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Abstract
Extensive use of models in pharmacology, in physiology and in radiotherapy
raises some questions on the nature and utility of models in general and of
compartmental models in particular. In this paper I will define in a simple
and logical way a set of useful pharmacokinetic parameters and show how
their estimation depends on the assumed model. A special problem arises
when some parameters are not identifiable; in that case I will show how it is
possible to determine a range for them. Two examples are used to illustrate
how to compute the value of the identifiable parameters and the range of the
non-identifiable ones, when the available experimental data are not sufficient
to identify a model.

1. Introduction

Pharmacokinetics is the study of the adsorption, distribution, metabolism and elimination of
exogenous substances. These processes are described by means of a number of parameters,
among which are clearance, turnover time and volume of distribution. Other parameters, such
as permanence time and exit time, are not frequently used, and some of the used parameters,
such as volume of distribution at steady state, are often presented with strict limitations as
to model specification, for instance with the assumption of elimination only from the central
compartment. It is not surprising to find confusion surrounding the use of these parameters,
given the lack of agreement on how to calculate them and how to interpret the outcome of those
calculations (Hearon 1963, Bergner 1966, Rescigno and Segre 1966, Berman 1971, Jacquez
1972, Gùrpide 1975, Rescigno 2003).

In this paper I will show how to define in a simple and logical way a set of useful
pharmacokinetic parameters, and how their estimation depends upon the assumed model. The
approach will be through a compartmental model, with one or two compartments, as well as
with a general n-compartmental model.
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A non-compartmental approach is also possible, but the outcome of this last approach is
of course highly dependent on some other hypotheses regarding the system under observation.
I will also show with two examples how the experimental data can be used to get the maximum
possible information compatible with the chosen model.

2. Compartments

2.1. Definition of compartment

The first author to use the term compartment was probably Sheppard (1948): “There are
numerous instances in biological and chemical research where multiple compartment systems
are encountered. This is undoubtedly true in other fields as well. In such a system, real
compartments may exist whose contents are homogeneous and which are separated from one
another by real boundaries. However, the concept may be generalized so that a substance,
such as a chemical element, can be considered to be in a different compartment when it is in
a different state of chemical combination.”

Sheppard and Householder (1951) later made this concept more precise: “In isotope
studies compartments may be regions of space in which the absolute specific activity . . . is
uniform.”

Gùrpide (1975) suggested the use of the term pool instead of compartment, “to avoid the
purely spatial implication that might be assigned to the latter term”; despite its evident merits,
this suggestion has not generally been followed.

For a more detailed introduction to the concepts of compartmental analysis see the paper
‘The rise and fall of compartmental analysis’ (Rescigno 2001).

For all practical purposes, it is convenient to use the operational definition
(Rescigno and Beck 1972): “A variable x(t) of a system is called a compartment if it is
governed by a differential equation of the type

dx

dt
= −Kx(t) + r(t), (1)

with K constant.” The constant K may be the rate of radioactive disintegration, or the rate of
elimination of a drug, or the probability of a particle passing from its present state to other
possible states. In some cases that equation may be arrived at by observing the behaviour of
an experimental system, in other cases by induction, but always it must be accepted only if the
hypotheses incorporated into the model equations are eventually confirmed by the experimental
observations (Bergner 1962, Zierler 1981, Rescigno and Beck 1987).

Of course other definitions are possible, and have been used; sometimes one talks about
a ‘nonlinear compartment’, or its special case ‘Michaelis-Menten compartment’, meaning
a variable x(t) governed by a nonlinear differential equation. Since nonlinear differential
equations are not easily tractable and there are no general solutions for them, I will limit the
discussion to compartments as defined operationally by equation (1).

2.2. Solution of the compartmental equation

Observe that equation (1) is simply a conservation equation, i.e., it states that the variation
dx/dt of the quantity x(t) present in the compartment is the difference between its rate
of entry r(t) and its rate of exit. Furthermore a fundamental hypothesis is declared by
equation (1), that the rate of exit of the substance from the compartment is proportional to the
amount present; this implies that the process causing this exit is a process of order one.
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Usually we cannot measure the amount of substance in an organ, but only its concentration,
therefore sometimes it may be convenient to transform equation (1) by dividing both sides by
V, the volume of the compartment, to get

dc

dt
= −Kc(t) +

r(t)

V
, (2)

where c(t) = x(t)/V is the concentration of the substance in the compartment. From a
physical point of view, there is an important difference between equations (1) and (2); in
fact this last one cannot be viewed as a conservation equation, because the concentration is
not a conserved quantity; besides, r(t)/V has the somewhat unusual dimension [L−3MT −1],
not a flow rate. Nevertheless from a mathematical point of view equations (1) and (2) are
formally identical, and any solution of equation (1) can become a solution of equation (2) by
substituting c(t) for x(t) and r(t)/V for r(t).

If we multiply and divide the first term of the right-hand side of equation (1) by V we get

dx

dt
= −V Kc(t) + r(t). (3)

This form of the one-compartment equation may seem awkward, because it mixes amount
and concentration in the same equation, but it is interesting from two points of view; first, it
shows that the quantity x(t) is conserved, second it shows that the quantity eliminated per unit
time is the product of two quantities, one intensive, c(t), the other extensive, V K , as in all
fundamental equations of physics. Now this last quantity is clearance, Cl, and equation (3)
leads to a very interesting conclusion, as I will show later.

