples of particular problems follows. We present models of different applications with
varying complexity depending on the features of the particular system and function being
analyzed. Commonly used analysis tools and methods are described, followed by estab-
lished models which describe dosimetry along gastrointestinal and urinary excretory path-
ways, ending finally with a brief discussion of bone marrow dose. We conclude pointing to
more recent, promising methods, not yet widely used in dosimetry applications, which aim
at coupling pharmacokinetic data with other patient data to correlate patient outcome
(benefits and risk) with the type, amount, kind and timing of the therapy the patient
received.
Semin Nucl Med 38:335-346 © 2008 Published by Elsevier Inc.
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adioactivity

ithin a year of Roentgen’s discovery of x-rays, Becque-
rel discovered naturally occurring radioactivity and

utherford described the laws that govern the kinetics of
adioactive transformations. Human use of radioactivity be-
an immediately, and within a few years undesired radiation
ffects were noted and the need for measuring and monitor-
ng dose was recognized. The need for guidance on the safe
se of radiations led in 1928 to the formation of the Interna-
ional Commission on Radiation Protection (ICRP),1 which
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as since coordinated the worldwide development and dis-
emination of radiation-protection guidelines. The methods
nd procedures for calculating dose developed more rapidly
or externally administered radiations than for internally ad-
inistered radioactivity, which only later came into increas-

ng use. Internal dosimetry is inherently more complex, as
he radioactive source moves between organs, decaying and
ndergoing changes that influence the local and remote dose
istribution.

racer Models
adioactivity provided an important advantage because,
hen used in minute quantities, it was able to trace the fate of

abeled substances in an organism with exquisitely high sen-
itivity without perturbing the system. In general, a tracer is a
abel attached to a labeled substance (the tracee). The label
tracer) follows the labeled substance (tracee) because it has
he same mechanical or chemical or biological properties. In
hort, a tracer must have 3 fundamental properties: (1) it
ust have the same phenomenological properties of the tra-
ee, (2) it must be added to the tracee in a quantity that does
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336 P. Vicini et al
ot alter its behavior, and (3) it must be easily detected as a
eparate entity.

In a lighter tone, we mention an early example of the use of
racers. The fictional character Gian Burrasca,2 well known to
ll Italian children, suspects that the tasty soup his boarding
chool serves every Friday, is prepared by rinsing the dirty
ishes of the previous week; to make sure of it, he adds a few
rains of aniline to each dish he has eaten from in the last few
ays. Sure enough, the following Friday the soup is bright
ed! The Hungarian physicist George de Hevesy reported a
imilar anecdote in which he traced the leftover food at his
oarding house to hash served the following day.
More scientifically, in 1913 de Hevesy developed the

racer concept when he used the naturally occurring radio-
ctive element 210Pb (Ra D) as a tracer in chemistry studies,
nd in 1923 to trace the movement of 212Pb in plants and 1
ear later 210Bi in animals.3 When linked to biologically im-
ortant molecules by means of innovative radiochemistry,
hese radioactive isotopes served as tracers leading to new
nderstanding of physiological processes. For Hevesy’s pio-
eering studies, he was awarded a Nobel Prize in 1943. After
he discovery of artificially produced radioactivity in 1934 by
he Joliot Curies, a wide range of radioactive elements be-
ame available from the early cyclotrons, and they were used
n many pioneering biologically important investigations.

Tracers are labeled substances that are given in small
mount with respect to the native substance being studied.
he intent of the tracer experiment can be to learn about the
etabolism of the tracee, or to achieve diagnosis. The tem-
oral and spatial distribution of different tracers depends on
he nature of the nuclide and its attached compound, how it
nters the body, and the nature and state of the subject being
tudied. In particular for radiotracers, very small amounts of
racer are administered for diagnostic purposes, whereas
arger amounts are given for treatment planning, and ther-
py, the latter given with the intent to change the state of the
ystem for the patient’s benefit. A recent review of tracer
odels is provided in Cobelli and coworkers.4 In general,

ne can think of at least the following two classes of models in
erms of the applications for which they are to be put.

iological Kinetic Models
racer–tracee models can be considered a special case of
iological kinetic models. Generally, biological models are
sed to simulate and to predict the behavior of a biological
ystem in response to different changes in state: for example,
he administration of drugs or other interventions. The bio-
ogical applications can be very general, and the most com-

on application involves estimation of physiologically sig-
ificant parameters from limited data. Physiologically based
harmacokinetic models are an example application.5 In this
ituation, one continually adjusts the model (based on differ-
ntial or algebraic equations) until predictions and experi-
ental realizations agree, usually based on some predeter-
ined statistical criterion of goodness of fit and model

dequacy. The model is considered useful until discrepancies

ith additional data are noted, at which point the model can I
e revised. A model can also be used to simulate, ie, generate
ynthetic data that can be compared with expectations or
therwise obtained measurements.

