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detailed information about their physical properties, we might well find
that Equation 7-53 was not really applicable to them. Therefore, in the
next chapter we must turn to a less thorough and explicit, but more gener-
ally useful, analysis of the kinetics of transfer of substances between bio-
logical compartments.

EXERCISES. CHAPTER 7

Ezxercise 1

In textbooks of physiology it is commonly stated that in aqueous media
carbon dioxide diffuses about 2% times as rapidly as oxygen. For example,
Carlson, in the text by Ruch and Fulton (22), pages 796 to 797, states:
“The intrinsic rate of diffusion of any substance is a funection of its solu-
bility, its molecular weight, and the permeability of the medium. Although
a larger molecule than O, , CO, is so highly soluble in the body fluids that
it diffuses through the tissue 20 to 30 times as rapidly as O, does.” What is
the meaning of this statement?

Ezercise 2

Forster (38) states, “Since the diffusion constant in air is about 1 mil-
lion times that in saline . . . diffusion through 1 million microns (1 meter) of
perfectly still gas would only demand a pressure difference equal to that
normally associated with gas exchange across the pulmonary membrane.”
(Itis assumed that the pulmonary membrane is 1 p thick.) Is this statement
justified?

Ezxercise 8

A. V. Hill (56) calculated the time needed for a sheet of muscle 1.0 mm.
thick exposed to a constant concentration of oxygen on one side to attain
by diffusion alone various average fractions of the equilibrium concentra-
tion of oxygen, the average being taken throughout the entire muscle. It
was assumed that no oxygen was consumed by the tissue. For the diffusiv-
ity of oxygen in muscle he used the value Do, = 4.5 X 107* ¢m.” per min-
ute. Hill calculated that under these circumstances it would require 5
min. to reach an average of 53.4 per cent of the equilibrium concentration
of oxygen throughout the tissue. Is this of the correct order of magnitude?

Ezercise 4

Prove the validity of the statement made in the text (Section 7-4) that
“over a considerable range of values of Fe, the time calculated for any
particular value of Dy and any particular distance is roughly inversely
proportional to the square of the fraction of equilibrium not yet attained,
i.e., inversely proportional to (1 — Feq)®.”

TRANSFER OF SUBSTANCES BETWEEN
BIOLOGICAL COMPARTMENTS.
GENERAL KINETICS

{

8-1. The Need for a More General Analysis of Transfer between
Compartments

In Chapter 7 we undertook a detailed analysis of a particular mechanism
—simple diffusion—by which a solute passes from one compartment to
another. But it is often desirable to study the transfer of a drug, or a
metabolite, or a radioactive isotope from one compartment to another
without being concerned about the precise mechanism of transfer. For
example, in the system discussed in Section 7-8 at the end of Chapter 7, if
we knew Q.. and if we were to measure the concentration of S in serial
samples withdrawn from W and Z during the approach to equilibrium,
we would be able to estimate Vi , V2, and Rz/w . We could also calculate
an exponential rate constant which would give us a very useful measure
of the rate of approach to equilibrium, but would tell us nothing at all
about the characteristies of the membrane. Indeed, the same kind of
exponential approach to equilibrium can be caused by many processes
other than simple passive diffusion (see Section 8-3). Therefore, it is desira-
ble to undertake a more general analysis of the kinetics of transfer between
compartments without reference to any particular mechanism of transfer.
This analysis will then be applicable to a wide variety of problems.

8-2. Diagrams and Symbols for the Description of Transfer between
Compartments

Figure 81 illustrates the kind of diagram and the symbols which will
be used in the subsequent discussion. Each separate compartment is
designated by a different capital letter and is represented in the diagram
by a rectangle.* Each compartment is characterized by its volume Va,

* The use of small Tectangles for small compartments, large rectangles for large
compartments often makes it easier to visualize the system. An even more elaborate
193




194 MATHEMATICAL APPROACH TO PHYSIOLOGICAL PROBLEMS

Metabolism

in Liver B v,
B
Karii R

A v, kg

Fre. 8-1. Diagram of a Three-Compartment System

Each compartment is represented by a rectangle. Each pathway for transfer of
solute is represented by a unidirectional arrow labeled with the appropriate rate
constant. Once such a diagram has been drawn, the differential equations for the rate
of change of the quantity of solute in each compartment can be written down by
inspection (Section 8-6).

Vs, ete., and by the quantity of solute, Q4.., @s.:, ete., present in it at
any instant of time. Each pathway by which the solute, S, moves out of
or into a compartment is represented by an arrow pointing in the direction
of movement. The quantity of S per unit of time which is moving out of
a compartment by a particular pathway at any instant is assumed to be
proportional to the quantity of S present in the compartment at that
time (see Section 8-3). The proporiion of S lost from the compartment along
the pathway per unit of time can therefore be represented by an exponential
rate constant, k, of exactly the sort discussed at length in Chapter 6. Each
pathway has its own rate constant which is distinguished by a subscript
depoting first the origin and then the destination of the pathway. For
example, in Figure 8-1 the pathway which represents the renal excretion
of some of the S in Compartment A4 is characterized by the rate constant
kawv ; “kany’’ means “the proportion of the S in 4 which is being trans-
ferred from A to the urine per unit of time.” Similarly, “ks.”’ means “the
proportion of the S in B which is being transferred from B to 4 per unit

pictorial device is to draw a cube in perspective for each compartment. The volume
of the cube is made proportional to the volume of the compartment. Moreover, the
thickness of an arrow representing a given pathway can be made proportional to
the rate of transfer along that pathway. Examples of such diagrams may be found
in Reference 88. For ordinary purposes, no such elaborations are needed.
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of time”; “kec.ous’”’ means “the proportion of the S in C which is being
transferred per unit of time from C to somewhere outside the system.”
Now when the rate of transfer of S from Compartment 4 to Compart-
ment B is proportional to the quantity of S present in A, the rate of
transfer of S by that particular pathway will be given by the equation

(dQ/dt) 4op = KkuepQu.e (8-1)

where

(dQ/dt) 1.5 = the rate at which S is being transferred along the path-

way from A to B at time ¢

(" the quantity of S in Compartment 4 at time ¢
8-3. Simplifying Assumptions
N To simplify the mathematical description of transfer between compart-
ments we shall make the following assumptions:

1. We shall assume that the size, .., the volume, of each compart-
ment remains constant. This means that any equation for the
guantity of S in a given compartment as a function of time can be
converted to an equation for the conceniration of S in the com-
partment as a function of time by dividing both sides of the equa-
tion by the volume of the compartment.

2. We shall assume that each compartment is well stirred, so that
any S entering the compartment is instantaneously distributed
throughout the entire compartment. The importance of this
assumption has already been discussed (Section 7-3).

3. We shall assume that the proportional rate of transfer along each
pathway remains constant so that the resulting change in quantity
or concentration is exponential. In other words, we assume that
the rate constants, k, are indeed constant. (Occasionally we may
want to deal with a pathway through which a constant quantity
of S per unit time is passing, but we shall characterize such a
pathway not by a rate constant k, but by a symbol such as Q.out
which would mean quantity of S transferred out of Compartment
A per unit of time.)

