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TRANSFER OF SUBSTANCES BETWEEN BIOLOGI-
CAL COMPARTMENTS. SIMPLE DIFFUSION

This chapter and the following two chapters will be concerned chiefly
with how solutes get from one place to another in physiological systems.
Only the most elementary aspects of the problem will be presented here,
for an extended discussion would require us to consider major portions of
the fields of physiology, pharmacology, biochemistry, and biophysics.

7-1. Steady States and Equilibrium States

Throughout the subsequent discussion we shall be using the terms,
“steady state” and ‘“state of equilibrium” (or simply “‘equilibrium”).
These terms are often confused or used as though they were synonyms.
Since they have entirely different meanings, we must begin by distinguish_
ing clearly between them. This is most easily done by means of the hy.
draulic analogy which is illustrated in Figure 7-1.

W and X are two reservoirs connected by an intervening pipe. Water
can flow into W from a faucet, and out of either W or X by a drain. In the
various diagrams the direction of flow is indicated by arrows. The reader
should have no trouble in following the changes of inflow, flow between
W and X, outflow, and amounts of water in the reservoirs, which are
depicted in the diagrams. With respect to water, reservoir W is in equilib-
rium with reservoir X when there is no net transfer of water between them, i.e.,
when the flow through the intervening pipe is zero. This may (Fig. 7-1d)
or may not (Fig. 7-1b) coincide with a steady state. Reservoir W is in a
steady state when the quantity of water in W remains constant, i.e., when
the flow into W exactly equals the flow out of W. Again, this may (Fig.
7-1d) or may not (Fig. 7-1¢) coincide with equilibrium between W and X.
When it does, we may speak of a steady state of equilibrium. Notice that
the concept of equilibrium involves at least two regions so connected with

each other that transfer can occur between them in both directions, whereas

the concept of a steady state can be applied to a single region. Notice, too,
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Fig. 7-1. Hydraulic Models to Ilustrate the Terms “Steady
State’” and ‘“Equilibrium”

Model a. Neither 3 steady state nor an equilibrium. Model b. W and X are in equi-
librium with each other, but neither is in a steady state. Model ¢. (inflow equal to
outflow). Both W and X are in a steady state, but they are not in equilibrium ﬁz..w
each other. Model d (inflow equal to outflow). W and X are in a steady state of equi-
librium. Model ¢ (inflow equal to outflow). W, X, and Y are each in a steady state,
but only W and Y are in equilibrium with each other.

that in a system with several reservoirs part of the system. may be in
equilibrium, or even, as in Figure 7-le, a steady state of mccéozca. C\
and W) when another part of the same system (W and X ) is not in equilib-
rium. Ordinarily, however, when one part of a system is in a steady state
so also are all other parts of the same system. )

Tn accordance with the illustration just discussed, we shall now give
more general definitions of equilibrium and of steady state.

Let S = the substance which is being transferred
Wand X = two interconnected compartments
(dQs/dt)w.x = the rate of transfer of 8 from W to X at ﬂBm ¢
(dQs/dt) x.w = the rate of transfer of S from X to s\«.p& QBW ¢
dQs.w/dt = the rate at which the quantity of S in W is chang-

ing at time ¢ .

dQs. x/dt = the rate at which the quantity of S in X is chang-
ing at time ¢

Then, W and X are in equilibrium with respect to S when there is no net

transfer of S between them, i.e., when (dQs/dt) wox = (dQs/dl)xaw - .S\

is in & steady state with respect to S when the quantity of S in W remains
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constant, t.e., when dQs.»/dt = 0. In the steady state, the total quantity of
S entering W per unit-of time must be exactly equal to the quantity of S
leaving W per unit & time. Similarly, X is in a steady state when dQs.x/
dt = 0. /

Note carefully the distinction between (d@s/df)w.x which means the
rate at which S is being transferred from W to X at time ¢, and dQs.w/di
which means the rate at which the quantity of S present in W is changing
at time ¢. In the hydraulic system of Figure 7-1, the substance, S, whose
transport was under scrutiny was water. But S might equally well be a
solute, a radioactive isotope, or even an electric charge. And in general,
W and X are not called reservoirs but rather pools or compartments as

defined in the next section.

7-2. What Is Meant by the Term ‘“Compartment’’?

Suppose we have a rectangular chamber filled with a solution which is
divided into two parts by an extremely thin barrier extending across the
middle of the chamber (Fig. 7-2). Suppose further that the molecules of
a particular solute, S, are able to cross the barrier either by going d?oc.mr
holes or “pores” in the barrier or by traversing the substance of the barrier
itself. Finally, suppose the solution on each side of the barrier is so well
stirred that, when S is added to either side, it immediately reaches a uni-
form concentration on that side. However, because of the barrier, instan-
taneous mixing of the fluid on one side with the fluid on the other side does
not occur, so that it takes a measurable time for S to approach a final
steady state of equilibrium across the barrier. Under these circumstances

F16. 7-2. Two Well-stirred Compartments, Separated by a Barrier
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the reader will readily agree that the barrier divides the chamber into two
distinet compartments. There they are! We could, if we wished, measure
them—length, breadth, and depth. Like the compartments in a Pullman
car or an egg box, they are real physical entities. Yet it is not their physical
reality which identifies them as separate compartments in the sense in
which we shall use the term; ¢ is rather the behavior of S in the system. For
example, suppose that the “barrier” were perforated so freely with big
holes that mixing of S across it was complete before we could measure the
concentration of S on either side. Then as far as our study of S is concerned,
there would be only one compartment. At the other extreme, suppose the
barrier were completely impermeable to S. Then also, as far as our study
of S is concerned, there would be only one compartment, i.e., the one into
which S was originally placed. The other side might just as well not be
there at all.* We are justified in talking about two compartments only
when we can actually investigate the rate of transfer of S from one side
to the other.

Let us take another example. If radioactive potassium ions are added
to a well-shaken suspension of red blood cells in an isotonic fluid, the rate
at which the radioactive potassium enters the red cells can be studied by
removing aliquots from time to time and measuring the radioactivity n
the centrifuged cells, or the supernatant fluid, or both. Now there are
millions of individual cells in the suspension, each constituting a separate
little physical chamber. But the technique of measurement allows us to
study only what is going on in the group of red cells taken as a whole. There
are, therefore, only two compartments—cells and surrounding fluid.