osimetry Models
osimetry models can be construed as a further generaliza-

ion containing elements of both tracer models and biological
odels. The goal of models used for dosimetry studies is to

chieve statistically adequate agreement between the ob-
erved experimental data and model predicted results, with
he end result being useful in the calculation of radiation dose
stimates to organs of the body. In this case, one identifies
nd uses the simplest system representation that produces
uch results. In summary, the principal goal of biokinetic
odeling for dosimetry is to obtain the area under the time-

ctivity curve for all organs with measured and significant
ptake of the tracer. The time–activity curve would be ex-
ected to be different for different organs and different sub-

ects and is the primary source of information about absorbed
adiation in individual organs. The area under the time-ac-
ivity curve, defined as the integral of the time–activity curve
ver some fixed time (often from zero to infinity), provides
he number of disintegrations that have occurred in the mea-
ured region over the interval of integration, and is directly
roportional to the cumulative dose received there. The ac-
ual dose distribution, however, may be more complicated,
s the energy deposition patterns of different radiations may
eed to be taken into account. The integrals of the radioac-
ivity time courses of individual organ are thus a starting
oint for the dose transport modeling calculations, which
rovide measures of the absorbed dose. The Medical Internal
adiation Dose (MIRD) Committee of the of Society for Nu-
lear Medicine was established in 1966 to develop methods
or internal dose analysis, for their dissemination and to pro-
ide data on practices that influence their appropriate use in
atients. Much information on these developments is dis-
ussed elsewhere.6

Data on new tracers are usually obtained initially from
reclinical (ie, animal) experiments, followed by clinical ex-
eriments involving human subjects, occasionally supple-
ented by in vitro experiments that study specific parts of

he system. The methods for analyzing biokinetic data are
everal and vary from the (computationally) very simple to
ery complex. Simple methods include direct integration of
he observed data (which one may argue does not imply a
odel at all, but this depends on what the calculation is

upposed to provide) to linear or nonlinear regression anal-
sis of the data using an assumed functional form. More
omplex systems use compartment models to represent the
patho) physiology of the system and the related tracer bio-
istribution. In this case, the data are modeled by the solu-
ion to a system of differential equations, possibly nonlinear.
ompartmental models are one of the most commonly used
eans of formulating and analyzing data from nuclear med-

cine studies. MIRD Pamphlet 12 provides a comprehensive
iscussion of kinetic models for absorbed dose calculations.7
t discusses terminology, the general principles involved in
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Kinetic modeling in support of radionuclide dose assessment 337
ompartment modeling, with a series of examples. The dis-
ussions we present here on compartment models will use
he terminology promulgated in MIRD 12. Operationally,
ne seeks a model with as few compartments as are needed to
roduce results consistent with the data, and our experience

s that typically 2 to 3 compartments are sufficient. The
odel selection decision is often based on some parsimony

riterion such as the Akaike Information Criterion8 or the
ayesian Information Criterion.9 A noncompartmental ap-
roach is also possible, but the outcome of this approach is
ighly dependent on hypotheses regarding the system under
bservation, as others have shown. Alternative methods ex-
st, including integral equations methods, which we omit in
avor of more computationally tractable compartment mod-
ls. Next, we focus on historical and practical aspects of cre-
ting and analyzing models for use in analysis of radiation
racer dosimetry data.

Historical Development
ethodological Perspective

adioactive Disintegration
t can be argued that the first application of compartmental
odels was in physics, specifically to describe radioactive
ecay. A review of these models is available elsewhere.10 After
he discoveries and experiments by Becquerel,11,12 Ruther-
ord and Soddy,13,14 the law of radioactive decay has been
ormalized as

dX

dt
� �K · X(t) (1)

here X(t) is the quantity of radioactive substance present at
ime t. The integral solution of this equation is

X(t) � X(t0)e
�K(t�t0)

here X(t0) is the initial value of X(t) at time t0.
Thus, radioactive decay is modeled as a first order process,

nd this has been verified independently by several experi-
ental observations.

hysiology
enke and coworkers15 studied the phenomenon of nitrogen
bsorption by, and elimination from, the various tissues via
he lung and circulation. They measured the elimination of
itrogen in human subjects breathing pure oxygen; their re-
ults could be represented by the expression

Y � A(1 � e�kt)

here Y is the amount of nitrogen eliminated up to time t, A
s the total amount of nitrogen contained in the body at time
� 0, when the breathing of pure oxygen began, and k the

ogarithmic slope of the curve representing Y as a function of
ime.