When these assumptions are not true for a particular system, the equa-
tions to be derived cannot properly be applied to that system. But for-
tunately, the assumptions are sufficiently valid for many of the biological
systems in which we shall be interested. In particular, Assumption 3 is
not as restrictive as it might seem, for a remarkable number of processes
do transfer solutes at a rate which is proportional to concentration. Expo-
nential change is the rule, not the exception! We have already seen that
simple diffusion through a membrane between two well-stirred compart-
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ments causes an exponential change in concentration. Similarly, the
excretion of a solute solely by filtration through the glomeruli of the
kidney will cause exponential disappearance if the glomerular filtration
rate remains constant. But it is not such “passive’” processes alone which
account for exponential changes in concentration. An active process which
removes S from a compartment may equally well produce exponential
change provided that the rate of removal is limited by the rate at which 8 is
supplied to the process, and not by the capacity of the process itself. For
example, suppose that 1 \\\5 of every 5 molecules of S brought to the liver
by a constant hepatic blood flow is destroyed enzymatically by the liver
cells regardless of the concentration of S in the blood. Then the process is
supply-limeted* and S will disappear exponentially. But if the enzyme
system is so fully saturated with S that it is destroying S as fast as it can,
then the quantity of S destroyed per unit of time will be constant regard-
less of the concentration of § in the blood and of the rate of blood fow.
Such a process is capacity-limited.* Many active processes responsible for
the transport or removal of solutes become capacity-limited if they are
supplied with substrate at a high enough rate. A familiar example is the
glucosuria which occurs when the amount of glucose filtered per minute
through the glomeruli of the kidney exceeds the reabsorptive capacity,
t.¢., the “transfer maximum,” of the renal tubular cells for glucose.

8-4. The Concept of Clearance

Because so many different processes may be responsible for removing S
from a given compartment, it would be convenient to have some very
general way of expressing the overall effectiveness of any such process.
The absolute rate of removal, expressed as quantity of § removed per unit
of time, would be suitable only when the process is capacity-limited, for
otherwise it would be as dependent upon the concentration of S as upon
the effectiveness of the process of removal. The proportional rate of removal,
expressed by the rate constant, k, is also unsuitable as a general term
because it is constant only so long as the rate of removal of S from the
compartment remains proportional to the quantity of S in the compart-
ment. Furthermore, the magnitude of the rate constant depends as much
upon the volume of the compartment as it does upon the effectiveness of
the process of removal. In contrast, the clearance depends only upon the

* Because of their broader meaning, the terms “supply-limited”” and “capacity-
limited’” are used here in preference to the corresponding terms “‘substrate-limited’’
and ‘“‘enzyme-limited.”” The capacity of some transport mechanisms may well be
limited by how much of a nonenzymatic “‘carrier substance’” is available for combina-
tion with S rather than by the amount of enzyme needed to form (or to split) the
carrier-S complex.

i
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overall effectiveness of removal, and can be used to characterize any
process of removal whether it be constant or changing, capacity-limited or
supply-limited.

The clearance of S from Compartment A by the pathway leading to B
may be defined as the volume of A from which S is, in effect, completely
removed, .e., “‘cleared,” per unit of time via that pathway. It may equally
well be defined as the rate of removal of S from A via the pathway to B
per unit of concentration in A:

:voc.».vw; = (dQ/dt) usr/Ca.t (8-2)
where

3.\oc>ow;ugm<o_c5momvammbmo_omuom%mvaacu:&dwbmv%
. the pathway from A to B at time ¢

, Equation 8-2 is a completely general definition of clearance, valid (with
appropriate changes in the subscripts) for any substance cleared from any
compartment along any pathway at any time. It is important to realize
that Equation 8-2 is for clearance via any single unidirectional pathway.
It will represent net removal of S from Compartment A only when there
is no movement of S along any return pathway from B to 4. But in
practice, the term “‘clearance’” is rarely used except for the irreversible
rermoval of S from a compartment by unidirectional pathways of metabo-
lism, storage, or excretion, and it is in this more restricted sense that the
term will ordinarily be employed.

Notice that clearance has the dimensions of flow, i.e., of volume per
unit of time. It is sometimes called a “virtual flow.” Indeed as far as the
removal of S from A is concerned, the effect of a clearance of 15 ml. of 4
per minute is exactly the same as the effect of washing S out of Compart-
ment A by continuous dilution with a real flow of 15 ml. per minute
through the compartment (Table 9-1). Now by definition

Q>; = @a;\a\; Am-wv

Combining Equations 8-2 and 8-3,

7 . A&@\&Nv A~>B mlh
(Veluwse = =07, (84)
Rearranging terms,
A&Q\&Vmaw = mfh @;.“ Amnﬁm.v

By Assumption 1, Section 8-3, V4 is constant. Suppose that the clearance
is also constant. Then the rate constant k.. in Equation 8-1 and the
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constant (Vel) 4.s/V 4 in Equation 8-4a are identical:

Faen = (Vel) uas/Va (8-5)

Thus when the volume of the compartment being cleared is constant
(Assumption 1), the assumption that the proportional rate of transfer is
constant (Assumption 3) is equivalent to assuming that the clearance is
constant, the rate constant @s.wm the ratio of the clearance to the compart-
ment volume. This makes sense/We have learned to think of a rate constant
as a proportion per unit of time, and the ratio in Equation 8-5 is simply
the proportion of the total volume of Compartment A which is cleared of
S per unit of time via the pathway from 4 to B.

8-5. The Concept of Volume of Distribution

If clearance is a “virtual flow,” the volume of distribution of a substance,
8, is a “virtual volume.” Suppose that the total quantity of S in the body,
Quot , has had time to reach distribution equilibrium throughout all of the
compartments which it can enter. Suppose that the concentration of S in
some part of one of these compartments (usually blood plasma) can be
measured. Let us call the equilibrium concentration in this reference fluid
Crot.eq - Then the volume of distribution, (Vdist), of S is simply

Aﬂ\ﬁ:m&v = @»3\@3?3 Amuav

Notice that the concept of volume of distribution is an equilibrium concept.

If the distribution of S is through a single compartment, say Compart-
ment A, the term “volume of distribution in Compartment 4 is synony-
mous with the term ‘“volume of Compartment A’’ as defined in Section
7-3. This is still in keeping with the idea that volume of distribution can be
defined only for distribution equilibrium, because the S in any single
compartment is always supposed to be at distribution equilibrium through-
out that compartment (Assumption 2, Section 8-3). Thus the term “initial
volume of distribution” simply means the volume of the first compartment
through which Q.. is apparently distributed at time zero.

An example of a volume of distribution has already been given in
Equation 7-54 which is really a specific example of Equation 8-6. The
problem of how to measure the volume of distribution of § throughout a
system of compartments will be discussed later (Section 8-11).