As a final extension of the meaning of the term “compartment” consider
the chemical state of jodine in blood plasma. Some of the iodine is inorganic
iodide ion, while some—in the thyroid hormone—is organic iodine, chiefly
in thyroxine. No iodine is exchanged between these two forms except by
complicated processes of hormone synthesis in the thyroid gland or hor-
mone degradation in the tissues. For the mathematical description of
iodine metabolism, it is convenient to regard inorganic iodide (everywhere
in the body) and hormonal iodine (in all extrathyroidal tissues) as existing
in two separate compartments, even though physically both forms of iodine
oceur together in plasma and in various other body fluids.

In accordance with the broadening of meaning illustrated by these
examples, we may define the term “compartment” as follows:

If a substance, S, is present in a biological system in several dis-
tinguishable forms or locations, and if S passes from one form or loca-

*In the present argument, we neglect any osmotic or electrostatic effects which
S may produce across the barrier.
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tion to another form or location at a measurable rate, then each form

or location constitutes a separate compartment for S.
It may seem strange to lump different chemical forms and different loca-
tions together in this definition, but in fact the mathematical description
of transformation from one compound to another is so similar to the mathe-
matical description of transportation from one place to another that the
apparent incongruity is justified. In most of this chapter, however, we
shall be concerned only with the actual movement of substances from one
place to another.

7-3. The Importance of Rapid Distribution within a Compart-
ment. The YVolume of a Compartment

The definition of a compartment given above is a definition of sheer
convenience. It allows us to postulate as many compartments or as few
compartments as are required for analyzing a given problem. But there is
one important restriction implicit in the definition which limits our freedom
to choose what we shall regard as a compartment: The S in one part of a
compartment must be able to interchange rapidly enough with the S in
all other parts of the same compartment so that for the particular problem
at hand we do not have to worry about transport of S within the compart-
ment. For if S were too slowly distributed, we would be forced to postulate
not one but two or more different compartments. This does not mean that
the concentration of S must necessarily be uniform throughout the com-
partment. It does mean that if a small increment of S is added to one part
of the compartment, the added S must soon permeate the entire compart-
ment so that the concentration of § in all parts will undergo the same
proportional increase. For example, when the synthesis of thyroid hormone
has been blocked by a drug such as thiourea, the actual concentration of
iodide ion in the thyroid gland may be many times higher than in plasma.
Yet the iodide ion in the thyroid exchanges'so quickly and freely with the
iodide ion in the blood stream that both may usually be regarded as be-
longing to the same iodide compartment. (For an example in which this is
not true, see Exercise 6, Chapter 9.)

Since a single compartment may consist of regions with different solute
concentrations, it becomes necessary to choose one of its regional concen-
trations as a reference standard and to pretend that the entire quantity of
S in the compartment is at a uniform concentration equal to the real con-
centration of S in the reference region. This pretense allows us to define
the volume of the compartment as the volume it would have if all of the S
contained in it were actually distributed at a uniform concentration equal
to that in the reference region. For example, suppose that 20 L. of extra-
cellular fluid (represented by plasma) contained inorganic iodide at a
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concentration of 3 pg. per liter, and that 0.04 L. of thyroid gland contained
inorganic iodide ion at a concentration of 300 pg. per liter. The total iodide
in the iodide compartment would then be (3)(20) -+ (300)(0.04) = 72
pg. Now 72 pg. would have to be distributed through a volume of 24 L. to
make a uniform concentration equal to the actual concentration in plasma,
namely, 3 ug. per liter. We would say accordingly that the volume of the
iodide compartment is 24 L. To be absolutely specific, we should say that
the volume of the iodide compartment, with respect o the iodide concentra-
tion in plasma, is 24 L.; for in theory it would be equally correct to say
that the volume of the compartment is 0.24 L. with respect to the concenira-
tion of tnorganic todide in the thyroid gland. But it is rarely necessary to
make this distinction. When the reference concentration is not specified,
it is commonly understood to be the concentration in plasma which can be
sampled and analyzed directly. The imaginary compartment volume thus
defined is really a “volume of distribution” (see Section 8-5).

Three processes contribute to the rapid distribution of various substances
throughout various compartments. TFirst, stirring and mizing by currents
within  body of fluid. This is obviously important in the blood stream, in
the lumen of the intestine, and presumably in certain other hollow viscera
which contain fluid. Second, actual transportation of the substance by a
flowing stream. It is the interconnection of remote regions by the all-
pervading blood stream which allows us to regard “extracellular fluid” for
many purposes as a single compartment. Both of these processes can dis-
tribute substances rapidly over considerable distances. In contrast the
third process, diffusion, is quite effective in distributing solutes over very
short distances, but is practically useless over long distances. To under-
stand why this is true, we must examine Tick’s law of diffusion.

7-4. Fick’s Law of Diffusion

Consider an unstirred solution of a solute, S, maintained at constant
temperature, in which the concentration of S is not uniform throughout
the solution but varies from place to place. Consider a very small cubical
volume of this solution, measuring dz by dy by dz units of length, at some
point where there is a concentration gradient of S (Fig. 7-3). Let the con-
centration gradient be in the # direction so that one passes from a region
of higher to a region of lower concentration as one proceeds in the direction
of increasing distance along the z axis. Now, because of the random move-
ments of thermal agitation, molecules of S will be entering and leaving the
cube on all sides. Since there is no concentration gradient in the y direction,
the mean concentration of S at the top face of the cube is equal to the mean
concentration at the bottom face, so that on the average as many mole-
cules of § traverse the cube from top to bottom as from bottom to top. There
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Frg. 7-3. An Infinitesimal Cube through Which Diffusion Is Occurring

The cube is so oriented that the concentration gradient for 8, the diffusing solute,
lies parallel to the z axis and perpendicular to faces 4 and B. For the rate of transfer
of solute, (dQs/dt) to be positive in Equation 7-1, distance along the z axis must be
measured in the direction of transfer, .e., from left to right in the figure (arrow).
Accordingly, the distance at B is greater than the distance at 4, so that the increment
of distance, dz, is positive. But the concentration at B is less than the concentration
at A, so that the increment of concentration, —dCs (which must be measured in the
same direction), is negative.

is, therefore, no ne! movement of § in the y direction. The same is trueof the
2 direction. But in the z direction, more molecules of S will happen to
traverse the cube from face 4 to face B than in the opposite direction from
face B to face A. (There is nothing mysterious about this. It is simply that
at face A, where the concentration of § is higher than at face B, there are
more molecules moving about in all directions than there are at face B.)
As a consequence, there is a net transfer of S by diffusion in the » direction.