Behnke and coworkers observed that the value of k de-
reases after the first 25 minutes; their explanation was that

he nitrogen is eliminated partly from the body fluid and h
artly from fatty tissues, simultaneously but with different
ates; during the first part of the experiment the nitrogen
limination from the body fluids is prevalent, whereas later
he elimination from fatty tissues prevails. A better descrip-
ion of the experiment is therefore given by a multiexponen-
ial function

Y � B(1 � e�k1t) � C(1 � e�k2t)

here B is the total amount of nitrogen contained in water,
nd C the total amount contained in fatty tissues, with A �
� C. In more modern terminology, we would call Y the

sum of two compartments”.

harmacology
n 1937, Teorell16,17 reported studies of the in vivo kinetics of
rugs after various modes of administration, where the idea
f compartment became a useful generalization of a state of a
ubstance characterized by both spatial localization and
hemical nature. As it is widely accepted, a multicompart-
ental model accounts for spatial heterogeneity by postulat-

ng the presence of different spatial locations where the sub-
tance distributes or is transformed. Teorell’s equations for
esorption, elimination, tissue uptake, and inactivation were
rst-order differential equations whose solutions describing
he amounts of drug in blood and tissue as function of time
re sums of exponential terms with constant coefficients.
his is of course not exclusive to compartmental systems:
ultiexponential decays can also be interpreted as a purely
ata-based descriptive approach, as others have pointed out

n distinguishing between “models of data” and “models of
ystem.”18

racer Kinetics
eorell’s work extended the idea of compartment from the
adioactivity problem (where it describes a set of particles all
ith the same probability of transformation) to the physical

nd physicochemical problem. In a 1938 paper, Artom and
olleagues19 presented a radioactive tracer study of the for-
ation of phospholipids as affected by dietary fat, in which

hey gave a more formal analysis than was provided before.
heir equations are also linear constant coefficient differen-

ial equations, and have been reviewed in detail elsewhere.10

In the intervening decades, applications of model-based
ata analysis have become widespread and far too many to be
ounted. Our intent here is only to provide a historical per-
pective on the origin of the related concepts and especially
n the initial intent of the pioneering work at the root of so
any current efforts in the fields of systems modeling in
uclear medicine, pharmacology, metabolism, etc.

ontinuous Distribution
n all examples we have shown so far, the entity under ob-
ervation, be it a tracer or a tracee, was supposed to be dis-
ributed among a number (small or large, but always finite) of
ompartments, each one of them characterized by a function
f time, extensive (mass) or intensive (concentration). This

ypothesis is certainly completely confirmed by the evidence
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338 P. Vicini et al
n the case of radioactive disintegrations, because we know
hat in a radioactive chain one nuclide is transformed into its
mmediate successor without any intermediate steps (at least
rom a macroscopic point of view). In the biological world,
he hypothesis of a finite number of compartments leads
requently, as we have shown above, to a reasonable descrip-
ion of the observed events, but there may be cases when this
pproximation is no longer valid. An obvious example is the
istribution of a drug in the plasma after an IV injection:
xcept when the elimination rate is very slow, there will
lways be a gradient of c(t) from the site of injection to the site
or sites) of elimination.

In general, to account for the nonuniform distribution of a
ubstance in an organ, the pertinent function c(t) should be
ubstituted by a function c(s,t), where s is a spatial coordi-
ate; s can be the one-dimensional coordinate along a narrow
essel, or a three-dimensional coordinate in a large organ. In
ny case, the differential equations used in the previous sec-
ions should be replaced by partial differential equation
hose solution and parameter estimation is in general quite
ifficult, except in some special cases when the contribution
f nonexchanging and exchanging vessels can be separated
hanks to the available data, eg, from multiple indicator di-
ution. Illuminating examples are described, for example, in
he work by Goresky.20

ompartment Models
efinition of Compartment

ormal definitions of “compartment” can be found in Shep-
ard,21 Sheppard and Householder,22 Rescigno and Segre,23

earon,24 Brownell and coworkers,25 Berman,26 Rescigno
nd Beck,27 Jacquez,28 Gùrpide,29 and Siri.30 Paraphrasing
hese authors, a compartment may represent either a physical
ocation where a substance resides or a specific chemical state
f the substance under study. Nuclear medicine examples
ary greatly in complexity. In positron emission tomography
inetic studies,31,32 18F-fluorodeoxyglucose (18F-FDG) and

8F-FDG-6P are different chemical entities which are both
hysically present in the intracellular space: as such, they are
epresented as two distinct compartments in kinetic models
f 18F-FDG studies. More complex models include the Ber-
an iodine kinetics model26 which contains thirteen com-

artments, of which eight comprise the thyroid space sub-
odel. The thyroid space is modeled with a delay chain of six

ompartments which represent the transition between rapid
nd slow clearance phases of iodine transport through the
hyroid. In the case of the thyroid, these transitions happen to
onstitute a chemical transformation in time and space.

ne-Compartment Model
or practical purposes, in tracer kinetics it is sometimes con-
enient to use the following operational definition33: “A vari-
ble x(t) of a system is called a compartment if it is governed

y a differential equation of the type
dx

dt
� �K x(t) � r(t), (2)

ith K constant.” The constant K, as we have seen in the
revious sections, may be the rate of radioactive disintegra-
ion, or the rate of elimination of a drug, or the probability of

particle passing from its present state to other possible
tates.10 The equation is formalized starting from observation
nd is usually confirmed by independent experimental evi-
ence, like we have mentioned above for biological mod-
ls.34-36 Of note, K is always constant in tracer systems if the
racee is in a steady state.