8-6. Differential Equations for Transfer between Compartments

Given a system of compartments and pathways such as the one depicted
in Figure 8-1, nothing is easier than to write down a differential equation
for the rate of change of the quantity of S in each compartment. Equation
8-1 shows that the rate at which § traverses any particular pathway is the
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product of the rate constant for that pathway and the quantity of § in
the compartment from which the pathway is coming. Obviously the total
change in any compartment is the algebraic sum of all of the individual
increments and decrements caused by transfer of S along all pathways
leading to and from the compartment. For example, in Compartment 4
of Figure 8-1 there are two pathways (from B and from C) adding S to 4,
and four pathways (to B, to. C, to the liver, and to the kidneys) sub-
tracting S from A. At any instant of time, ¢, the quantity of S in 4 is
therefore changing at the rate given by the following equation:

&@;\& = an.{_@w; + Nno.';@o; - w;.&@;; - N;Jo@;;

(8-7)
— basriv@a.s — kaavQa.:

QB:&Z%&
&@m\&h Nn.fvw@;; - No.w.{_@w; - wwlo.@w; Amqu
dQc/dt = kp.cQr.e + kawcQu.t — keasQe.t — kemouQo.e (8-9)

Since all rate constants for pathways leading away from a given com-
partment are muitiplied by the quantity of S in that compartment, it is
convenient to have a single symbol to designate their sum. We will there-
fore define k. to mean the sum of all the rate constants for pathways
leading away from Compartment A. Accordingly, Equations 8-7, 8-8,
and 8-9 can be rewritten:

dQu/dt = kp.aQs.. + kcusQcs — kaQu (8-10)
dQs/dt = kaasQu.c — ksQsp.e (8-11)
dQe/dt = kascQu.t + kzacQp.: — kcQc.. (8-12)

Equations 8-10, 8-11, and 8-12 are a set of simultaneous differential equa-
tions which completely describe the behavior of S in the system at any
instant of time. But as usual, the differential equations must be solved,
1.¢., integrated, before we can use them to find the actual quantity of S
in a given compartment at a specific time. Using an analog computer
(Section 3-3) to obtain particular solutions of the set of differential equa-
tions not only saves much time and effort but may be the only practical
way to deal with really complex systems of compartments. Obtaining a
genera] analytical solution even for a two- or three-compartment system
requires a knowledge of calculus beyond what is being assumed for this
book. Nevertheless, we shall be able to solve one or two elementary prob-
lems completeély, and we shall also be able to analyze certain more complex
systems by using a general solution worked out by others (97). In the
following sections, three examples are given in full. Others are suggested
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Fi6. 8-2. Two Wm;sm%w\om Loss from a Single Compartment

In the period immediately m»eon\mm administration of a tracer dose of radioactive

iodide, its behavior can often be described adequately by this very simple model
(Section 8-7).

as exercises at the end of the chapter. In fact, the reader is strongly advised
to work Exercise 1 himself before proceeding to the next few paragraphs.

8-7. Irreversible Loss via Several Pathways from a Single Compart-
ment (Fig. 8-2)

Consider the removal of a single tracer dose of radioactive jodide, I'*,
from the iodide compartment, I, by accumulation in the thyroid gland,
thy, and by excretion in the urine, U. We will assume that during the period
of interest all of the iodide which enters the thyroid gland is stored there
as organic iodine and that none is returned to the iodide compartment or
secreted as hormone. (This assumption is often, but by no means always,
justified by the actual behavior of a tracer dose of I'™.)

Initial conditions: at ¢t = 0, Qr0 = Qsor, Qnyo = 0, Quo = 0
By inspection of Figure 8-2, the differential equation for Q; is
&@N\&“ = I\o~lar<©~; - \nT'Q@hL

(8-13)
= IQe.T:G + ?acv@a; = INSQ:

Integrating Equation 8-13,
Qre = Qroe ™' = QSRLQ: (8-14)

Equation 8-14 shows that even though the I'™ is leaving Compartment I
by two separate pathways, its rate of disappearance from I is controlled
by a single exponential term for which the rate constant is the sum of the
rate constants of the two efferent pathways. Two leaks “‘are equal to one
leak of larger size” (101).

Equation 8-14 enables us to calculate how much of the tracer dose
remains in the iodide compartment at any time. According to Figure 8-2,
the iodide which has left the iodide compartment must either have ac-
cumulated in the thyroid gland or have been excreted in the urine. But
how much goes to each? It is obvious from Equation 8-13 that at any
particular instant of time, the fraction of the total change due to thyroid
accumulation, Fony/ior , is

Finyrior = krowny@r.o/kiQr.e = ?.;5\\.3 (8-15)
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But since the k’s are constant, this fraction is also constant and represents
the fraction of Qv — Qr.; (7.e., the quantity lost from I between time
zero and time ¢) which has accumulated in the thyroid gland. Hence,

Qiny.t = Finyrtor(Qror — Qr..) = ww“.d. (Qrot — Qr.0) (8-16)

Substituting in Equation 8-16 the value of Qr.. from Equation 8-14,

Qura = Z207 0, (1 — 67 (817)
I
Similarly, if Qu.. represents the cumulative excretion of 1™ in the urine
between time zero and time ¢,

S Qoo = Nﬁq Qun(l — 1Y) (8-18)

By combining Equations 8-15 and 8-17 we obtain
(Qsny.: — m..s,i_,.o»@,ﬁv = (Quyo — ﬁpr«.\so@aavalaz (8-19)

where, according to the initial conditions, Qsmy.o = 0. Equation 8-18
may be rearranged in like manner. Equation 8-19 makes it clear that the
quantity of I' in the thyroid gland is rising toward the asymptote
FinyiotQior at a rate determined by k;, the sum of the rate constants for
transfer of I'" to thyroid and to urine. Similarly the rate at which the
cumulative excretion of I"* in the urine approaches its asymptote depends
not just on the rate constant k. for urinary excretion but upon the sum
of the two rate constants.

This important conclusion may be generalized as follows: Suppose that
an amount Qi of S is placed into Compartment 4 at time zero. Suppose
that S is then ¢rreversibly lost from A by several routes (to B, to C, to D,
etc.), each characterized by its own rate constant. Then the cumulative loss
by any single route, say A to B, approaches an asymptote equal 10 (kaws/k4)Qrot
with a half-time which ts determined not by ka-p alone but by k. , the sum of
all of the rate constants. This means that the straight lines obtained by
plotting In Q... against time, In (Qsasymp — @s.) against time
In (Qc.asymp — Qc.:) against time, ete., will all be parallel with a slope of
—ks = —(kuwp + kawe + -+ -) (see Exercise 2).