What factors will determine how many moles of S will be transferred
from face A to face B per unit time? In other words, upon what will the
net rate of transfer of S, (dQs/dt), depend? To begin with, it will be directly
proportional to the concentration gradient, 4.e., to the decrease in concen-
tration per unit ¢ncrease in z. For our infinitesimal cube, this is —dCs/dz.
Notice that we cannot properly say that the rate of transfer is directly
proportional to the concentration difference itself unless we regard the
distance, dz, as fixed. It is the difference in concentration per unit of dis-
tance (the concentration gradient) which determines the rate of movement
of 8. If we doubled the distance over which the same concentration differ-
ence occurred, the gradient, and hence the rate of transfer of z, would be
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cut in half. Next, the quantity of S transferred per unit of time is obviously
directly proportional to the area through which the transfer is taking place.
Double the ares of faces A and B and the amount of § transferred from 4

‘to B will double. For our infinitesimal cube, the area is (dy)(dz). With

these factors identified, we can write an equation for rate of transfer, by
defining an appropriate proportionality constant, Dy

(dQs/dt) .= Ds(dy){(dz)(—dCs/dx) (7-1)

Equation 7-1 is a general form of Fick’s law of diffusion. It is closely analo-
gous to the corresponding equation for the rate of transfer of heat along a
temperature gradient. The proportionality constant, Dgs, is called the
coefficient of diffusion of S, or the diffusivity of S. In order to give a more
well-defined meaning to diffusivity, let us solve Equation 7-1 for Ds :

— dQs/dt
Ds = gy (@) (—d0s/&) (7-1a)

This makes it clear that D is equal to the number of moles of S which
would diffuse in unit time across unit area when the concentration gradient
is unity. Since the dimensions of Ds are [L*T™Y, its actual numerical value
will depend upon what units of measurement are chosen for time and
distance.

D, varies with temperature, with the molecular weight of S, and with
forces of interaction between molecules of S and molecules of the solvent
which tend to impede the movement of S from one place in the solution
to another. D5 also varies somewhat with the concentration of S, particu-
larly when the concentrations are high (61). But the variation with con-
centration is usually small enough to be neglected in the ranges of concen-
tration with which physiologists are concerned. In gases, diffusion is much
more rapid than in liquids because the mean free path of a molecule be-
tween collisions is longer and the forces of interaction are weaker. Graham’s
law, which states that diffusivity is inversely proportional to the square
root of molecular weight, is followed rather closely in gases but only ap-
proximately in liquids (57). For a comment on the relative rates of diffusion
in gases and in liquids, see Exercise 2.

The validity of Equation 7-1 is not restricted to any particular pattern
of diffusion or geometrical arrangement of concentration gradients, for it
describes only what is happening in an infinitesimal volume of solution
during an infinitesimal interval of time. In order to calculate the actual
changes in concentration which occur through measurable distances and
during finite intervals of time, we must use some integrated form of Equa-
tion 7-1. The technique of integrating such an equation is complex and
need not concern us here, but it is important to realize that different integral
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T16. 7-4. Diffusion in a Finite System with Simple Geometry
The conditions illustrated are for time zero. The solution of Fick’s general law of
diffusion for this system is discussed in the text.

equations must be used for different geometrical arrangements. An equa-
tion which is valid for diffusion from a cylindrical volume cannot be used
for diffusion from a spherical volume. Specific solutions for a number of
geometrical arrangements have been worked out (25, 56, 61, 93). As an
illustration, consider a uniform solution of S, at an initial concentration of
Csa, adjacent to pure solvent in a long rectangular tube. At time zero, a
sharp boundary between solution and pure solvent extends across the tube
at right angles to its long axis at the point where z equals zero. The col-
umns of both solution and solvent must be long enough so that no concen-
tration changes will occur at the extremities of the tube during the time
of observation (Fig. 7-4). For these conditions, Equation 7-1 may bé
simplified somewhat because throughout the entire system the diffusion
gradients will remain parallel to the x axis. Accordingly we can replace
the infinitesimal area (dy)(dz) by the actual cross-sectional area of the
tube, A = ye*

where (dQs/dt). is the quantity of solute diffusing per unit of time across
the plane (of area 4) which lies perpendicular to the diffusion gradient at
a distance z units of length away from the initial boundary where = 0.

For the arrangement of Figure 7-4, the integral form of Equation 7-2 is

Cone = (Cod [1 = &1V [ Fay | (7-3)

where y is not a distance (as above) but is defined as

y = z/2V/Dst (7-4)

* Equation 7-1 had to be written in terms of an infinitesimal area (dy)(dz) because
in the general case, the direction of the concentration gradient (which is always nor-
mal to a surface of equal concentration) may vary from point to point. For example,
if 8 were diffusing outward from a spherical volume, the concentration gradients
would be in the direction of the radii of the sphere which, of course, point in different
directions.
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and Cs.,.. is the concentration of S at point x and at time ¢. Cs, is the con-
centration of S in the original solution.
Now the expression

@ [ ey

is called the error function of y and may be symbolized by “erf(y).” It is
closely related to the normal curve of error (normal curve of distribution),
a fact which reminds us that the distribution of diffusing molecules is the
result of random motions and accordingly follows statistical laws. Values of
erf(y) for various values of y may be looked up, for example, in Dwight’s
Mathematical Tables (36). Alternatively, they may be calculated from a
table of integrals of the normal curve by a method given in the Handbook
of Chemistry and Physics (58). We may therefore simplify Equation 7-3 by
writing it in the form

Cszt = (Cs.0/2) [1 — erf(y)] (7-5)
Combining Equations 7-4 and 7-5,
Qm.u.» = AQMc\Mv :. et G&AH\M/\ .Umnvu_ A.Nl@V

Now as t approaches infinity, z/ 24/ Dst approaches zero, 1 — erf(z/2+/Dst)
approaches unity, and Cs...; approaches Cso/2. Hence,

Csom = Cs.0/2 (7-1)
Combining Equations 7-6 and 7-7 by eliminating Cs,, and rearranging,
1 - AQ?H;\Q?H.SV = olm».\w/\ Um& A.N-mv

But the ?&oaoz Cs.2.4/Cs.z. 15 simply the fraction of the final equilibrium
oowogﬁ@.sg at point z which has been attained at time ¢. If we symbolize
this fraction as F.q , we can rewrite Equation 7-8 as

1 — Foq = exf(z/2v/Dst) (7-9)

For any particular fraction of equilibrium, the error function will be a
constant, and for any constant error function, x/24/Dgt will likewise be
a constant. Let us call this latter constant K, so that

Kr = 2/2V/Dst (7-10)