The integral of equation (1) is

x(t) = e−Kt

(
x(0) +

∫ t

0
eKτ r(τ ) dτ

)
, (4)

where x(0) is the amount of substance present in the compartment at the initial time.
Expression (4) is useful only when r(t) has a very simple form, as shown in the first two
cases described below.

2.2.1. No recirculation, single-bolus administration. If the substance is administered as a
single bolus at time t = 0 and there is no recirculation, then r(t) ≡ 0 and the integral of
equation (1) becomes

x(t) = x(0) e−Kt , (5)

where x(0) is the amount of substance administered as a bolus. Expression (5) can be
transformed logarithmically into

log(x(t)) = log(x(0)) − Kt,

showing that log(x(t)) is a linear functions of t.
From a plot of log(x(t)) versus t we can determine the value of K.

2.2.2. No recirculation, constant infusion. If the substance is administered by constant
infusion and there is no recirculation, then r(t) ≡ r ≡ constant, and the integral of
equation (1) becomes

x(t) = r e−Kt

∫ t

0
eKτ dτ = r

K
(1 − e−Kt ).

Observe that

lim
t→∞ x(t) = r

K
,
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therefore

lim
t→∞ x(t) − x(t) = r

K
e−Kt ,

and again a logarithmic transformation shows that log(limt→∞x(t)−x(t)) is a linear function
of t.

In this case, too, we can determine the value of K from a plot of log(x(∞) − x(t))

versus t.

2.2.3. Single-bolus administration, recirculation possible. This is an important case where
we cannot use expression (4) because function r(t) is generally unknown, but we can get some
information using directly equation (1).

Let us perform a thought experiment. We feed the compartment with an infusion at a
constant flow rate; after a sufficiently long time, a steady state xss is reached when the rate of
infusion plus the rate of recirculation is equal to the rate of elimination Kxss; we can write

amount of drug present

rate of elimination
= xss

Kxss
= 1

K
,

but the ratio between the amount present and its rate of elimination is the time elapsed for
eliminating an amount of substance equal to the amount present; this time does not depend on
r, and it is called the turnover time of the compartment; its inverse K is the turnover rate.

In an actual experiment, we can measure x(t) and dx/dt at a number of time intervals
after a bolus administration; even if function r(t) is unknown, we can certainly say that
limt→0r(t) = 0, therefore from equation (1) we get

lim
t→0

−dx/dt

x(t)
= K

and from a number of experimental values of −dx/dt divided by x(t) we can extrapolate the
value of K, the turnover rate.

2.3. Initial volume of distribution

If the concentration of a compartment is uniform, the volume of that compartment is the ratio
between the amount of substance present and its concentration.

Consider a simple pharmacokinetic experiment. If a substance is injected as a bolus
in a compartment at time t = 0, call D the amount of substance administered and c(t)

its concentration there at time t. If we ignore the short interval of time necessary for the
substance to distribute uniformly in the compartment, then by extrapolation for t → 0 we get
an approximate value of the concentration in the compartment if the mixing were instantaneous.
Call c∗(0) this extrapolated value; the ratio D/c∗(0) is called initial volume of distribution
(see figure 1).

Several observations are necessary at this point. The ratio

V = D

c∗(0)
(6)

is not necessarily the physical volume of the compartment, even though it has the dimension
of a volume. There may be several reasons for this discrepancy; for instance, the substance
may be bound to some other organs before being distributed in the sampled organ, or
the mixing may never be complete. The initial volume of distribution, as defined by
expression (6), cannot be considered an absolute pharmacokinetic parameter (Rescigno 1997)
because its value depends on the hypotheses of rapid and complete mixing, only rarely satisfied,
and upon the site of sampling. Nevertheless if, when repeating the experiment with a different
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Figure 1. Determination of the initial volume of distribution.

dose D, the concentration c(t) changes in the same proportion, then the ratio in (6) does not
change, and we can say that the quantity V is an invariant, i.e., it is constant under some
changes of the defining quantities D and c∗(t) within certain limits. It can thus be used to
predict the values of function c(t) under different administration regimens.

2.4. Two-compartment model

For simplicity we consider two compartments with a single-bolus administration in
compartment one only. The equations are

dx1

dt
= −K1x1 + k21x2,

dx2

dt
= +k12x1 − K2x2 (7)

with the initial conditions

x1(0) = D, x2(0) = 0.

In those equations K1 and K2 are the turnover rates of compartments 1 and 2, respectively,
while k12 and k21 are the fractional transfer rates from compartment 1 to compartment 2, and
vice versa, respectively. For the conservation of matter, they must necessarily be

0 � k12 � K1, 0 � k21 � K2. (8)

The integrals of the above differential equations are

x1(t) = x0

β − α
[(K2 − α) e−αt + (β − K2) e−βt ], x2(t) = x0k12

β − α
[e−αt − e−βt ]

where α and β are the roots of the ordinary equation

x2 + (K1 + K2)x + K1K2 − k12k21 = 0,

provided α �= β, which is always true if both k12 and k21 are not zero.
In the special case k12 = 0, the substance cannot reach the second compartment, therefore

x1(t) = D e−K1t , x2(t) ≡ 0.