8-8. Equilibration by Exchange in a Closed Two-Compartment
System (Fig. 8-3)

A specific example of how equilibrium was approached by diffusion
between two compartments was considered in detail in Chapter 7. We
shall now derive more general equations for equilibration between two
compartments, equations which will not depend upon the assumption of
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F1g. 8-3. A Closed Two-Compartment System

ﬁ. a solute is introduced at time zero into either Compartment 4 or Compartment
B, it approaches equilibrium throughout the entire system at the single exponential
rate specified by the sum of the two rate constants (Section 8-8).

any particular mechanism of transfer. In the diffusion problem, we dealt
only with nef transfer. In the general case, it is easier to consider the
transfer of solute in both directions.

Consider the approach to equilibrium when a solute, S, is added to
Compartment A of the system depicted in Figure 8-3. By setting appro-
priate boundary conditions we will take into account the possibility that
there may already be some S present in the two compartments at time
2€ero.

Injtial conditions: att = 0, Qs = Quo, Qs = Qs
The differential equation for Compartment A is
dQa/dt = kpaaQs.e — kasQu.c (8-20)

The differential equation for Compartment B is similar but with oppo-
site signs. Since the system is a closed system (¢.¢., one with no outlets), con-
servation of S requires that

Qrot = Qu.t + Q5. (8-21)
Combining Equations 8-20 and 8-21 with the elimination of Q5..,
dQ4/dt = kposQtot — (Kuwp + Ks.a)Qua.c (8-22)
or, separating the variables prior to integration,
dQu/lkpoaQuot — (kues + kpou)Qu.) = dt (8-22a)

Equation 8-22a may now be integrated in exactly the same way as Equation
7-44, kg 4Q:or corresponding to ks and (k4.s -+ kp...) corresponding to ks .
Therefore, we need not repeat the intermediate steps but can simply
copy the result given in Equation 7-48a:

A@i.n - IF @aoav = A@L.o - F @eOov

kusp + kpoa kasp + kpaa (8-23)

exp ml Qn;..w + Nom.!»v&
From Equation 8-23 it is evident that Q... is approaching its asymptote,
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k5.sQior/(kaws + kp.a), at a rate determined by the sum of the two
rate constants. We can easily prove that this asymptote is indeed Q4.»,
the equilibrium value which is being approached as time approaches
infinity. For, by definition, at equilibrium as much § must move per unit
of time from A to B as from B to A so that the net change in @4 as given
by Equation 8-22 will be zero. Then Equation 8-22 becomes

Qn;.vw + Nnm";vQ;.s = an.';Qooa Am-mumv
Solving Equation 8-24 for Q4. ,
Qiw = an!‘@:;\ﬁflw + Nnmi;v ) Awnm\»m.v

which is indeed the asymptote of Q,4.: in Equation 8-23.

miomﬁ Equation 8-23 is a general equation for equilibration in a closed
two-compartment system, it should include Equation 7-52 for equilibra-
tion by diffusion as a special case. Notice that in Equation 7-52 the
asymptote is the product of Qi and a ratio of volumes, whereas in Equa-
tion 8-23 the asymptote is the product of Q.o and a ratio of rate constants.
By using Equation 8-5 it is not difficult to prove that these ratios are equal.
It is also possible to show that the exponent in Equation 7-52 corresponds
to the exponent in Equation 8-23, though the reasoning is a bit more
subtle (see Exercise 8).

8-9. A General Solution of the Two-Compartment Problem

The two previous examples have been chosen for their simplicity.
Because of such special constraints as unidirectional transport, or absence
of any pathways leading out of the system, the solutions contained only a
single exponential term. But where no such constraints are imposed,
general solutions soon become uncomfortably complex as the number of
compartments increases. For the sake of simplicity, let us assume that at
time zero a known amount, Q... , of S is given as a single dose into Com-
partment A, and that there is initially no S in any of the other compart-
ments. Suppose that we have a system of N compartments, each having
pathways both to and from every other compartment as well as a pathway
leading out of the system. Then there would be altogether N different
pathways, each with its own rate constant. Each compartment will also
have a volume, so that such a system of N compartments might have as
many as N° + N arbitrary constants or parameters. If we assume that all
of these parameters are known, it will still be necessary to solve a set of N
simultaneous differential equations, one for each compartment. Even with
a three-compartment system, the resulting integrated equations are too
complex to discuss here, although an explicit solution for the three-com-
partment system can be obtained (97). However, the explicit equations
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Fic. 8-4. An Open Two-Compartment System

K= Kang +Kaaout

A mwamg_ moE:oﬂw of the differential equations for this system leads to somewhat
complicated expressions which contain two exponential terms (Section 8-9).

for the generalized two-compartment system of Figure 8-4 are not as
formidable, and will be found useful for the solution of a number of different
problems. These equations have been obtained by simplification of the
general solution for the three-compartment system published by Skinner
et al. (97). The equations, which will be given here without derivation
are for the fraction of the total dose in Compartment A, Fa.., and drm
fraction of the total dose in Compartment B, Fz.;, at any SBP. #“

ka — k A
Fao= (A D) exp (34 + 1o + 200)

ko — ko + Z
+ ?H -t * Vse (—14(ka + ka — Ni

kass

7 fexp [—14(ka + ks — A

(8-25)

(8-26)
— exp [—28(ks + ks + Z)U}}

Z= ./\Qf - Nowvw + 4ksonkpaa Am-m.wv
Initial conditions: at ¢ = 0, Fsio=1, Fpgo=0

Hro.mm oocpa.obm can readily be converted into equations for the concen-
“339.3 of S in the two compartments at any time, ¢, by multiplying the
fraction by the total dose divided by the volume of the compartment:

Q;.ﬁ = @.»;\«\; = Qoo%?“\q\; Aw-mmv
and
QP, = @w;\.ﬂ\w = Qg%w;\d\m Amlmwv

It is well worth noting that both of the exponential terms in Equation
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825 are influenced by all of the rate constants, and hence by all of the
individual processes of transfer illustrated in Figure 8-4. We are thus
warned once more that when a multiple exponential equation is fitted
empirically to biological data, in general we have no right to identify a
particular term with a particular process occurring at the corresponding
exponential rate.

8-10. Calculation of Rate Constants and Compartment Volumes
from Experimental Observations

In the discussion thus far it has been assumed that the rate constants
and the compartment volumes were known, so that the problem was to
find a set of equations which would enable one to predict the distribution
of S in the system as a function of time. But in practice, it is far more
common to observe the concentration of S in one or more compartments
as a function of time, and to try to deduce the parameters of the system
from the observed behavior of S. For this purpose it is of the utmost value
to have some a priori knowledge about how many compartments there
are and what pathways interlink them. Otherwise, the calculated values
are not likely to mean very much physiologically.

Ezample

There is substantial evidence that in man and in the dog, creatinine
is distributed throughout two compartments, of which the first
(which we shall call A4) includes blood plasma, whereas the second
(which we shall call B) is not clearly identified but presumably
includes at least some “intracellular fluid.” It is not possible to obtain
samples for analysis from Compartment B. Exogenous creatinine
leaves the body only via the urine. The behavior of creatinine may
accordingly be represented by the model shown in Figure 8-5. The
parameters in the following example have been taken from the dis-
cussion by Dominguez in M edical Physics (33).