In general, moving beyond tracer kinetics, it is possible for
he rate K to be time varying, for instance in systems that are
haracterized by saturative behavior. In this case, the differ-
ntial equation is nonlinear and has the form

dx

dt
� �

Vm

Km � x(t)
x(t) � r(t). (3)

Such nonlinear systems can be handled only through nu-
erical integration. It is noteworthy to repeat that adminis-

ration of a tracer, by definition, “linearizes” the system, if the
racee is at steady state; in fact if eq 3 is valid for the tracee, the
racer equation is

dx∗

dt
� �

Vm

Km � x(t) � x∗(t)
x∗(t) � r(t) � r∗(t),

here x*(t) is the amount of tracer present and r*(t) is its rate
f recirculation. But

Vm

Km � x(t) � x∗(t)
�

Vm

Km � x(t)

nd the right hand side ratio is constant at tracee steady state.
learly, if a compartment is at steady state the turnover time
f the tracee is constant; furthermore, tracer and tracee have
he same turnover time by definition.

Eq 2 is a conservation equation (ie, conservation of mass),
e, it states that the temporal variation dx/dt of the quantity
(t) present in the compartment is the difference between its
ate of entry r(t) and its rate of exit. This is in addition to the
rst order hypothesis. When comparing models such as this
o data, the amount of substance in an organ cannot be di-
ectly measured, however its concentration may be available.
oncentration values may be calculated by dividing both

ides of eq 2 by an appropriate value for V, the volume of the
ompartment, providing

dc

dt
� �K c(t) �

r(t)

V
, (4)

here c(t) � x(t)/V is the concentration of the substance in
he compartment. Note that eq 4 is not a conservation equa-
ion, as has been discussed previously.37 Volume of distribu-
ion can be calculated using the equation

D

V �

c∗(0)
(5)
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Kinetic modeling in support of radionuclide dose assessment 339
here c*(0) is the extrapolated value of the concentration
ime curve at 0, immediately after a pulse dose. However, in
his case the initial volume of distribution V is not necessarily
he physical volume of the compartment, as has been dis-
ussed previously.37 Thus, the initial volume of distribution,
s defined by eq 5, cannot be considered an absolute phar-
acokinetic parameter.38

If we multiply and divide the first term of the right-hand
ide of eq 2 by V we get

dx

dt
� �VK · c(t) � r(t); (6)

here the extensive term VK is clearance, Cl.
Explicit integration of the differential equations to recon-

truct c(t) is only possible in very simple cases. However,
ven if we don’t have sufficient data to reconstruct the func-
ion x(t) or c(t), we can extract some partial information on
he system under study, as we shall show in the next few
ections.

In general, suppose that the substance or tracer under
tudy is distributed among n compartments, but only one of
hem can be sampled, and that its concentration c1(t), after a
olus administration there at time t � 0, can be approxi-
ated reasonably well by a sum of exponential functions;

hen

c1(t) � A1e��1t � A2e��2t � · · · � Ane
��nt

hich is also the general solution to some n-compartmental
ystems characterized by linear kinetics.

odeling in Support
f Radiotracer Dosimetry
odel complexity ranges from early one compartment stud-

es designed to test red blood cell membrane permeability to
a and K ions.39 Compartment models are adequate descrip-

ors, easily amenable to either analytical or numerical solu-
ion for such systems. Modeling of thyroid iodine metabolism
equires at least three compartments.40 Depending on the
pplication and the available data, 13 compartments were
eeded by Berman to analyze fundamental aspects of thyroid
ormone metabolism. When the system being studied is ex-
ended to include pregnant females, 22 compartments were
eeded to include radioiodine kinetics including maternal
etal exchange.41 Although explicit analytic methods are ad-
quate to calculate the system parameters for 1 to 3 compart-
ent systems, more complex models even for dosimetry usu-

lly require use of computer-based analysis tools and
umerical analysis, both for calculating model predictions
simulation) and estimating model parameters from data
identification). Given limited data from individual subjects,
atient specific model estimates derived from multicompart-
ent models assume default values for many, if not most of