In the other special case k21 = 0, the substance cannot return from compartment 2 to
compartment 1 and the differential equations become

dx1

dt
= −K1x1,

dx2

dt
= +k12x1 − K2x2
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whose integrals are

x1(t) = D e−K1t , x2(t) = Dk12

K2 − K1
[e−K1 t − e−K2 t ]

provided K1 �= K2. In the special sub-case K1 = K2, the integrals are

x1(t) = D e−K1t , x2(t) = Dk12t e−K1t .

Returning to the general case, instead of solving the differential equations (7) we integrate
all their terms from zero to infinity;

x1(∞) − x1(0) = −
∫ ∞

0
K1x1(t) dt +

∫ ∞

0
k21x2(t) dt

x2(∞) − x2(0) = +
∫ ∞

0
k12x1(t) dt −

∫ ∞

0
K2x2(t) dt .

If the system is open, i.e., if no substance will remain in the compartments after a sufficiently
long time, then x1(∞) = x2(∞) = 0; using the initial conditions and exporting the constants
from the integrals,

K1

∫ ∞

0
x1(t) dt − k21

∫ ∞

0
x2(t) dt = D, k12

∫ ∞

0
x1(t) dt − K2

∫ ∞

0
x2(t) dt = 0.

Those are ordinary linear equations in the two quantities
∫ ∞

0 x1(t) dt and
∫ ∞

0 x2(t) dt ; the
solution is ∫ ∞

0
x1(t) dt = DK2

K1K2 − k12k21
,

∫ ∞

0
x2(t) dt = Dk12

K1K2 − k12k21

or, with some elementary transformations,

1

D

∫ ∞

0
x1(t) dt = 1

K1

1

1 − γ
,

1

D

∫ ∞

0
x2(t) dt = k12

K1

1

K2

1

1 − γ
(9)

where

γ = k12k21

K1K2
.

Observe that k12/K1 is the fraction of substance leaving compartment 1 that enters
compartment 2, while k21/K2 is the fraction of substance leaving compartment 2 that enters
compartment 1, therefore γ is the fraction of substance recirculated. If there is no recirculation,
γ is zero, and in that case

1

D

∫ ∞

0
x1(t) dt = 1

K1
,

where 1/K1 is the time spent by the substance in compartment 1, i.e., its turnover time. If
there is recirculation, we can write

1

1 − γ
= 1 + γ + γ 2 + γ 3 + · · · ,

i.e., one plus the fraction of substance going a second time through the compartment, plus
the fraction going through it a third time, and so forth; this expression is equal to the average
number of times the substance goes through the compartment; we shall call it the turnover
number. By multiplying the turnover time 1/K1 by the turnover number we get the time spent
by the substance in all its passages through the compartment; we will call it the permanence
time.
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Thus the first of expressions (9) can be written as

1

D

∫ ∞

0
x1 dt = turnover number × turnover time = permanence time.

The second of expressions (9) is the permanence time of the second compartment
multiplied by the term k12/K1, i.e., the fraction of the amount of substance D that actually
reaches the second compartment. If we call this last quantity the yield from compartment 1 to
compartment 2 we can write

1

D

∫ ∞

0
x2 dt = yield × turnover number × turnover time = residence time.

2.5. Multi-compartment models

The results of this last section can be generalized to a system of an unspecified number of
compartments.

Observe that Kixi(t) is the amount of substance leaving compartment i per unit time,
while Kixi(t) dt is the amount of substance leaving compartment i in the interval from t to
t + dt, therefore the integral from 0 to ∞ of this last quantity is the total amount of substance
leaving compartment i at any time. If we divide this integral by the amount of substance D
initially given to this compartment we have the average number of times the substance goes
through the compartment, i.e., its turnover number,∫ ∞

0 Kixi(t) dt

D
= νi.

The numerator of the above expression cannot be computed, but by exporting the turnover
rate Ki we get

1

D

∫ ∞

0
xi(t) dt = νi

Ki

= Ti,

i.e., the permanence time, interval of time spent by the substance in all its passages through
the compartment.

3. Exit time

Consider now the ratio∫ ∞
0 tKixi(t) dt∫ ∞
0 Kixi(t) dt

.

In the integral at the numerator there is the amount of substance leaving compartment i
in the interval from t to t + dt times the instant t of this event; the ratio of the two integrals
is therefore the average time when the substance leaves the compartment; we call it exit time
from compartment i, �i. Dividing numerator and denominator by the turnover rate and by the
volume of the compartment Vi (Rescigno and Gùrpide 1973)

�i =
∫ ∞

0 txi(t) dt∫ ∞
0 xi(t) dt

=
∫ ∞

0 tci(t) dt∫ ∞
0 ci(t) dt

. (10)

Observe that �i is not the interval of time spent by the substance in the system, as stated
by some authors, except in the very restrictive case when the measured substance is eliminated
only from the sampled compartment; it is rather the time when the measured substance leaves
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the sampled compartment for the last time. Furthermore it is very important to remember that
when making the simplification∫ ∞

0 tKixi(t) dt∫ ∞
0 Kixi(t) dt

=
∫ ∞

0 txi(t) dt∫ ∞
0 xi(t) dt

(11)

we assume that Ki is a constant, i.e., that it does not depend upon xi(t) and t. If this is not the
case, equality (11) ceases to be valid.