A Mos S [B
A ‘e
xm+>

Qut <8t Qg.t

/_\_f.vc

Urine
Tig. 8-5. A Model System for the Behavior of Creatinine in the Mammalian Body

The several parameters of this model system can be estimated from experimental
observations as described in Section 8-10.
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Ten grams of creatinine were administered intravenously at time
zero t0 a human subject. Thereafter, the concentration of creatinine
in plasma, corrected for endogenous creatinine, was measured at
various times. The concentration was plotted against time on semilog
graph paper, and the data were analyzed as described in Section 6-14.
The points could be fitted by the following equation:

Ca = 0.38¢ 165 -+ O.Hmwlo;ms (8-30)

where

C4.. = the concentration of creatinine in plasma (regarded as a
sample of Compartment 4) in grams per liter
t = the time in hours

At time zero, Equation 8-30 gives
Cag =038 4+ 0.18 = 0.56 gm./L. (8-31)

Since the dose administered, Q..., was 10 gm., the initial volume of
distribution (taken as a measure of the volume of Compartment 4)
was

Vi = Qut/Cuo = 10.0/0.56 = 17.9 L. (8-32)

Multiplying both sides of Equation 8-30 by V./Qe: = 1.79 to convert
it to Fa. y

Fai= 0687"% 4 03257018 (8-33)

Equation 8-33 is a particular example of Equation 8-25. We can
therefore equate the numerical values in Equation 8-33 to the corre-
sponding algebraic values of Equation 8-25:

16(ka+ ks + Z) = 165 (8-34)
Y(ka + ks — Z) = 0.182 (8-35)
(ka — ks + 2)/2Z = 0.68 (8-36)

Solving Equations 8-34 and 8-35 simultaneously for Z, we get Z =
1.468. Placing this value in Equation 8-36 and either 8-34 or 8-35
and solving the resulting equations simultaneously, we obtain k, =
1.180 and k5 = kj.. = 0.652. Now by Equation 8-27

zZ = (ks — wwVN + 4k sk (8-27a)

Substituting our known values in Equation 8-27a, we find %k,., =
0.719, and, by subtracting this value from %, , kv = 0.461. We
have thus been able to calculate values for all of the rate constants
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as well as for the volume of Compartment 4:
k4.5 = 0.719 per hour
kswv = 0.461 per hour
ks.a = 0.652 per hour

V=179 L.

We can therefore write a specific equation for Fp.. in the form of
Equation 8-26:

, Nﬂw.h = O.%@Aﬁlo.uwwh _ Qlu.mwsv Awlw.Nv

We can also raultiply Equation 8-37 by Q:ot to obtain an equation for
the quantity of creatinine in B at any time. But to complete our
characterization of the system what we really need is an estimate of
Vs, the volume of Compartment B. If we could get even a single
sample of B for analysis, we could measure C'5.. . Since we can calculate
Qs.., we could then estimate V5 as Q5.,/Cs.. . But B is not open to
sampling, and we therefore seem to be stuck!

Actually, the problem is not as hopeless as it seems. It is true that
we cannot calculate the volume of B with reference to the concentra-
tion of creatinine in some portion of B itself. But it is quite easy to
calculate the volume of distribution of creatinine in B with reference
to its concentration in 4 as measured in samples of plasma. By
definition (Equation 8-6), this will be

A ,«\Qumdv By = @w.aa\Of .eq Amlme
where

(Vdist)s, = the volume of distribution in B with reference to the
concentration in 4

Also by definition (Equation 7-50),
Ryia = Cr.ea/Caca (8-39)
Combining Equations 8-38 and 8-39 with the elimination of C.eq,
(Vdist)s, = Rz/4Q5.ca/Cs.ea (8-40)
or, since @s.eq/Cp.eq = Vs,
(Vdist)s, = Rs/aVs (8-41)

Now at equilibrium, the rate of transfer from 4 to B must be exactly
equal to the rate of transfer from B to A. Hence,

w;.&@;.@a = an.;@m.g Am-mmwv
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or, since Qa.eq = CacqVa, and Qpeq = Cr.eqVs,
w;&wQ?mn,ﬁ\; = anlme.ona\w Amu&wv

Combining Equations 8-39 and 8-43 with the elimination of Cp.q,
solving for VsRp/4 , and including Equation 8-41 in the result,

(Vdist)s, = VoRosa = (hams/ksan)Va (8-44)

Since the three quantities on the right of Equation 8-44 have already
been evaluated, (Vdist)s, may be calculated as 19.7 L. The total
volume of distribution of creatinine in the entire system, calculated
with reference to its concentration in A, is simply the sum of V,
and (Vdist) s, as given by Equation 8-44:

(Vdist) = Va + (Vdist)s, = V4 Aﬁv (8-45)
B+rA
For this example, the total volume of distribution is 37.6 L.

The example just given shows that in a two-compartment system whose
general arrangement is known, careful analysis of the changes in concen-
tration in one of the two compartments coupled with knowledge of the
boundary conditions allows one to estimate the rate constants and volumes
which characterize the system. Skinner and his collaborators (97) discuss
methods by which the parameters of even more complex three-compart-
ment systems can be calculated. However, in interpreting the results of
any such analysis one must bear clearly in mind the considerable un-
certainties of fitting observed data by exponential equations (see Chap.
6). Whenever possible the calculations should be checked, supplemented,
or even partially replaced by additional methods of studying the system.
For instance, in the preceding example it would be highly desirable to
collect samples of urine as well as of blood plasma and to caleulate the renal
plasma clearance of creatinine therefrom in the time-honored manner:

(Vel) g = .ﬂ@.q.:....\Q;.:L.. (8-46)

where

@EE the mean rate of excretion of creatinine in the urine between
time 1 and time 2

C4.i., = the mean concentration (properly, the logarithmic mean
concentration) of creatinine in the plasma between time 1 and
time 2

This value for plasma clearance could then be compared with the value
indirectly calculated by the relationship given in Equation 8-5:

(Vel) gov = KauvVa (8-47)
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For the preceding example, ky.oV4 = 8.25 L. of plasma per hour, or
138 ml. of plasma per minute, & value which is in reasonably good agree-
ment with values for the renal plasma clearance of creatinine obtained by
direct measurement in man.

8-11. The Measurement of Volume of Distribution

The term “volume of distribution of S’ has already been defined as the
volume of solution which, if it had a uniform concentration equal to Crer.eq ,
would contain the same total amount of S as is distributed about the
entire system at equilibrium, 7.¢., when there is no net transfer of S between
compartments. Creroq 1S the equilibrium concentration in some well-
defined portion ¢f the system, usually blood plasma. We must now see
how the volume of distribution of S can be measured.