he transport parameters. More recent techniques, such as
onlinear mixed effects models, could in principle help avoid
his problem, although they also tend to be quite computer

ntensive. i
Practical guidance on the design and analysis of experi-
ents using modeling approaches was given by Berman in a

eminal reference.42 In it, Berman discusses factors relating to
he type and class of models. The choice of models is based
n the intended purpose of the model (ie, to describe the
ata, describe the response of a system to a stimulus, simulate
he system, or to characterize changes in the system). The
rticle outlines how computers can be used to obtain best fit
olutions to the defining equations. Analysis of plasma clear-
nce or whole body turnover data are used as examples in
ssessing the number of exponential terms, and hence the
umber of compartments needed to obtain a good fit to the
ata. Compartment models are then discussed in terms of
odel known and model unknown circumstances, with a
iscussion of the problems relating to the uniqueness of
odel solutions. Elsewhere, Berman shows how the equiva-

ence of results from properly analyzed compartmental and
oncompartmental data are essentially indistinguishable.43,44

i Stefano has also discussed elsewhere the properties of
ompartmental and noncompartmental systems and modes
f analysis, and the circumstances where such approaches
ay give comparable results.45,46

ompartmental Model Examples
e will now describe compartmental models of increasing

etail to illustrate the range of complexity that has been used
n radiation dosimetry in the analysis of medically significant
roblems from nuclear medicine.

1. A simple 3-compartment model (Fig. 1) was widely used
in studies to describe thyroid uptake and turnover.47

2. Johansson and coworkers48 extended the iodine model

igure 1 Schematic representation of a 3-compartment model for

odine metabolism.
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340 P. Vicini et al
to calculate dose to other iodine concentrating organs
as indicated in Fig. 2. See paper for rate constants and
“residence times.”

3. The metabolism of the different thyroid hormones was
described by Berman using an 11 compartment model
(Fig. 3).

4. The need for estimates of radiation dose to the mother
and fetus from large environmental releases of radioac-
tive iodine (Chernobyl accident), led Berkovski and
ICRP49 to promulgate a more complex model (Fig. 4).
Default values for many rates were chosen based on
expected normal values.

5. Iron kinetics processes and dosimetry in patients in a
MIRD publication in which a single model was used to
represent iron transport in normal and altered disease
states (Fig. 5).50 See reference for rate constants for
patients in different disease states.

6. Given interest in tumor dosimetry, a simplified model
(Fig. 6), has been adapted from ICRU 67.51

Computer software has been of paramount importance in
llowing the accurate numerical solution of physiologically
ealistic models and, at the same time, providing computa-

Figure 3 Schematic representation of a compartmental m
formed in the urine, plasma iodide, T3, and T4 compartm

igure 2 Schematic representation of a biokinetic model for oral
ntake of iodide.
also measured.
ional and statistical tools to fit such models to observations.
he SAAM software has arguably been one of the first contri-
utions in this area. In fact, the original motivation for the
AAM codes was provided by dosimetry studies. The original
AAM codes are still available using both the original com-
and line interface52 and a Windows-based interface termed
inSAAM.53 In addition, a completely reengineered pro-

ram allowing for solution and fitting of nonlinear compart-
ental models is available and is called the SAAM II
roject.54 Such software programs, among others, have al-

owed the modeling scientists to perform the rapid and accu-
ate calculation of amounts and rates of change in various
ocations of generally defined multicompartmental models.
t the same time, such modeling software provides general-
se tools to enforce conservation of mass and radioactivity
nd evaluate the total amount of radioactivity in groups of
ompartments and thus peripheral tissues of interest, eg, by
umming over multiple compartmental amounts. We will
iscuss the methodology behind these and other tools in the
emainder of this document.

imple Numerical Tools
sed in Routine Practice

t can be argued that the simplest measure of absorbed dose
elates to the integrals from zero to infinity of the time-activ-
ty curves of a given data set. When researchers obtain pre-
linical or clinical data, a number of simple tools and meth-
ds are often used to obtain those integrals.

irect Integration
ne can directly integrate under the actual measured values
y a number of methods. This does not give very much in-
ormation about the underlying system, but it does allow one
o calculate the number of disintegrations rather easily. The
ost common method used is the Trapezoidal Method, sim-
ly approximating the area by a series of trapezoids. An im-
ortant concern with this method is the calculation of the

ntegrated area under the curve after the last datum. If activity
s clearing slowly near the end of the data set, a significant
ortion of the total decays may be represented by the extrap-

for thyroid iodine metabolism. Measurements are per-
in addition, aggregates of the thyroid compartments are
odel
ents;
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Kinetic modeling in support of radionuclide dose assessment 341
lated area under the curve remaining after the last point. A
umber of approaches may be used to estimate this area. The
ost conservative is to assume that removal is only by phys-