3.1. Consequences of non-homogeneity

If a system is not homogeneous it cannot be described as a compartment; in equation (1) the
coefficient K is not a constant and the simplification shown in identity (11) is not valid any
more; in that case the ratio (10) cannot be called ‘exit time’.

This fact becomes more apparent with a simple example. Consider a pool formed by just
two compartments, say i and j and call xi(t) and xj (t) the amount of substance in those two
compartments, with

xi(t) + xj (t) = x(t).

The correct exit time from the two separate compartments is given by

�i =
∫ ∞

0 tkioxi(t) dt∫ ∞
0 kioxi(t) dt

=
∫ ∞

0 txi(t) dt∫ ∞
0 xi(t) dt

, �j =
∫ ∞

0 tkjoxj (t) dt∫ ∞
0 kjoxj (t) dt

=
∫ ∞

0 txj (t) dt∫ ∞
0 xj (t) dt

and from the pool of the two compartments by

�i,j =
∫ ∞

0 t (kioxi(t) + kjoxj (t)) dt∫ ∞
0 (kioxi(t) + kjoxj (t)) dt

,

where kio and kjo are the respective fractional rates of exit of the substance from the two
compartments out of the pool. The rates kio and kjo are generally unknown, together with the
separate values of xi(t) and xj (t), therefore we cannot compute any of the three quantities
�i,j , �i, �j; we can only compute the quantity

�∗
i,j =

∫ ∞
0 tx(t) dt∫ ∞
0 x(t) dt

=
∫ ∞

0 t (xi(t) + xj (t)) dt∫ ∞
0 (xi(t) + xj (t)) dt

and call it the apparent exit time from the pool of compartments i and j.
By simple arithmetic manipulation we can show that

Min(�i,�j ) � �i,j � Max(�i,�j ), Min(�i,�j ) � �∗
i,j � Max(�i,�j )

where Min(�i,�j ) and Max(�i,�j ) mean the smaller and the larger of the quantities in
parenthesis, respectively.

If we now compute the difference between the true and the apparent exit time from the
pool, after some simplifications we find

�i,j − �∗
i.j = (kio − kjo)

(∫ ∞

0
txj (t) dt

∫ ∞

0
xi(t) dt −

∫ ∞

0
txi(t) dt

∫ ∞

0
xj (t) dt

)

therefore the apparent exit time and the true exit time coincide when the two compartments
have the same exit time or the same fractional rate of exit. When this is not the case, the true
exit time will be larger than the apparent one when the compartment with the larger exit time
has the smaller fractional rate of exit, and vice versa.

In conclusion, without any hypothesis on the compartmentalization of a system, we can
only say that the ratio in (10) is an approximation of the exit time, and the approximation
depends on the disuniformity of the concentration of the substance inside the system.
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4. Steady-state volume of distribution

The steady-state volume of distribution, Vss, is defined as the ratio between the total amount
of observed substance inside the system, Qss, and its concentration, css, in the sampling
compartment,

Vss = Qss/css.

The ratio between the steady-state volume and the initial volume of distribution is called
the dilution factor, δi (Mordenti and Rescigno 1992)

δi = Vss/Vi.

The importance of the dilution factor is that it allows one to determine, albeit
approximately, the amount of a substance present in an organism when only its concentration
in a particular organ is measurable.

If only one compartment is present, obviously the steady-state volume coincides with
the initial volume, and the dilution factor is 1. We shall examine separately the case of two
compartments, of many compartments, and of a non-compartmentalized system.

4.1. Two compartments

We return now to the two-compartment model of section 2.4. In equations (7) K1 and K2 are
the turnover rates of the two compartments, while k12 and k21 are the transfer rates from 1 to 2
and from 2 to 1, respectively. Those constants are called the microparameters of the system.
We write the integral of those equations in the form

x1(t) = a11 e−λ1t + a12 e−λ2t , x2(t) = a21 e−λ1t + a22 e−λ2t (12)

where the parameters λ1, λ2, a11, a12, a21, a22 are called the macroparameters of the system.
They are determined by the following equations:

λ1 + λ2 = K1 + K2, λ1λ2 = K1K2 − k12k21, a11 + a12 = D,

a11λ1 + a12λ2 = DK1, a21 + a22 = 0, a21λ1 + a22λ2 = −Dk12.
(13)

If only compartment 1 has been sampled, i.e., if x1(t) is known but not x2(t), then we
can determine the macroparameters λ1, λ2, a11, a12, and using the first four of equations (13)
we can compute the microparameters K1 and K2 and the product k12k21, but not k12 and k21

separately. From those four equations we get

K1 = a11λ1 + a12λ2

a11 + a12
, K2 = a11λ2 + a12λ1

a11 + a12
, k12k21 = a11a12(λ1 − λ2)

2

(a11 + a12)2
,

and using inequalities (8),

k12k21

K2
� k12 � K1,

k12k21

K1
� k21 � K2,

thence
a11a12(λ1 − λ2)

2

(a11 + a12) · (a11λ2 + a12λ1)
� k12 � a11λ1 + a12λ2

a11 + a12
,

a11a12(λ1 − λ2)
2

(a11 + a12) · (a11λ1 + a12λ2)
� k21 � a11λ2 + a12λ1

a11 + a12
.