In a closed system where S is neither metabolized, nor excreted, nor
hidden away in some storage depot, the problem is simple. A known dose
of 8, Qsot, is administered at time zero, and the concentration of S in
plasma is studied as a function of time until enough data have been gathered
to define the equilibrium concentration being approached asymptotically.
The volume of distribution of S in the whole system, (Vdist), with refer-
ence to its equilibrium concentration in plasma, Cp.cq , is then given by the
following variant of Equation 7-54:

A <&m.$ = Qwoo.an\Qw.wn AMmev
where

Qiot.cq = the quantity distributed throughout the entire system at
equilibrium (in this instance, equal t0 Qiot)

Usually, however, S is lost more or less rapidly by irreversible pathways
of metabolism, excretion, and storage, so that a steady state of equilibrium
is not approached with the passage of time after a single dose. Neverthe-
less, it may be possible to approximate a steady state of equilibrium by
infusing S intravenously at a constant rate for a long period of time. For
this method to be valid, all of the irreversible loss of S must be from the
same compartment as the one into which S is being infused. Consider the
system in Figure 8-6. Compartments B, C, and D have no outlet except
via Compartment 4. During continuous infusion of S at a constant rate
of Qines, S will accumulate in the several compartments of the system
until the rate of loss, ka.ou@a4 , €quals the rate of infusion. In theory, this
would occur only at infinite time. But in practice, if interchange between
A, B, C, and D is reasonably rapid, equilibrium will be approached suf-
ficiently closely in a finite time, e.g., a few hours. At equilibrium Equation
8-48 can be used if Qior.eq can be estimated, for example, by measuring S
in serial samples of urine collected after abruptly discontinuing the in-
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Fre. 8-7. A System of Compartments Which Will Not Approach Equilibrium with
Each Other during Continuous Infusion of the Solute at a Constant Rate into
Compartment A

fusion. This method can not be used for any system such as the one depicted
in Figure 8-7 because part of the § infused into A is being lost from B.
If S is continuously infused at a rate of Qinwa , this system, like the previous
one, will approach a steady state at which the rate of infusion is just
equaled by the total rate of loss, kiwou@a + ksout@s - At this steady state,
it is obvious that k..sQ. must exceed ks..Qs by an amount equal to
ks.0uQs, whereas distribution equilibrium between A and B can be
present only when k..sQ4 equals ko.a Qs . Hence, even though the system
approaches a steady state, it does not approach a state of distribution
equilibrium, and Equation 8-48 cannot properly be applied.

A third method of estimating the volume of distribution is to add up

e~

KINETICS OF TRANSFER BETWEEN COMPARTMENTS 211

the volumes calculated individually for the different compartments. A
detailed example for a two-compartment system was discussed above
(Equation 8-45).

8-12. Biased Methods of Estimating Volume of Distribution

There are still other methods, which must be employed with great
caution because they are biased in the direction of overestimating the
volume of distribution. They may therefore give entirely erroneous results
if used without proper appreciation of their limitations. Consider again the
system in Figure 8-5, in which the only route of loss is from Compartment
A to the urine, U. Suppose first that k..o is zero. Then the system would
be simply a closed two-compartment system approaching both diffusion
equilibrium and a steady state with the passage of time. Now suppose that
k4.v is greater than zero, but very much less than k4. and kz.s which
control the rate of distribution between A and B. Then the approach of
A and B to equilibrium with each other will be scarcely influenced by the
slow rate of loss of S in the urine. Therefore, after enough time for distri-
bution has elapsed, i.e., after the first exponential term in Equation 8-25
has become negligibly small, A and B will behave practically like a single
compartment, which we shall call (4 + B), with a volume equal to
V. + (Vdist)s, and a concentration equal to Ca.:- We can derive an
equation for the concentration in this quasi-singular compartment by
dropping the now negligibly small first term from Equation 8-25, and re-
writing the equation for concentration as suggested by Equation 8-28:

Q§+E; = Abao»\a\;v AN + Mml ka

By Equation 8-49 the concentration assumed to be present in the “4 -+ B”
compartment at time zero will be

v exp [—14(ka + ks — Z)1]  (8-49)

Crarmao = (Qt/Va) AN + Mle va (8-50)

This concentration can be estimated by plotting the observed concentra-
tion in Compartment 4 against time on semilogarithmic graph paper, and
extrapolating the straight line for the second exponential back to its
intercept at time zero. Then by the relation given in Equation 8-32,

Viaem = :\&mavisnaﬁ = Qno«\Qﬁi.c.o (8-51)
where

(Vdist) intercept = the volume of distribution estimated from the ¢ntercept
at time zero

Since both Qi and Ciats .o are known, (Vdist) intercept CAD. be calculated.
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It is important for us to know how much this estimate differs from the
true volume of distribution (Vdist) which, by Equation 8-45, is
Va(kass + ks-s)/kp.s . Combining Equations 8-50 and 8-51 with the
elimination of Cs+m.0,

(Vdist) intercept = 2ZV4/(Z + ks — ki) (8-52)
The ratio Om Ad\&m&vmunmngvo to A.ﬂ\&mdv is
A.ﬁ\&m&v intercept _ NN..anuvk Amu.WWv
Vdist (Z + ks — ku) (baes + ()

If kv is 50 very small that we can assume k£, = Kuep, this ratio reduces
to unity, i.e., (Vdist)intorecpe €quals the true (Vdist). But when ki.v
amounts to an appreciable fraction of ki.s, the ratio exceeds unity.
(Vist) interceps then overestimates the true volume of distribution by an amount
which is impossible to calculate unless we already know all of the rate constants
characterizing the system! But if we know the rate constants we should
use Equation 8-45. In Figure 8-8, a particular set of physiologically rea-
sonable values has been used to illustrate how preposterously large
( Vdist) interceps can be when the renal plasma clearance is even moderately
rapid.

A second method, which also overestimates (Vdist) when kasv 18
appreciably large, depends upon the relationship expressed by Equation
8-5; namely, that the rate constant for a given pathway is equal to the
clearance by that pathway divided by the volume of the compartment
being cleared. At present we are assuming that (4 + B) behaves as a
single compartment being cleared by a single pathway. Hence,

Eaen-v = (Vel)/(Vdist)siope (8-54)
or,
(Vdist)siope = (Vel)/kasmr
where
(Vdist)siope = the volume of distribution calculated from the rate
constant for loss of S in urine and from the renal clearance
karmav = Mwom rate constant for the disappearance of S from

(4 + B) estimated from the slope of the straight line
for the second exponential obtained when C . is plotted
on semilog graph paper against time

Here, too, (Vdist)qope is most nearly correct when hasv is very small.
Unfortunately, when kv is negligibly small, so also is ks+m-v | Hence,
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Fic. 8-8. Biased Estimates of the Volume of Distribution

The three biased estimates described in the text have been calculated for various
rates of renal clearance with the following parameters for the model system of Figure
85: V4 =15L., Vs = 30 L., ks.p = 0.9 per hour, kp.s = 0.45 per hour. Except
when the renal plasma clearance is very small (so that the two compartments behave
practically as a single compartment after distribution between them is complete)
all three methods grossly overestimate the true volume of distribution, estimation
from the intercept (Equation 8-51) being particularly misleading (see also Figs.
8-9 and 8-10).

even when it is possible to measure a small renal plasma clearance ac-
curately, it will probably not be possible to measure kE(a4+py-v With any
precision. The method therefore suffers from the curious defect of being
Jeast accurate when least biased. This is too bad because (Vdist )eiope 1S 2
less biased estimate of the true volume of distribution than is (Vdist) intercept
(Fig. 8-8).