cal decay after the last point; another approach is to calculate
he linear or logarithmic slope of the line using the last 2 or 3
oints, and assume that this slope continues until the reten-
ion curve crosses the time axis. This approach also assumes
hat the terminal logarithmic slope is unique and relates to
he rate constant(s) of the slowest compartment. No single
pproach is necessarily right or wrong—a number of ap-
roaches may be acceptable under different circumstances. It

s generally desirable to overestimate the cumulated activity
han to underestimate it, as long as the overestimation is not
oo severe. The important point is to clearly document what
as done. A thoughtful discussion of the various possible

pproaches to this problem was presented by Bass and co-
orkers.55

east Squares Analysis
n alternative to simple, direct integration of a data set is to
ttempt to fit smooth curves of a given shape to the data. The
urves are represented by mathematical expressions which can
hen be directly integrated. The most common approach is to

Figure 4 Schematic representation of a
Figure 5 Compartmental model for iron transport.
ttempt to characterize a set of data by a series of exponential
erms, as many systems are well represented by this form, and
xponential terms are easy to integrate. In general, the approach
s to minimize the sum of the squared distance of the data points
rom the fitted curve. The curve will have the form:

A(t) � a1e�b1t � a2e�b2t � · · ·

least-squares method looks at the squared difference be-
ween each point and the solution of the fitted curve at that
oint, and minimizes the sum of squared differences by tak-

ng the partial derivative of this expression with respect to
ach of the unknowns ai and bi and setting it equal to zero.
nce the best-fit estimates of ai and bi are obtained, the inte-

ral of A(t) from zero to infinity is simply:

�0

�
A(t)dt �

a1

b1
�

a2

b2
� · · ·

f the coefficients ai are in units of activity, this integral rep-
esents cumulated activity (the units of the bi are time�1). If

al-fetal model for iodine metabolism.
Figure 6 Simplified tumor model.
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he coefficients give fractions of the administered activity,
hen the area represents the normalized cumulated activity
eg, Bq-h/Bq). Many computational kinetic modeling tools
ave been developed that are in principle useful for comput-

ng pharmacokinetic parameters for calculating absorbed
ose in different tissues.56

ore Complex Computational Tools
he main limitation of the approach we have described pre-
iously is, as we have mentioned, that no additional informa-
ion is obtained about the system behavior except for infer-
nce directly based on the observations. This may be
ufficient when only an estimate of radiation dose to organs
n the body is desired. Under these circumstances, the use of

athematical models that summarize what is known about
he system behavior can be useful to infer the biodistribution
n inaccessible sites exclusively from information available in
bservable sampling sites. Such inference is an aspect of the
ngineering inverse problem,57 and the robustness and reli-
bility of predictions made in such sites can be tested based
n statistical and system identification methods and proce-
ures. Others have discussed in detail structural aspects of
odel identifiability and whether inference on remote com-
artments can be well posed, conditional on limited knowl-
dge on accessible sites.58

Least squares, and especially weighted least squares, have
een for many years the tool of choice for fitting multicom-
artmental models to data.59 The advantage of weighted least
quares is to provide a straightforward and formally accurate
ay to explicitly incorporate the knowledge (when available)

hat data points collected over time may be more or less
recise. Knowledge of the measurement error then shapes
he relative importance of the contribution of every residual
difference between model and data) to the overall weighted
um of squares. In addition, the statistical interpretation of
he data weights (proportional to the data measurement er-
or) allows for the accurate calculation of parameter confi-
ence intervals, now available in many modeling packages.
ther least squares approaches relax the assumption that the
eights are calculated conditional on the measured value.
xtended least squares approaches60 have also a natural in-

erpretation based on maximum likelihood, and use the pre-
icted value, as opposed to the measured value, to calculate
he weight for each residual in the weighted sum of squares.
his minimizes the impact of noisy and scattered measure-
ents on the calculation of the weights, and smoothes the

verall weighting scheme. Extended least squares methods
re also available in several modeling packages. Clearly, dif-
ering assumptions about the data weights have the potential
o return different parameter estimates.61,62 Thus, inference
ased on data are always conditional not only on the shape of
he curve, but also on the measurement error associated with
very data point on the curve.