For any particular F., it is easy to obtain the numerical value for Kr

from a table of the error function. Equation 7-9 shows that we must mwmm
locate the value of 1 — F.q in the body of the table. Then by Equation 7-10
the corresponding marginal entry will be Kr, . To calculate the time, EFoq »
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needed to attain the specified fraction of equilibrium, we must square
both sides of Equation 7-10 and solve for ¢:

tr,, = (2°/Ds)(1/2Kr.)’* (7-11)

Equation 7-11 states that the time needed for S to attain any specified
fraction of its final equilibrium concentration is inversely proportional to
the diffusivity of S and directly proportional to the square of the distance
through which S must diffuse. It is for this reason that distribution of a
substance solely by diffusion occurs rapidly enough over very short dis-
tances but is so slow as to be virtually useless over long distances. To get
some feeling for the actual times and distances involved, let us work out a
specific example.

mﬂmsﬁx

The diffusivity of nitrogen in water at 20°C. as tabulated by Hitch-
cock in Hober’s Physical Chemistry of Cells and Tissues (57) is 2.02
(10-%) em? per second. If nitrogen is allowed to diffuse under condi-
tions for which Equation 7-11 is valid, <.e., conditions similar to those
of Figure 7-4, how long will it take to achieve 95 per cent of equilib-
rium, F., = 0.95, at various distances from the original boundary?

In a table of the error function, we find that 1 — Fe, = 0.0500 in
the body of the table corresponds to Kr,, = 0.0443 in the margin of
the table. Substituting this value, and the value for Dy, in Equation
7-11, and performing the indicated arithmetic, we obtain

toss = 6.31(10%)z°

where ¢t must be in seconds and z in centimeters because D was ex-
pressed in square centimeters per second. From this equation, it is
easy to calculate values of {y.e; for the values of z given in Table 7-1.
This example shows that by diffusion alone small molecules can achieve
practically complete (95 per cent) equilibrium in a matter of seconds at
distances of the order of cellular diameters and intercapillary distances.
(For a more rigorous discussion, based upon diffusion from a cylindrical
capillary, see Kety (64) and Roughton (93).) Indeed, the rate of distribu-
tion of essential metabolites by diffusion through cells and tissues is one
of the most important factors which determines the optimal size of cells
and the optimal spacing of capillaries. At distances of the order of 0.1 mm.,
95 per cent of equilibrium is still achieved within a few minutes. But at
distances much greater than a millimeter, the time to achieve 95 per cent
of equilibrium by diffusion alone is to be reckoned in days. However, for
two reasons these exemplary values for 95 per cent of equilibrium tend to
overemphasize the ineffectiveness of diffusion as a distributing agency. In
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TABLE 7-1

Time required to reach 95 per cent of equilibrium by diffusion through
various distances in the system of Figure 7-4

Distance Time for 95%, of Equilibrium at x
%% (em.?)
x (cm.) 10,95 (sec.) min. br. days

1 . 1(10-%) 0.063
3 . 9(107%) 0.57
10 . 1(10-%) 6.3
30 9(10-%) 57
100 . 1(107%) 630
300 . 9(10%) 5,700
1,000 . 1(107%) 63,000
3,000 . 9(1072) 570,000 6.6
10,000 . 1.0 6,310,000 73

the first place, over a considerable range of values of Feq the time calculated
for any particular value of Ds and any particular distance is roughly in-
versely proportional to the square of the fraction of equilibrium not yet attained,
i.e., inversely proportional to (1 — F.)? (Exercise 4). For example, the
time needed to attain 50 per cent of equilibrium at any given point is
roughly 1/100 of the time for 95 per cent of equilibrium. In the second
place, the times calculated above are for 95 per cent of equilibrium at a
single point (or, more properly, a single plane) z cm. away from the initial
boundary. But clearly the average fraction of equilibrium attained through-
out the entire volume lying between the initial boundary and the plane at
z is greater than 0.95 (Exercise 3).

7-5. Diffusion between Two Different Phases

If a diffusing substance must cross an interface between two different
media, the absolute rate of diffusion but not the rate of approach to equilib-
rium, will be influenced by the distribution ratio for the substance between
the two phases, 4.e., the ratio of concentrations at equilibrium.

Exzample

Figure 7-5 illustrates the diffusion of two different gases, 4 and B,
from a gas phase into a liquid phase. For simplicity, let A and B have
the same constant concentration, 3.0 mM. per liter in the gas phase,
let the gas phase be well mixed, and let 4 and B have the same dif-
fusivity in the liquid phase which is not stirred. Gas A has a solubility
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F16. 7-5. Concentrations of a Gaseous Solute Diffusing Freely between a Gas
Phase and a Liquid Phase

The gas phase is assumed to be well stirred; the liquid phase, unstirred. At the gas-
liquid interface (at 0 mm.) it is assumed that equilibrium is established at once, so
that the partial pressure of the diffusing gas in the gas phase is equal to its partial
pressure in the liquid phase at the interface.

In the graph at the left, the solubility of gas A in the liquid is 2, so that at the
interface the millimolar concentration suddenly doubles as one passes from gas phase
to liquid phase. This provides a relatively high concentration gradient for diffusion
through the liquid. In the graph at the right, the solubility of gas B in the liquid is
0.5 so that the.concentration of gas B in the liquid at the interface is only one fourth
as great as for gas A, and the concentration gradient for diffusion is therefore only
one fourth as great. Note, however, that the proportion of the final equilibrium con-
centration in the liquid (horizontal broken line) attained by diffusion at a given dis-
tance from the interface is the same for both gases. For a given partial pressure in the
gas phase, gas A diffuses into the liquid four times as fast as gas B. But the total
quantity of gas A which must diffuse to reach equilibrium is also four times as great
as for gas B. Hence the rate of approach to equilibrium is the same. (It is assumed in
this example that the diffusivity of the two gases in the liquid is the same.)

in the liquid (Z.e., a liquid/gas distribution ratio or partition coeffi-
cient) of 2.0.* Gas B has a solubility of 0.5.