A third method of approximation yields results which are theoretically
(i.e., aside from errors of measurement) identical with the results given
by the previous method. Suppose that at some time, ¢, the first exponential
of Equation 8-25 has become negligibly small. Then

A.ﬁ\ﬁ:w*ﬂvqminm:amn = AQnoo - Qdkv\Q;L Awlmmv

where

3
1
{
l,
|
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(Vdist) remaincer = the volume of distribution calculated from the
quantity of S remaining in Compartments 4 and B
at time ¢

the quantity of S which has been excreted between
time zero and time ¢

QQ.“

Since this method does not depend upon estimating a very small slope, it
is likely to give much more accurate results than the previous method,
and should be, in practice, the least objectionable of the three approximate
methods described above. But none of these methods has much to recom-
mend it, and, in the author’s opinion, there is little justification for re-
garding the volumes so calculated as equivalent to true volumes of distri-
bution unless the final rate of decrease of the concentration of S in plasma
is very small. The fallacy of treating two separate compartments as a
single compartment when loss of § is rapid is further illustrated by Figures
8-9 and 8-10 which are worth careful study.

8-13. After Intravenous Injection, Why Is Not the Initial Volume
of Distribution Always Equal to the Plasma Volume?

When a single dose of S is injected rapidly into a vein, surely the first
“compartment” which it enters is the blood plasma. If samples of blood
are taken early enough, and frequently enough, and the concentration of
S in plasma is plotted against time, should not the intercept of the curve
at time zero always indicate plasma volume? The answer to this perfectly
logical question is simply that for most small molecules the blood plasma
does not behave like a separate compartment. Mixing in plasma is not
instantaneous. Indeed, when a dye which binds almost completely to
plasma protein is injected intravenously it appears as a “hump” of concen-
tration in the arterial blood, thus providing one method of measuring
cardiac output (Section 9-5). There are often smaller subsequent “humps”
during the first few recirculations of blood before mixing is complete.
Moreover, with small molecules, filtration and diffusion out of capillary
beds into the surrounding tissue fluids is extremely rapid (83), so that by
the time concentration in plasma has become reasonably uniform, the
solute has already penetrated into a much larger volume. It is this larger
volume, including blood plasma, which constitutes the apparent initial
volume of distribution for many small solutes such as creatinine. Only
with large molecules, or substances firmly bound to large molecules, can one
identify a separate plasma compartment by analyzing the early part of
the curve of plasma concentration versus time. But since both molecular
size and extent of binding to plasma protein vary from substance to
substance over very wide ranges, we must expect to find some intermediate
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J1g. 8-9. How the Distribution of Solute between Two Compartments Is Influenced
by Rate of Clearance

At time zero, Q.o of solute was injected as a single dose into Compartment A of
the system of Figure 8-5 with the same parameters as for Figure .m.m. H.wm fractions
of this total quantity remaining in Compartment A, F 4., remaining in OoBvE.d..
ment B, Fg.., or already excreted in the urine, Fy.,, are plotted as functions of
time for clearances of 0 ml. per minute (Graph @), 10 ml. per minute (Graph b),
100 ml. per minute (Graph ¢) and 300 ml. per minute (Graph d).

With zero clearance (Graph a), the system is, in fact, a closed two-compartment
system approaching & steady state of equilibrium with Fq., = H\m and Fg., = 24 at
a proportional rate of k4.5 + kp.a = 1.35 per hour, corresponding to a half-time of
0.513 hr. Equilibrium has been achieved, for all practical purposes, by the end .&
4 or 5 hr. With a clearance of only 10 ml. per minute, Compartments 4 and B still
come close to equilibrium with each other (Graph b), but with a clearance of .So ﬂ.a.
per minute (Graph ¢) or 300 ml per minute (Graph d) a steady state of diffusion
equilibrium between 4 and B is never approached. For example, ,.i”.mu .:5 rate of
clearance is 300 ml. per minute, less than 3£ of the total solute remainingin the voa%
at 5 hr. is present in Compartment A instead of the 14 which would be present at dis-

tribution equilibrium (see also Fig. 8-10).
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Frc. 8-10. How the Concentration of Solute in the Two Compartments of Figure 8-5
Is Influenced by Rate of Clearance

The parameters of the system are the ones listed in the legend for Figure 8-8 and
also assumed for Figure 8-9. A single dose of 150 mg. of solute was placed in Com-
vuugaoﬁ 4 at time zero. The four rates of clearance are the same as for Figure 8-9
ﬁz.w zero clearance (top left) the concentration in A falls, and the concentration wm
M rises, S0 that both approach the same equilibrium concentration, 3.33 mg. per
liter, with a half-time of 0.513 hr. The true volume of distribution mm~ S,.cm oo_c.p%uo
n.ro total dose, 150 mg., divided by the equilibrium concentration, 3.33 mg. per liter
i.e., 45 L. But when solute is being cleared from Compartment .mv at an »mvnmompzm
rate, a mdown@ state of equilibrium between A and B is not approached with the
passage of time after a single dose. Notice that the concentration in B keeps in-
creasing as long as there is a concentration gradient for diffusion of solute ?.o:w.» to
B, i.e., a8 Hou.m as the concentration in A exceeds the concentration in B. Notice also
that at some instant of time A and B are momentarily in equilibrium with each other
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compounds whose apparent Initial volume of distribution corresponds

neither to plasma volume, nor to “‘extracellular fluid volume,”” nor to any

other recognizable entity. Indeed the greatest circumspection must be
exercised in attempting to identify the volume of distribution of any
substance with a particular body fluid.

An extensive table of volumes of distribution is given by Dominguez

(33).

EXERCISES. CHAPTER 8

N
Exercise 1

In each of the following problems, write a differential equation for the
rate of change of the quantity of X in Compartment 4, dQ./dt. Then solve,
i.e., integrate, this equation so as to obtain an explicit expression for
Q4. , the quantity of X in A at any time . You will find it helpful to draw
a diagram of compartments and pathways for each problem. You should
also check each equation for Q... by seeing whether it makes sense when
t =0andast— «.

A. Loss of X at a constant absolute rate of Q40w M. DET minute
from a single compartment, A.
Loss of X at a constant proportional rate of kious per minute
from a single compartment, A.
Continuous infusion of X into A at a constant rate Qin-s starting
at time zero (no X present in A at time zero).
D. Same as “C” above but with the addition of a pathway for loss of
E.