Another factor that is relevant to the performance of pa-
ameter estimation methods is the temporal location of the
amples, together with their number. Loosely speaking, the

umber of samples is related to the number of compart- y
ents, or separate exponential terms, while their timing is
elated to the exponentials’ decay rates. Rapidly decaying
xponentials, for example, will necessitate frequent and early
ampling, while slowly decaying exponentials require fewer
nd more widely spaced measurements. These topics have
een studied extensively elsewhere, in quantitative physiol-
gy,59 pharmacokinetics63 and nuclear medicine.51,64

Population estimates of model rate constants and expo-
ures can be constructed by aggregating individual estimates
btained by repeated experiments in a number of individual
ubjects. Such aggregation can be performed by calculating
rithmetic means or medians, depending on the underlying
istribution and the availability of individual data. Individual
stimates must be available for this method to work. Another,
ore recent class of methods that has found extensive applica-

ion in pharmacokinetics, but not as much so far in radiation
osimetry, is the family of approximate maximum likelihood
ethods which is usually termed “population pharmacokinet-

cs.”65 This is a class of nonlinear mixed effects models that
xplicitly represents, in addition to the functional form of the
urve to be modeled, the probability distribution of its model
arameters in the population of interest. Such an approach
llows estimating population features with reasonable reli-
bility, even when individual estimates are not available, or
re extremely imprecise.66

The model building process uses the parameter estimation
ools that we have described to narrow the model space to the
ost parsimonious, but robust, structure that the data sup-
ort. This may start with a preliminary investigation of the
umber of exponentials in the system (for linear systems),
hich would dictate the number of compartments for initial
odel exploration. For systems which do not behave like

ums of exponentials, numerical integration techniques may
e employed to model the sample sites. Competing models
re then tested on the basis of the reduction in measurement
esidual variance that they provide, in addition to parsimony
riteria that penalize more complex models in favor of less
omplex ones. Against this background, physiological plau-
ibility must always be taken into account, and a physiolog-
cally plausible model should be considered superior to a
arsimonious, but oversimplified, one.

pecial Kinetic
odels Developed for
adioisotope Dosimetry Analyses
number of kinetic models have been developed to facilitate

ose calculations in several special cases. Often, models have
rogressed from simple to complex or from less detailed to
ore detailed, depending on the specific application and

heir intended use. An example of this is the Berkovski model
or iodine kinetics for pregnant women and children who
ad accidentally been exposed to radiation from the Cher-
obyl accident and how it incorporates parameters and struc-
ures from the basic Berman model. Below we describe a
eries of example models that have been developed over the

ears for some general applications.
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Kinetic modeling in support of radionuclide dose assessment 343
rinary Bladder
hort-lived radionuclide labeled small molecules are filtered
y the glomerulus and rapidly excreted; thus, kidney and
ladder modeling is important to describe the kinetics of
hese substances. When activity is excreted from the body in
he urine, the function that describes it usually consists of one
r more exponential terms. Fitting observed activity levels in
he urinary bladder is not helpful, because the bladder fills
nd empties repeatedly, and measurements are too infre-
uently gathered to characterize this time-activity curve. Ma-
erial leaving the body is most often governed by first order
rocesses, which mean that the retention (in the body) can be
xpressed as a function such as A · exp(�� t). Therefore, the
ime-activity curve for the bladder takes the form of A · (1 �
xp(�� t)), but the curve is periodically interrupted by void-
ng and goes to zero (or nearly zero) and then begins to
ccumulate again, as in Figure 7.

What is needed is a characterization of the values A and �
in real situations there may be more than one term in the
quation, but for now, let’s just consider one). In a particu-
arly ingenious derivation, Walt Snyder and colleagues67

howed that the number of disintegrations occurring in the
ladder could be given in such cases by a single equation:

N � A0�
i

fi�1 � e��iT

�i
�

1 � e�(�i��p)T

�i � �p
�� 1

1 � e�(�i��p)T�
Here, A0 is the initial activity entering the body, �p is the

hysical decay constant of the radionuclide, �i is the biolog-
cal removal constant for the fraction of activity fi leaving the
ody via the urinary pathway, and T is the bladder voiding

nterval, assumed to be constant. If we have all the activity in
he body passing out through the urinary pathway with a 1
our half-time, for example, our f would be 1.0 and � would
e 0.693/1 hour � 0.693 hour�1. Let’s say we have 40%
assing out through the gastrointestinal (GI) tract, and 60%
hrough the urinary pathway, with two-thirds of the urinary
learance having a half-time of 1 hour and one-third with a
alf-time of 10 hours. Then f1 would be 0.4 and �b1 would be
.693 hour�1, and f2 would also be 0.2 and �b2 would be

igure 7 The influence of urinary bladder voiding schedule is shown
n comparison with the urinary accumulation curve in the absence
tf voiding. (Color version of figure is available online.)
.0693 hour�1. These parameters are not particularly hard to
erive - one must either measure the total body retention or
he cumulative urinary excretion and fit a function, either of
he form A · exp(�� t) (in the former case) or A · (1 �
xp(�� t)) (in the latter case). Again, the equation may have
ore than one term, depending on the data observed. If there

s GI excretion, this complicates the use of whole body reten-
ion data, unless intestinal activity is somehow excluded from
he images. But in either case, the complication can be over-
ome by careful data gathering and inspection of the results.