To begin with, consider the concentrations just at the boundary
between gas and liquid. If we think of the boundary itself as a plane
with no measureable thickness, we will see that equilibrium must be
instantaneously established and continuously maintained between
the last layer of gas phase before the boundary and the first layer of
liquid phase after the boundary. Hence, the concentration of gas in

* Note that for gases the terms solubility, liguid/gas distribution ratio, and liquid/
gas partition coefiicient are all synonymous.
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the first layer of liquid, 6.0 mM. per liter for gas 4, and 1.5 mM. per
liter for gas B, will be equal to its concentration in the gas phase,
here 3.0 mM. per liter, multiplied by its solubility. Thus the concentra-
tion gradient in the liquid is directly proportional to the solubility of
the gas. By Fick’s law, therefore, the moles of gas transferred by diffu-
sion per unit of time must also be directly proportional to the solu-
hility, and in this sense gas 4 diffuses into the liquid four times as
fast as gas B. Note well, however, that to achieve its final equilibrium
concentration throughout the liquid the total amount of gas A which
must be transferred is also four times as great as for gas B. Conse-
quently, when a gas diffuses into a liquid, the rate of approach to its
equilibrium concentration in the liquid is independent of its solubility.
Although the rate of approach to equilibrium when a substance diffuses
between two phases is independent of the distribution ratio, we shall see in
the next section that distribution ratios may indeed influence the rate of
equilibration when two phases are separated by a third phase.

7-6. Diffusion across Thin Membranes

We have already concluded that diffusion alone can maintain a prac-
tically even distribution of small molecules throughout such volumes as
are contained within most single cells, although we have no right to assume
a uniform concentration of such substances as oxygen and carbon dioxide
which are very rapidly consumed by, or produced by, the cell. Diffusion
can also account for the rapid distribution of solutes through the extra-
cellular fluid between capillaries and cells. We must now consider the diffu-
sion of substances across the intervening hiological membranes such as the
plasma membrane of cells. For simplicity the following discussion will
be limited to the passive diffusion of uncharged solutes through homoge-
neous membranes. Whereas the conclusions which we reach from this
simple approach will be applicable, with suitable qualifications, to the
behavior of certain real membranes, the reader must realize that the whole
subject of transport of substances across biological membranes by active
and passive processes is exceedingly complex and that we are here delib-
erately avoiding its most engrossing intricacies.

Let us consider a homogeneous fluid compartment, W, separated from
another homogeneous fluid compartment, Z, by a thin homogeneous mem-
brane, . Suppose first that W, Z, and M are all composed of the same
medium, so that they are divided into two separate compartments and an
intervening membrane only in our mind’s eye (Fig. 7-6¢). Then if a solute,
8, is introduced into compartment W at the side farthest away from M, it
will begin to diffuse without special hindrance across W, M, and Z at a
uniform rate determined by a single coefficient of diffusion. Because the
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Fi1G. 7-6. A Membrane Viewed as a ‘“‘Resistance’ to Solute Flow
In Graph g, the thin membrane, M, offers no special hindrance to the diffusion of
solute, just as in Graph ¢ the short resistance, Ry, offers no special hindrance to the
m.oi of current. But in Graph b, the thin membrane severely limits the rate of diffu-
sion, just as in Graph d the short wire of high resistance limits the rate of current
flow. In Graphs b and d, by far the greater part of the total gradient (of concentration
or voltage) is across the rate-limiting segment of the system.

&memmosm of the system are small, the concentration gradients will rapidly
disappear as S hecomes well distributed by diffusion throughout the whole
system. Now let M assume more realistic properties as a membrane which
considerably slows the diffusion of S, either because M has a limited total
area of ““pores’” through which S can diffuse (83), or because the physico-
chemical nature of M impedes the progress of S across it. Then the total
time needed for transfer of a given amount of S from W to Z will be sub-
stantially increased, so that the rate of change of Qs in both W and Z will
be small compared with the rate of distribution of S by diffusion through-
out these co..partments. As a result, both W and Z behave at all times as
if they are well stirred, and the entire concentration gradient is practically
confined to M (Fig. 7-6b). The situation is somewhat similar to the flow
of electrons through a circuit in accordance with a voltage gradient supplied
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by a battery. When the terminals of the battery are connected by three
wires in series whose resistance per unit length is equally low, the voltage
gradient is uniform through the whole circuit and electron flow is rapid
(Fig. 7-6¢). But when the middle wire is replaced by one with a consider-
ably higher resistance, the time needed for transfer of a given number of
electrons from one terminal of the battery to the other is much increased,
and practically the whole voltage gradient occurs across the high resistance
(Fig. 7-6d).

Now it can be shown that if a given difference of concentration is imposed
between W and Z across M, and if M is sufficiently thin (say 10 z or less)
the quantity of S entering M per unit of time at its interface with W will
very rapidly become practically equal to the quantity of S leaving M per
unit of time at its interface with Z. (For a proof of this statement see
Jacobs (61).) But if equal quantities per unit of time pass across both
faces of M, the same quantity per unit of time must pass across every plane
within M which lies parallel to the two interfaces. In other words, (dQs/dt)=
is constant everywhere within M. But from Equation 7-2 it is evident that
if (dQs/dt).is constant, the concentration gradient in M, (—dCs/dz)w ,
must also be constant throughout M, and must therefore be equal to the
tota] difference in concentration across M, —ACs.x, divided by the total
thickness of M, Az :

(—dCs/dzx)u = —ACs.u/AZy = —(Csmz — Coaw)/ By =
(Cs.uw — Cs.30.2) /DTy

where Cs.u.w and Cs .z are the concentrations of S in the membrane at
its interface with W and at its interface with Z, respectively.

Combining Equations 7-2 and 7-12 with the elimination of —dCs/dx, we
obtain the following equation for diffusion from W to Z across a thin mem-
brane:

(dQs/dt) » = (dQs/dt)w-z = Ds.sAu(Csuw — Csmz)/BTu (7-13)

Equation 7-13 is a very useful simplification of Fick’s law. Notice that
it has to do entirely with what happens ¢n the membrane. Notice in particu-
lar that Ds.x is the effective diffusivity of S in the membrane, not in W
or Z. If it is known that S diffuses through pores in the membrane which
are filled with the same medium as W and Z, comparison of the diffusivity
in the membrane, D5 ., with the diffusivity in free solution provides a
means of estimating what proportion of the total area of the membrane,
A, Is, in effect, available for free diffusion (83). But for the most part the
plasma membrane of cells does not behave like a porous membrane, so
that substances diffusing from the outside to the inside of cells presumably
do so by dissolving in the substance of the membrane. For such membranes,

(7-12)
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let Bscywy be the equilibrium distribution ratio or partition coefficient for
S between M and W:

Bsogwmy = (Cs.u/Cs.w)eq (7-14)
where the subscript eq means “at equilibrium.” Similarly,
Rsanz = (Cs.1/Cs.2)ea (7-15)

ﬁpww if we assume, as we did before, that equilibrium is always present at
the Enozﬁoo.m, and that compartments W and Z are well stirred, we can
apply Fquations 7-14 and 7-15 directly to the interfaces:

Qm.i.x\ = NwEE\sQQm.:. AQ-HGV
and
N Cs.nz = RsynCs.z (7-17)
Substituting these values into Equation 7-13,
(dQs/dt)waz = Ds A u(RsuwmCsw — RsonCs.z)/Ary (7-18)

I .ﬂ W and Z are both aqueous media, it is likely that Rgsuemw and Rsousz
will be equal, so we may define

Rseusy = Bscuwy = Rsoyn (7-19)
Combining Equations 7-18 and 7-19,

(dQs/dt)wz = Ds. A uRscujnay(Csw — Cs.2)/ %y (7-20)

There is evidence from many sources that the plasma membrane consists
largely of lipid (31). According to Equation 7-20, the rate of diffusion of S
across such a2 membrane should be directly proportional to the equilibrium
distribution ratio for S between the membrane and the adjacent aqueous
media. In a general way, this prediction is borne out by experiment. Com-
moE&m with a high oil/water partition coefficient (which is not necessarily
identical with, but presumably similar to R s m/aq)) usually do penetrate cells
more rapidly than compounds of similar molecular weight which are not as
soluble in oil (31). This fact is very important, for the distribution of many
drugs in the body is strikingly influenced by their relative solubility in
aqueous and lipid media (see Section 10-17).

Equation 7-20 is a useful summary of how various important factors
influence the rate at which a diffusing solute penetrates a membrane. But
Equation 7-20 was derived from very simple, indeed naive, assumptions
about the partitioning of a diffusing substance between the membrane and
the adjacent aqueous media. By taking account of the successive energies
of activation which a diffusing molecule must acquire first to pass from W

TRANSFER OF, SUBSTANCES BY SIMPLE DIFFUSION 185

to M, then to pass through M, and finally to pass from M to Z, Danielli
has derived a considerably more elaborate theory of diffusion across
nonporous membranes (28). According to Danielli’s analysis, the rate of
diffusion is not directly proportional to the distribution ratio, at least for
substances which diffuse very slowly across the membrane. However, for
present purposes we will neglect this important refinement of theory and
we will continue to use Equations 7-18 and 7-20.

7.7. Practical Measures of Membrane Permeability

As it stands, Equation 7-20 is too complex for most biological applica-
tions. While it may be possible to measure the concentration of a substance
in the two aqueous phases, and the area of the membrane across which
diffusion is taking place, usually no reliable estimates can be made of Ds.x ,
Rscu/a), OF Ay . However, for any particular system, all three of these
quantities can be assumed constant, and they may therefore be combined
by defining a new permeability constant, (kperm) s :

(kperm) s = Ds.auRscumina/ D2 u (7-21)

Notice that (kperm)s has the dimensions of velocity: (LT™Y). We may now
write Equation 7-20 in the simplified form:

(dQs/dt)wsz = (kperm) sA u(Csw — Cs.2) (7-22)

(Joperm) s can be calculated by measuring all of the other quantities in
Equation 7-22. Thus, (kperm) s provides a practical measure of the relative
ease with which different solutes can diffuse across a given membrane.

Still other measures of rates of diffusion across membranes are in use,
particularly when the substance diffusing is a gas. For example, respiratory
physiologists commonly prefer to think in terms of gradients of partial
pressure rather than gradients of concentration. Furthermore, they prefer
to express the quantity of a gas as its volume at standard temperature and
pressure (std T,P), and the concentration of a gas, Cg, as volume of gas
(std T,P) per volume of solution. Then according to Equation 2-27

aePe = Co = Ve r.nia/ Viia (7-23)

where ag is the Bunsen solubility coefficient of gas G (Chap. 2). Pg is the
partial pressure of G in atmospheres. Equation 7-2 may then be written

(dQs/dt), = ADgae(—dPq/dz) (7-24)
for gases in liquids, Q¢ being in units of volume, or

(dQs/dt), = (diffusion constant) A(—dPg¢/dz) (7-25)
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where the diffusion constant is defined as
(diffusion constant) = aeDg¢ (7-26)

and has the dimensions [M~L*T]. The diffusion constant is the volume of
gas (std T,P) diffusing per unit time across unit area in response to unit
gradient of partial pressure. For a further note on this diffusion constant,
see Exercise 1.

Finally, the diffusing capacity of the lung is used to describe the diffusion
of gases between the alveoli and the blood across the alveolar-capillary
“membrane” whose thickness and area are both unknown. The diffusing
capacity for @ is the total volume of G diffusing per unit time when the
mean difference of partial pressure (not the gradient) between alveolar air
and capillary blood is unity. The diffusing capacity has the dimensions
JJJELQE. If the membrane through which G diffuses were simply an
aqueous layer which permitted free diffusion, the diffusing capacity could
be defined as

(diffusing capacity) = De.aqA u¢.0a/ ATy (7-27)

an equation whose sole merit is its dimensional correctness. But it is far
better to think of the diffusing capacity as merely an empirical measure of
the rate at which a given gas diffuses across a membrane of unknown charac-
teristics in response to unit difference of partial pressure.

This brief discussion of several measures of diffusion only begins to
indicate the frustrating confusion of units, dimensions, and definitions
which perplexes students in this field !

7-8. The Kinetics of Equilibration by Diffusion of a Solute be-
tween Two Compartments

Up to this point we have focused our attention upon the process of diffu-
sion across a membrane. Very often, however, we are not as much con-
cerned with what is happening in the membrane as we are with the resulting
changes in the concentration of the diffusing solute in compartments W
and Z. If the volume of compartment W, the volume of compartment Z,
and the total amount of S in the whole system, @s.+0s , all remain constant,
we can easily derive equations for the concentration of S in W and the
concentration of S in Z as functions of time. Figure 7-7 illustrates such a
two-compartment system, together with the intervening membrane whose
thickness, for convenience, has been greatly exaggerated. Actually, we
shall assume that the membrane is so thin that it contains a negligible
quantity of S. Since we shall be concerned only with a single solute, the
subseript S will be omitted from the symbols used in the following deriva-
tion.
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Frc. 7-7. Factors Concerned in the Kinetics of Diffusion of a Solute
from W to Z across a Thin Membrane, M