(14)

If the initial concentration, c1(0), of the substance in compartment 1 has been measured,
then we can compute the volume, V1 of that compartment,

V1 = D/c1(0).
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Now suppose that the substance is fed continuously into compartment 1 at a constant rate
r; when a steady state is reached, the differential equations become

−K1x1 + k21x2 = −r, +k12x1 − K2x2 = 0

and their solution is

x1 = K2r

K1K2 − k12k21
, x2 = k12r

K1K2 − k12k21
.

Thus, at steady state we have

x1 + x2

x1
= K2 + k12

K2

therefore

Vss = x1 + x2

x1/V1
, δ = Vss

V1
= K2 + k12

K2
.

Using inequalities (14) we can now write

(a11 + a12)
(
a11λ

2
2 + a12λ

2
1

)
(a11λ2 + a12λ1)2

� δ � (a11 + a12)(λ1 + λ2)

a11λ2 + a12λ1
.

The above inequalities can also be written in the form

(a11 + a12)
(

a11

λ2
1

+ a12

λ2
2

)
(

a11
λ1

+ a12
λ2

)2 � δ �
(a11 + a12)

(
1
λ1

+ 1
λ2

)
a11
λ1

+ a12
λ2

but,

a11 + a12 = x1(0),
a11

λ1
+

a12

λ2
=

∫ ∞

0
x1(t) dt,

a11

λ2
1

+
a12

λ2
2

=
∫ ∞

0
tx1(t) dt

therefore, ∫ ∞
0 tx1(t) dt

/∫ ∞
0 x1(t) dt∫ ∞

0 x1(t) dt/x1(0)
� δ � 1/λ1 + 1/λ2∫ ∞

0 x1(t) dt/x1(0)
.

Thus the minimum value of δ is the time of exit from compartment 1 divided by the
permanence time in the same compartment; the maximum value of δ is the sum of the two
time constants of the system divided by the permanence time in the first compartment.

The ratio of those two values is a measure of the uncertainty of our knowledge of the
behaviour of the subject under investigation when the substance or tracer will be administered
by continuous infusion or by repeated doses. The closer that ratio is to 1, the better we can
estimate how much substance or tracer is present in the body for a particular steady-state
systemic concentration.

4.2. Many compartments

Suppose that the substance or tracer is distributed among n compartments, but only one of
them can be sampled, and that its concentration c1(t), after a bolus administration there at
time t = 0, can be approximated reasonably well by a sum of exponential functions; then

c1(t) = A1 e−λ1t + A2 e−λ2t + · · · + An e−λnt

=
n∑

i=1

Ai e−λi t .
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In general, i.e., with elimination from any compartment, we can write (Mordenti and
Rescigno 1992)

δ = Vss

V1
= time spent in the organism

time spent in the sampling compartment
or

δ = Vss

V1
= time of exit from the organism

permanence time in the sampling compartment
.

The time spent in the sampling compartment is its permanence time, T1; it is given by

T1 =
∫ ∞

0 c1(t) dt

c1(0)
=

∑n
i=1

Ai

λi∑n
i=1 Ai

. (15)

The time of exit from the sampling compartment is given by

�1 =
∫ ∞

0 tc1(t) dt∫ ∞
0 c1(t) dt

=
∑n

i=1
Ai

λ2
i∑n

i=1
Ai

λi

. (16)

The time spent in the organism is the time of exit, �system; in general it cannot be
calculated, but we can establish some boundaries to it. Its minimum value is obtained when
the elimination happens only from the central compartment; therefore

�system � �1 =
∑n

i=1
Ai

λ2
i∑n

i=1
Ai

λi

. (17)

Its maximum value is attained when the substance goes through all compartments once
without recycling and is eliminated by the last one of them; in this case the time spent in each
compartment is 1/λi, therefore

�system �
n∑

i=1

1

λi

. (18)

By dividing the extreme values of the exit time by the permanence time,∑n
i=1 Ai

∑n
i=1

Ai

λ2
i(∑n

i=1
Ai

λi

)2 � δ �
∑n

i=1 Ai

∑n
i=1

1
λi∑n

i=1
Ai

λi

.

4.3. Non-compartmental systems

Without a detailed knowledge of the distribution of the substance inside the system under
observation, we can only determine the permanence time and the exit time at the sampling
site, provided the system is linear and state-determined; therefore, we can compute a lower
bound for the dilution factor,

δ � �1

T1
= c1(0)

∫ ∞
0 tc1(t) dt(∫ ∞

0 c1(t) dt
)2 .