B.
C

X from A into the urine at a constant proportional rate, kiwv -
Same as “D” above, but with the addition of another route of loss
at a constant proportional rate, ka.1iv, representing metabolic

transformation of X in the liver.
F. Same as “D” above, but with the addition of another route of

loss at a constant absolute rate, Qa-out -

(equal concentrations) so that there is no net diffusion between them. It is precisely
at this point that the concentration in B achieves its maximum. (See the discussion
of vnooﬁmon.unoa:g relationships in Section 9-8.) As clearance of solute from Com-
partment A continues, the diffusion gradient is reversed, so that the concentration
in B, though now decreasing, becomes, and remains, higher than in A. Instead of
approaching a steady state of equilibrium, A and B approach a state in which their
concentrations decline at the same exponential rate (parallel straight lines on the semi-
log plot of this figure). But as the clearance increases, the intercept of the straight
line for Compartment A on the time-zero axis becomes more and more misleading
as an index of the volume of distribution. For example, when the clearance is 300 ml.
per minute (lower right) the ¢“volume of distribution” caleulated from the intercept
for Compartment 4 at time zero is 150/1.05 = 143 L. whereas the true value is only

45 L. (Fig. 8-8).
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G. WP& time zero, Qi of X is present in Compartment B, and no X is
in Compartment A. X is transferred drreversibly from B to 4 at a
constant proportional rate, kg .

%%QS.& 2
n Section 8-7, it was assumed that the initial behavior of a tracer dose
of radioactive iodide (I'*') given to a normal subject could be analyzed
according to the model shown in Figure 8-2. Accepting this assumption,
estimate from the data tabulated below:
A. The half-time for disappearance of iodide from the plasma.
B. The proportion of the tracer dose ultimately accumulated by the
thyroid gland.
C. The plasma clearance of iodide by the thyroid gland if the renal
plasma clearance was 34 ml. per minute.
Mmm_mw:o zero is the time of administration of the tracer dose of

Per Cent of
. Tracer Dose Cumulative
Urine Sample Collected between in Sample Per Cent

0.0 and 2.13 hr. 17.9
: 31.4
42.5

50.2

81.8

90.1

Ezercise 8

Consider a closed system consisting of the two compartments, A4 and B.
At time zero, Qi mg. of S was instantaneously dissolved in Compartment
A. The quantity of Sin 4, Q..., decreased with time as indicated below:

Time (min.) 10 20 30 40 30 70
Qu..(mg) 59 43 35 29 25 22

From these data, estimate
@8« y @;.8 ’ @w.s ) kasn ) kpaa s and
the half-time for equilibration.

Ezercise 4. Accumulation of a drug given repeatedly

Suppose that a single intravenous dose, @ , of a drug is instantaneously
distributed throughout a single compartment, producing an immediate
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peak plasma concentration of Co. After ¢ hours, this concentration has
declined exponentially to C.. Let F be the fraction remaining at time ¢,
so that (assuming the volume of the compartment remains constant)
F = C./Co. What will the mazimum peak plasma concentration just after
a single dose ultimately be if the same single dose is administered everyt
hours for a very long (theoretically, infinite) time? Express the ma

peak concentration, Cmax , in terms of Cpand F.

Ezercise §

A_substance not metabolized in the body is infused at a consta;
of 85 mg. per minute. The amount of the substance excreted in th
per minute at various times after starting the continuous infusion i
by the following tabulation:

Time of Infusion Urinary Excretion

hr. mg./min.

0
25

da W W W == OO
OO MO KO U

At 4.0 hr. the blood plasma contained 83.6 mg. per cent of the subs
Estimate: the biological half-life of the substance.
the volume of distribution of the substance.
the renal plasma clearance of the substance.
the extrarenal plasma clearance of the substance.

Ezxercise 6

Domingues et al. (34) studied the fate of exogenous creatinine in the dog.
The following data are taken from an experiment in which 6.66 gm. of
creatinine were injected intravenously into a 20.2-kg. dog at time zero,
and the concentration of creatinine in plasma was subsequently deter-
mined. Evidence was obtained that practically all of the injected creatinine
was excreted unchanged by the kidneys. The data have been corrected for
the small amount of endogenous creatinine present, so that the values
given are for the exogenous creatinine only.
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Time of Plasma
Blood Collection (£) Creatinine (C4.¢)

min. mg./100 ml.
12
1745
34
47
611
9214
12214
18214
242
302
36315
42214
48415

.P.mmﬁno. &rp.e these data are in accord with the two-compartment model
depicted in Figure 8-5, and that they may therefore be fitted by a double
exponential of the general form:

Q;.h = Qnmlr.i + Q..WQI»...L
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where

C4.. = the concentration of creatinine in plasma at time ¢
G., Gy, ky and k. are parameters to be estimated from the data.
A. Estimate the parameters of the double exponential equation.
B. Estimate ka5, buwv, ksos, Va, (Vdist)s, , (Vdist), and (Vel).

Ezxercise 7

Prove that when both k4.ou: and ks.ous are zero, so that the two-com-
partment system of Figure 8-4 is closed, Equation 8-25 (multiplied by
Q:ov t0 convert it to an equation for the quantity of solute in A at time ¢)
reduces to Equation 8-23.

Ezercise 8

Prove that Equation 7-52 for equilibration by diffusion in a closed two-
compartment system is a special case of Equation 8-23, the general equation
for equilibration in & closed two-compartment system.

9

FURTHER KINETIC PROBLEMS. FLUID FLOW,
METABOLIC TRANSFORMATIONS

9-1. Transport by Fluid Flow

In a number of important problems a solute is carried into or out of a
compartment by an actual flow of fluid through the compartment. Pro-
vided the underlying assumptions remain valid, the equations previously
developed for the kinetics of distribution can be applied equally well to
problems of actual flow merely by substituting flow, V, for clearance,
(Vel). For example, Equation 8-5 which gives the fundamental relation-
ship between rate constant, compartment volume, and clearance becomes

N,.:.l.ﬂ = .ﬁ.\s..vk\dw:. Awnwv

where
V wax = the flow (i.e., volume of fluid per unit time) from W to X

Briefly, the underlying assumptions are that the compartment volumes
remain constant, that mixing within each compartment is instantaneous,
and that the clearance, now the actual fluid flow, by each pathway remains
constant. In addition, we have usually assumed hitherto that a single dose,
Quot, of a solute, S, was introduced at time zero into Compartment W.
We shall now see that by restricting consideration to a single compartment
we can deal with certain problems in which the concentration of S in the
inflow is variable and in which mixing is not necessarily instantaneous.
However, we shall retain the assumptions that the compartment volumes
and the flows are constant.

In the majority of physiological problems, the fluid which is flowing is
blood. Very often the objective is to estimate blood flow from observations
of how the concentration of some solute in the blood going to and coming
from a particular region varies with time as the region adds solute to or
removes solute from the bloodstream. The solution of such problems de-
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