It is helpful to begin by listing all of the individual factors which charac-
terize the system. o
1. The independent variable is time, t. .
2. At any time, £, compartment W is fully characterized by
Vw , the volume of W (constant) o
Qw.: , the quantity of S in W (variable with S.Bov
3. At any time, ¢, compartment 7 is fully characterized by
V2, the volume of Z (constant) o
Qz.¢, the quantity of Sin Z (variable with time) )
4. At any time, ¢, the membrane, M, is fully characterized by
Ay, the area of M (constant)
% , the thickness of M/ (constant) v
D , the diffusivity of S in M (constant
mn\a , the equilibrium distribution ratio for S between M and W
(constant) .
Ruyz, the equilibrium distribution ratio for S between M and Z
(constant) o .
Since the entire system consists of W, M ,.mum Z, it is itself fully charac-
terized at any time, ¢, by the nine factors listed pdowm. . )
Next, we should list, as equations, all of the relationships which charac-
terize the system. A general equation for diffusion of S across the mem-
brane has already been derived. It is Equation 7-18:

A&@\&viwx = UE\»EANSSQQA - NSNQN.D\D&E A.N-Hmv

We are assuming that the total quantity of S, Quot, remains constant.
Hence,

Qw.e + Qz.: = Qor (7-28)
The concentration of S in compartment W at any time, {, is

Cw.e= Quw./Vw (7-29)
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Similarly, in compartment Z

Czi = @N;\a\n Aﬂ-wov

Now the only process which is causing the quantities and concentrations
of Sin W and Z to change is the diffusion of S across the membrane. We
have already assumed (in deriving Equation 7-18) that, with thin mem-
branes, the rate of entry of 8 into M from W is at all times equal to the
rate of exit of S from M into Z. (This assumption is, in fact, equivalent to
the assumption stated above that the quantity of S within M is negligible.)
Conservation of matter therefore requires

™~ —dQu/dt = (4Q/dt s = dQ/dt (7-31)

Equation 7-31 simply states that the rate at which W is losing (negative
sign) S, the rate at which 8 is diffusing across the membrane, and the rate
at which Z is gaining S, are all equal. Now it should be obvious that at
time infinity the gradient for diffusion across the membrane will have
disappeared. There will then be no further net transfer of S, and the whole
system will be in a steady state of equilibrium. Hence, at time infinity,
Equation 7-31 becomes

|I&©uﬂoo\&~w = AR@\&SQ.'N.S = &@N.B\&n = O A.Nlu.va

Finally, we must note the initial conditions* for the three variables: When
t = Ov @% = @@..ou PH—Q @N = @N.o. >~m0v mi\EQg.o > NNE\NQN.o. w.—Jmem _UOCH-Q..
ary conditions show that the gradient for diffusion is from W to Z, and
that at time zero there may already be some S present in Z. (Our deriva-
tion would be less general if we assumed that when { = 0, Qw = Quot, and
Qz=0.)

We are now ready to derive an equation for Cw.; as a function of time.
For this purpose, we are primarily interested in the changes taking place
in compartment W, and consequently, we should like to eliminate, if possi-
ble, any dependent variables pertaining to M and Z by replacing them by
corresponding variables for W. An obvious first step is to combine Equa-
tions 7-31 and 7-18 so as to replace (dQ/dt)w.z by its equivalent, —dQw/dt:

—dQw/dt = DyA u(RyumwCw.e — RuyzCz.0)/ A% s (7-33)

Since Bquation 7-33 is an equation for the decrease of the quantity of S

* Boundary conditions is the general term for any set of values of the dependent
variables which characterize a particular system at specified values of the independent
variables and which allow one to apply the solution of the differential equation to that
particular systemq. But when, as in this example, the boundary conditions are given for
time zero, they are almost always called initial conditions.

t A general method for deriving such an equation is discussed in Chapters 12-14.
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in W, we would do well to replace the concentrations w.b the equation by
their equivalents in terms of quantity as given in Equations 7-29 and 7-30:

_dQu/dt = DuA ul(RuwQu.i/ Vi) — RauszQz./ Va))/Axw (1-34)

Equation 7-34 still contains a variable, Qz.¢, érmm& does no..o pertain .&-
rectly to compartment W. This fault is easily 880.&& by solving Equation
7-98 for Q.. and substituting the result in Equation 7-34:

NES@%;@SNAQSQI @G;v”— Eﬂ-wm
— dQu/dt = P}% LLE o \ EAV

Equation 7-35 now contains only Qw.; and ¢ as <m.am,c_om.. H.Hwéoéﬁ these
variables are so surrounded by constants that it is a bit difficult to see
what to do next. We may therefore resort to the simple device of momgum
certain new, constants in terms of the old ones, being guided wugoq by
convenience. ‘To indicate that these new constants of convenience have
no clearly defined intrinsic meaning, we will employ for them the very
colorless notation k; , k. , ete. Accordingly let us define

DuA y/ Ay (7-36)
Ruw/Vw (7-37)
Ruz/ V2 (7-38)
= kyQtot (7-39)
Using these constants, we can rewrite Equation 7-35 in the form
—dQu/dt = ku(k:Qw. + keQuw.c — K1) (7-40)
or, by further defining

ks = ki(ke + ko) (7-41)
ks = kika (7-42)

in the still simpler form
—dQw/dt = ksQw.. — ks (7-43)

Now it is very easy to separate the variables in Equation 7-43 so that it
can be integrated:

&@a H q-th
ks — ksQw.c \& ( )

The integral on the left can be found in any table of integrals. The integral
on the right is elementary:

(1/—ks) In (ks — ksQw.) = ¢+ k (7-45)
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where k is a constant of integration which can at once be evaluated from
the initial conditions. When ¢ = 0, Equation 7-45 becomes

k= (1/—ks) In (ks — ksQw.o) (7-46)
Combining Equations 7-45 and 7-46 by eliminating k,
(1/=ks) In (ks — %sQw..) = (1/—ks) In (ks — kQw.o) + t (7-47)
or, multiplying both sides by —Zks,
In (ke — ksQw..) = In (ks — ksQw.o) — kst (7-47a)
Taking antilogarithms,
(ks — keQw.e) = (ks — ksQuw.o)e (7-48)
Dividing both sides by ks , and changing signs,

Now Equation 7-48a is in a form made very familiar by the discussion in
the previous chapter. Evidently Q.. is decreasing toward an asymptote,
Qw., which is equal to ke/ks. Furthermore, the difference between Qu ..
and the asymptote is decreasing exponentially at ks proportion per unit of
time. It will now be interesting to replace these “constants of convenience”
by the original factors they represent so that we can see which of the factors
influence the asymptote and which the rate constant. From Equations
7-37 through 7-42
Nn_\? NS Nowaao» @3»

o = No \0 = = = =
. e T ki Rtk 1T (k/k)

o o+ (2] -0/ [+ (1 2]

N,wn\i ma\a\mk\x = E = Qn.»a\Qi.B = QN.B\QS.S Aq-mov
M .ma\ QN «eq

Equation 7-49 shows that the final equilibrium quantity of S in W is
determined by the total amount of S in the system, by its equilibrium
distribution ratio between Z and W, and by the ratio of volumes of Z and
W. Note that not a single characteristic of the membrane influences the
asymptote, for we have even replaced the two distribution ratios by Rzw ,
the distribution ratio between Z and W. The lack of influence of the mem-
brane on the final distribution is actually just what we ought to expect,

(7-49)

where
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because we have assumed that it contains a negligible volume and a
negligible quantity of S. It is not a third compartment; it is merely a
barrier ‘which slows the attainment of equilibrium—a kind of negative
catalyst!