A better approximation of δ is obtained by using the apparent exit time from the system
instead of the exit time from the sampling compartment,

δ ≈ �∗
system

T1
= c1(0)

∫ ∞
0 tc1(t) dt∫ ∞

0 c1(t) dt
∫ ∞

0 x(t) dt
,

where x(t) is the total amount of substance or tracer in the system.
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5. Example of non-identifiable system

The following data are taken from a paper by Berman and Schoenfeld (1956) and elaborated
by Mordenti and Rescigno (1992).

After a bolus intravenous injection of labelled material, the quantity of radioactivity
in the blood was determined as a function of time; excreted radioactivity was also collected,
and the accumulated amount of tracer in the excreta was obtained as a function of time. Since
the tracer accumulated approached 100% of the amount of radioactivity initially injected, it
was assumed that the initial quantity injected minus that in the measured compartment and in
the collected excreta was equal to the amount of tracer in the remaining compartments of the
system. The experimental curves were fitted to a sum of exponentials,

c1(t)

c0
= 3

8
e−3t +

1

4
e−2t +

3

8
e−t ,

ctotal(t)

c0
= 1

4
e−2t +

3

4
e−t (19)

where c0 is the amount of radioactivity injected, c1(t) is the amount measured in the blood
at time t, and ctotal(t) the total activity in the body. For the purpose of this example the data
have been rounded to make the following derivations more apparent; the timescale in these
equations is arbitrary.

It is clear that the two functions (19) describe a three-compartment system. To
such a system correspond three linear first-order differential equations containing nine
microparameters (see section 4.1), but the experimental macroparameters contained in
functions (19) are only seven, therefore this system is not completely identifiable.

The permanence time in the blood, though, can be computed exactly from (15),

T1 =
3/8
3 + 1/4

2 + 3/8
1

3/8 + 1/4 + 3/8
= 5

8
.

The time of exit from the sampling compartment too can be computed exactly from (16),

�1 =
3/8
9 + 1/4

4 + 3/8
1

3/8
3 + 1/4

2 + 3/8
1

= 23

30
.

Without considering the data on ct, we can compute a lower and an upper bound for the
exit time, using (17) and (18),

3/8
9 + 1/4

4 + 3/8
1

3/8
3 + 1/4

2 + 3/8
1

� �system � 1

3
+

1

2
+

1

1
,

23

30
� �system � 11

6
,

then, dividing by the permanence time on the sampling compartment, we get, for the dilution
factor,

92

75
� δ � 44

15
, 1.227 � δ � 2.933,

a rather large interval.
Using the additional data for ctotal(t), we can compute a better approximation of δ; in

fact, the apparent exit time from the system, �∗
total, can be computed from the given equations

using (17),

�∗
total =

1/4
4 + 3/4

1
1/4
2 + 3/4

1

= 13

14

thence

δ ≈ 13

14
· 8

5
= 1.49.
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Table 1. Extreme values of some parameters of the compartmental system.

ε η k10 k20 k30 �total δ

−0.09 −0.1875 1.25 0 1 2.149 1.536
0.5625 0.375 1.25 1 0.5 3.792 2.208

An even better approximation is obtained by using the separate values of �1, �2 and �3

of the exit time from the three compartments of the system, as can be estimated from the data
available.

From the experimental data shown, the transfer rates of this system can be determined
with two degrees of freedom. Calling ε and η two arbitrary parameters, the rates of exit from
the three compartments are

k10 = 5

4
, k20 = 5

4
+

3

16η
− ε

2η
, k30 = 5

4
− ε

2η
.

Similarly the disposition functions of the three compartments are

c1(t)

c1(0)
= 3

8
e−3t +

1

4
e−2t +

3

8
e−t c2(t)

c1(0)
= −ε e−3t + η e−2t + (ε − η) e−t ,

c3(t)

c1(0)
=

(
ε − 3

8

)
e−3t − η e−2t +

(
3

8
− ε + η

)
e−t

and in operational form (Rescigno 2003)

{c1}
c1(0)

= s2 + 4s + 15
4

s3 + 6s2 + 11s + 6
{c2}
c1(0)

= (2ε − η)s + 4ε − 3η

s3 + 6s2 + 11s + 6

{c3}
c1(0)

=
(

3
4 − 3ε + η

)
s + 3

2 − 4ε + 3η

s3 + 6s2 + 11s + 6
.

The permanence time of compartment 1 does not depend upon ε and η, as seen before.
The actual exit time �t from the system will be the weighted average of the exit times

from the three compartments, the weights being their respective rates of exit; therefore,

�total = k10�1 + k20�2 + k30�3

k10 + k20 + k30
.

Table 1 shows the range of values of ε and η that give physically realizable solutions to
this compartmental system, the corresponding extreme values of the parameters k10, k20, k30,
and the resulting values of �total and δ.

6. The systems theoretical approach

6.1. Matrix equation

The compartmental equations can be written in the form

dX(t)

dt
= −X(t) · K + R(t) (20)

where

X(t) = (x1(t) x2(t) · · · xn(t))
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is the vector of the state variables xi(t) of the n compartments,

R(t) = (r1(t) r2(t) · · · rn(t))

is the vector of the feeding functions ri(t) of the compartments, and

K =




K1 −k12 · · · −k1n

−k21 K2 · · · −k2n

...
...

. . .
...