astrointestinal Tract
ngestion is a common means of intake of radioactive mate-
ial, either through swallowing of material somehow intro-
uced into the mouth or through transfer of material from the
arious regions of the lung system to the throat and subse-
uent swallowing. A standardized kinetic model of the GI
ract was first proposed by Eve68 and was adopted by the
nternational Commission on Radiological Protection in
CRP Publication 30.69 Four sections of the GI tract were
efined (Fig. 8), having separate kinetics, with activity in
he contents passing through with standard rate constants.
he walls of the various sections and were treated as separate

arget tissues according to the ICRP 30 (Fig. 8) dosimetric
ystem. At that time, they were not assigned any specific
eighting factors for calculation of “effective dose” quanti-

ies, and were treated, if significant, as ‘remainder’ tissues in
his calculation. In more recent recommendations of the
CRP, however, segments of the GI tract have been assigned
pecific risk weighting factors. A more detailed and realistic
odel has been recommended recently by the ICRP, named

he Human Alimentary Tract (HAT) model (Fig. 9). This
odel has more compartments, includes some nonfirst order

inetic components, models age-dependent compartment

igure 8 The components defining the pathways influencing the
ose to the GI tract in the ICRP 30 model.69
ransfer rates, treats liquid and solid materials differently, and
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alculates doses to segments of the HAT not previously con-
idered.70

one Marrow
one marrow is a highly radiosensitive, rapidly turning over
ematopoietic organ. The red marrow is distributed through-
ut the different regions of the skeleton in a fashion that
aries with age.71 When increased uptake of radioactivity is
oted in bone marrow-containing regions, different methods
ave been used to separate the marrow content from super-

mposed activity in the surrounding bone, adjacent and sur-
ounding blood vessels.72,73 Given the number and location
f vertebrae sampled, one then estimates the fraction of total
one marrow contained in those sites based on reference man
istribution values.71 The need for bone marrow dose esti-
ates derives from interest in estimating risk of stochastic

ffects (diagnostic exposures) and of deterministic effects
therapeutic exposures). These measures are also important
o the physician in planning and evaluating effects of admin-
stered therapy. When the tumor-involved marrow site has
een invaded by tumor, the dose to these measured regions
onveys a desired effect. Lower concentrations of activity in
lood which circulates through uninvolved regions convey a

ower dose to normal marrow. Given an estimate of the frac-
ion of marrow that is occupied by tumor, the dose to those
egions is estimated directly from the measured uptake and

igure 9 The components defining the pathways influencing the
ose to the different segments of the GI tract are defined in the new
CRP Human Alimentary Tract Model (HAT) model.70
he dose to the remaining fraction of the marrow is based on
lood contributions. Compartment models can be used to
ompute marrow dose weighting these two contributions
sing the modeling tools described earlier, in particular by

nterrogating and then summing over time the contributions
f several compartments in the model, even those that are not
irectly amenable to measurement.
When uptake is not visualized in the marrow, the most

ommonly-used method measures the amount of activity in
he blood as a function of time, and assumes that the uptake
n marrow can be related to the activity in blood:

[Amarrow] � [Ablood] � RMBLR

here [Amarrow] is the concentration of compound (assumed
n this publication to be a monoclonal antibody) in the mar-
ow, [Ablood] is the concentration of the agent in the blood or
erum, and RMBLR is the red marrow to blood cumulated
ctivity ratio. One expression of this, used by many was pro-
osed by Sgouros74:

[Amarrow] � [Ablood]
RMECFF

(1 � HCT)

Here, RMECFF is the vascular and ECF volume in the
arrow, and HCT is the patient hematocrit. The “working”

alue for the RMECFF was suggested to be 0.19. Other au-
hors75 have adapted this method to other agents, assuming
ifferent values for the RMECFF.

onclusions
n this short, and by necessity incomplete, review of mathe-
atical models that have been used or can be used in dosim-

try applications we have attempted to cover ground both on
he methodology and the applications. We have tried to
riefly review the origins of existing methodology for com-
artmental modeling and parameter estimation, at the same
ime attempting to review other, more recent methodological
evelopments that could be useful in future applications of
osimetry. We have also listed example models and calcula-
ions, so as to provide the reader with an overview of the
readth of kinetic model applications in dosimetry. It is
robably worthwhile to remind the reader that the model
uilding process is only in part facilitated by the ready avail-
bility of large computational power and accurate and easy to
se modeling software. By and large, the definition and ap-
lication of these models remains, to a large extent, an art
orm, whose practitioners remain few and far between. The
ackground of these scientists spans a tremendous range,
rom physics to biology, and engineering and computer sci-
nce. The variety of model applications we have listed and
he impact these models continue to have on the practice of
osimetry gives testimony to their creativity and ingenuity.
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