The rate constant, ks, may be similarly decomposed into its component
factors:

D&E a\s\ a\N

which has the dimension (T, as it should. From Equation 7-51 it is
obvious that the rate of approach to equilibrium is influenced by all of the
characteristics of the membrane, and, in addition, by the volumes of W

and Z.
We may now substitute the original factors, identified in Equations 7-49
and 7-51, for the k-constants in Equation 7-48a:

h@« _ @oon,ﬂ\.g g = ﬁ@ 0 — @»3«\% g
P Ve + BawVe i Vw-+ ReyywVz

bx&\uﬁ‘ wi\uﬂ w%\\NV Q
esﬁ Atw A T V)"
But we originally set out to find an expression for the concentration of 8

in W at any time ¢. Equation 7-52 for the quantity of S may easily be
converted to an equation for concentration by dividing both sides by Vi :

T _ Qo TT _ Quot g
YT Ve + RawV ez YO Vi + RawV 2

. |§§>~§ NWE\:\ mE\Nv Q
exp _” Az A Vw + Ve ‘
Notice that the expression @it/ (Vw + RzwV2z) is the equilibrium con-

centration of Sin W, Cy.«, which is being approached asymptotically as
time increases:

by = Rtk 4 ko) = 2o (B Bar) )

(7-53)

Cwew = 089\:\:“ + mwa\%._\nz = Qoi\:\&iv A.N-.m#v

The denominator, Vw + (RzwV2), is thus the volume of distribution of S
(Vdist) caleulated with reference to its concentration in compartment w.
In other words, Vi + (RzwVz) is the volume which would contain an
amount of S equal to Q:os at & uniform concentration of Cw.e -
Derivation of an explicit equation such as 7-53, in which every symbol
has a clearly defined physical meaning, is always instructive and intellec-
tually satisfying. But real membranes are structurally much more complex
than the simple homogeneous model here assumed. So even if we had
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detailed information about their physical properties, we might well find
that Equation 7-53 was not really applicable to them. Therefore, in the
next chapter we must turn to a less thorough and explicit, but more gener-
ally useful, analysis of the kinetics of transfer of substances between bio-
logical compartments.

EXERCISES. CHAPTER 7

Exercise 1

\ In textbooks of physiology it is commonly stated that in aqueous media
carbon dioxide diffuses about 20 times as rapidly as oxygen. For example,
Carlson, in the text by Ruch and Fulton (22), pages 796 to 797, states:
“The intrinsic rate of diffusion of any substance is a function of its solu-
bility, its molecular weight, and the permeability of the medium. Although
a larger molecule than O, , CO; is so highly soluble in the body fluids that
it diffuses through the tissue 20 to 30 times as rapidly as O, does.” What is
the meaning of this statement?

Ezercise 2

Forster (38) states, “Since the diffusion constant in air is about 1 mil-
lion times that in saline . . . diffusion through 1 million microns (1 meter) of
perfectly still gas would only demand a pressure difference equal to that
normally associated with gas exchange across the pulmonary membrane.”
(Itis assumed that the pulmonary membrane is 1 u thick.) Is this statement
justified?

Ezxercise 8

A. V. Hill (56) calculated the time needed for a sheet of muscle 1.0 mm.
thick exposed to a constant concentration of oxygen on one side to attain
by diffusion alone various average fractions of the equilibrium concentra-
tion of oxygen, the average being taken throughout the entire muscle. It
was assumed that no oxygen was consumed by the tissue. For the diffusiv-
ity of oxygen in muscle he used the value Do, = 4.5 X 10™* cm.” per min-
ute. Hill calculated that under these circumstances it would require 5
min. to reach an average of 53.4 per cent of the equilibrium concentration
of oxygen throughout the tissue. Is this of the correct order of magnitude?

Ezxercise 4

Prove the validity of the statement made in the text (Section 7-4) that
“over a considerable range of values of F., the time calculated for any
particular value of Ds and any particular distance is roughly inversely
proportional to the square of the fraction of equilibrium not yet attained,
i.e., inversely proportional to (1 — F.)b”

TRANSFER OF SUBSTANCES BETWEEN
BIOLOGICAL COMPARTMENTS.
GENERAL KINETICS

m-u.ﬁﬂ_um Need for a More General Analysis of Transfer between
Compartments

In Chapter 7 we undertook a detailed analysis of a particular mechanism
—simple diffusion—by which a solute passes from one compartment to
another. But it is often desirable to study the transfer of a drug, or a
metabolite, or a radioactive isotope from one compartment to another
without being concerned about the precise mechanism of transfer. mdm.
example, in the system discussed in Section 7-8 at the msm of Ogv.dmw 7 V.R
we knew Quo: and if we were to measure the concentration of S in m.m:m_
samples withdrawn from W and Z during the approach to equilibrium,
we would be able to estimate Vv, Vz, and Rz . We could also calculate
an exponential rate constant which would give us a very cmmmﬁ. measure
of the rate of approach to equilibrium, but would tell us uoi:um.me all
about the characteristics of the membrane. Indeed, the same kind of
exponential approach to equilibrium can be caused by many processes
other than simple passive diffusion (see Section 8-3). Therefore, it is desira-
ble to undertake a more general analysis of the kinetics of transfer between
compartments without reference to any wp&oﬁpw.gmormimg of transfer.
This analysis will then be applicable to a wide variety of problems.

8-2. Diagrams and Symbols for the Description of Transfer between
Compartments
Figure 8-1 illustrates the kind of diagram and the symbols which i.:
be used in the subsequent discussion. Each separate 85@@3&3& is
designated by a different capital letter and is Hovaommu.omm. in the diagram
by & rectangle.* Each compartment is characterized by its volume V.,

* The use of small rectangles for small compartments, large rectangles for large
compartments often makes it easier to visualize the system. An even more elaborate
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