−kn1 −kn2 · · · Kn




is the matrix formed by the turnover rates Ki and by the transfer rates kij .

6.2. Integration of the matrix equation

The integral of this equation is

X(t) =
[

X(0) +
∫ t

0
R(τ ) exp(τK) dτ

]
exp(−tK), (21)

where X(0) is the value of vector X(t) at time 0, and by definition,

exp(−tK) =
∞∑
l=0

(−tK)l

l!
.

Without any loss of generality we can put

X(0) = 0

by redefining the state variables and the feeding functions; equation (21) becomes

X(t) =
∫ t

0
R(τ ) exp(−[t − τ ]K) dτ ,

or, with a more concise notation,

X(t) = R(t) ⊗ exp(−t K), (22)

where the symbol ⊗ means ‘convolution’.
In a typical pharmacokinetic experiment we can usually control only a limited number

of the n state variables, and only a few of them can be observed. Let us call F the vector of
the p input variables and G the vector of the q output variables. We define matrix A with the
product

F · A = R (23)

where the element of row i and column j of A is the weight of the input variable i on the state
variable j; we define B with the product

X · B = G (24)

where the element of row i and column j of B is the weight of the state variable i on the output
variable j.

We multiply on the right both sides of (22) by B and use (23) and (24) to get

G = F · A ⊗ exp(−t K) · B.

This expression shows that

A ⊗ exp(−t K) · B

is the transfer function of the system with input F and output G.
This notation is more general than the one more current in pharmacokinetics; instead of a

single input function and a single output function we shall use p input functions and q output
functions, as currently done in systems theory (Willems 1974).
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6.3. Generalization of the solution

The transfer function of this system does not change with the transformation

(A, B, K) → (AS−1, SB, SKS−1) (25)

where S is any n × n non-singular matrix. In fact,

A ⊗ exp(−tK) · B = AS−1S ⊗ exp(−tK)S−1S · B

= AS−1 ⊗ exp(−t SKS−1) · SB;
in other words the transformation (25), if it exists, defines a class of models consistent with
equation (20) but with a different matrix K.

6.4. Conditions for the existence of transformation (25)

Transformation (25) exists under the following conditions:

(a) Matrix S can be inverted,
(b) A · S−1 = A,
(c) S · B = B,
(d) S · K · S−1 is physically realizable.

Observe that

A · S−1 = A ⇒ A · S−1 · S = A · S ⇒ A = A · S,

S · B = B ⇒ S−1 · S · B = S−1 · B ⇒ B = S−1 · B;
matrix S · K · S−1 is physically realizable if all its non-diagonal elements are non-positive and
the sum of all elements of each line is non-negative.

6.5. Example

In a hypothetical experiment a substance has been administered as a unit bolus to the first
compartment; its amount has been measured as a function of time in the first compartment
and in the whole body. The results were given by the functions

x1(t) = −e−2t + 2(t + 1) e−3t , xtotal(t) = (3t + 1) e−3t . (26)

Three compartments are present (n = 3), one variable is controllable (p = 1), i.e., the
first compartment, and two variables are observable (q = 2), i.e., the first compartment and
the sum of the three compartments.

The input vector is

F = (δ),

where δ is the Dirac delta function, the state variable vector is

X = (x1(t) x2(t) x3(t)),

and the output vector is

G = (x1(t) x1(t) + x2(t) + x3(t)).

Matrices A and B are

A = (1 0 0), B =

1 1

0 1
0 1


 .
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Condition (b) requires that

(1 0 0) · S = (1 0 0),

therefore

S =

1 0 0

0 s22 s23

0 s32 s33


 ;

condition (c) requires that

S ·

1 1

0 1
0 1


 =


1 1

0 1
0 1


 ,

therefore

S =

1 0 0

0 α 1 − α

0 β 1 − β


 ,

where α and β are arbitrary real numbers; condition (a) requires that α �= β.
A possible solution of equations (26) can be obtained with conventional methods and

leads to matrix

K =

 2 −1 0

−1 3 −1
−1 −2 3


 .

The general solution is

SKS−1 =

1 0 0

0 α 1 − α

0 β 1 − β


 ·


 2 −1 0

−1 3 −1
−1 −2 3


 ·




1 0 0
0 1−β

α−β
α−1
α−β

0 −β

α−β
α

α−β


 ,

thence

SKS−1 =




2 β−1
α−β

−α+1
α−β

−1 −αβ+5α−β−2
α−β

α2−4α+2
α−β

−1 −β2+4β−2
α−β

αβ+α−5β+2
α−β


 . (27)

To satisfy condition (d) in the first row it must be that

β − 1

α − β
� 0, (i)

−α + 1

α − β
� 0; (ii)

in the second row,

α2 − 4α + 2

α − β
� 0, (iii)

α2 − αβ

α − β
� 0; (iv)
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Table 2. Coordinates of the rectangle ABCD.

α β

A 1 2 – √2

B 2 + √2 2 – √2

C 2 + √2 0

D 1 0

in the third row,

−β2 + 4β − 2

α − β
� 0, (v)

−β2 + αβ

α − β
� 0. (vi)

Observe that substituting α for β and β for α in matrix (27) is equivalent to switching
second and third columns and second and third rows in the same matrix; therefore the solution
for α < β will be the same for α > β, but with compartments 2 and 3 switched.

Consider the case

α > β.

Inequalities (i) and (ii) imply

β � 1, α � 1;
inequality (iii) implies

2 −
√

2 � α � 2 +
√

2;
inequality (iv) implies

α � 0;
inequality (v) implies

β � 2 −
√

2 or β � 2 +
√

2;
inequality (vi) implies

β � 0.

We can conclude that the acceptable values of α and β are included by the rectangle
ABCD whose coordinates are given in table 2.

To point A corresponds matrix

SKS−1 =



2 −1 0

−1 3 +
√

2 −1 − √
2

−1 0 3 − √
2


 ;

to point B corresponds matrix

SKS−1 =




2 −2 +
√

2
4

−2−√
2

4

−1 3 +
√

2 0

−1 0 3 − √
2


 ;
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to point C corresponds matrix

SKS−1 =




2 −2 +
√

2
2

−√
2

2

−1 3 +
√

2 0

−1 −2 +
√

2 3 − √
2


 ;

to point D corresponds matrix

SKS−1 =

 2 −1 0

−1 3 −1
−1 −2 3


 = K.

All points included by rectangle ABCD are solutions of our problem; in other words the
experimental data do not allow one to distinguish among all those solutions.

6.6. Inversion of matrix K

If we integrate equation (20) from 0 to ∞ we get

X(∞) − X(0) = −
∫ ∞

0
X(t) dt · K +

∫ ∞

0
R(t) dt;

if the system is open the first term vanishes, therefore∫ ∞

0
X(t) dt · K = X(0) +

∫ ∞

0
R(t) dt .

Now call T the inverse of matrix K and multiply to the right both sides of this identity
by T: ∫ ∞

0
X(t) dt =

[
X(0) +

∫ ∞

0
R(t) dt

]
· T.

The vector in square brackets represents the total amount of substance entering the system
at the beginning and during the whole experiment; if we think of an experiment where we
feed only compartment i with an amount Di of substance, the product on the right-hand side
becomes the product of Di by row i of matrix T, i.e.,[∫ ∞

0
x1(t) dt

∫ ∞

0
x2(t) dt · · ·

∫ ∞

0
xn(t) dt

]
= Di · [ti1 ti2 · · · tin],

where tij is the element of row i and column j of matrix T.
We can thus conclude that the inverse of matrix K is matrix T of the permanence and

residence times; in particular, the diagonal elements of T are the permanence times of the
different compartments, while the element of row i and column j is the fraction of substance
fed in i that reaches j multiplied by the permanence time in j.

6.7. Computation of the T matrices

We go back now to the last example. It is easy to compute matrix T at the different points; at
point A,

TA =



2 −1 0

−1 3 +
√

2 −1 − √
2

−1 0 3 − √
2




−1

≈

0.70 0.16 0.24

0.40 0.32 0.48
0.44 0.10 0.78


 ;
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at point B,

TB =




2 −2 +
√

2
4

−2 −√
2

4

−1 3 +
√

2 0

−1 0 3 − √
2




−1

≈

 0.70 0.02 0.38

0.16 0.23 0.09
0.44 0.01 0.87


 ;

at point C,

TC =




2 −2 +
√

2
2

−√
2

2

−1 3 +
√

2 0

−1 −2 +
√

2 3 − √
2




−1

≈

0.70 0.09 0.31

0.16 0.25 0.07
0.50 0.15 0.85


 ;

at point D,

TD =

 2 −1 0

−1 3 −1
−1 −2 3




−1

≈

0.70 0.30 0.10

0.40 0.60 0.20
0.50 0.50 0.50


 .

Observe that the permanence time of the first compartment is 0.70 at all four points,
while the permanence time of the second compartment varies from 0.23 to 0.60, of the third
compartment from 0.50 to 0.87. Of course the permanence time in the whole system, given
by the sum of the permanence times in all compartments, is always 1.80 at all points, because
our data were based on measures taken on the whole body.

Other quantities have even larger fluctuations from one point to another; for instance the
yield from the first to the second compartment, given by the ratio t12/t22, varies from 8.7% at
point B to 50% at points A and D.

7. Conclusion

A statement one frequently reads in the pharmacokinetic literature is that from all possible
models one should chose the ‘identifiable’ one and ignore the ‘non-identifiable’ ones, even
if consistent with the experimental data. This statement is valid only with reference to
phenomenological models, i.e., for models that describe the data but whose parameters do not
have any physical or physiological meaning; but in this case fitting the data with splines is
simpler, faster, and very efficient. When we want the parameters of the model to have some
physical or physiological meaning, ignoring the ‘non-identifiable’ models is self-defeating
and anti-scientific. The fact is that, even if a model is not completely identifiable, it is in
general possible to determine a range for the parameters of interest. It is also true that, if the
degrees of freedom are more than two, the computations are not simple, but this is a price we
must pay if we want our results to have a scientific meaning.

In this paper I have tried to show how to deal in general with this kind of model. I am
now actively working to develop an efficient algorithm to solve this kind of problem in a
faster way.
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