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Chapter 2

FUNDAMENTALS OF TRACER KINETICS

2.1 INTRODUCTION

As defined in Chapter 1, the kinetics of a substance in a biologi-
cal system are its spatial and temporal distribution in that system. The
Kkinetics are the result of several complex events including circulatory dy-
namics, transport into cells, and utilization. Utilization usually requires
biochemical transformations which are characteristics of the substance.
The substance can be an element such as calcium or zinc, or a compound
such as amino acids, proteins or sugars. All exist normally in the body,
and can be of endogenous or exogenous sources, or both. The primary
goal of the kinetic events characterizing the metabolism of a substance
is to maintain specific levels of the substance in the various components
of its systems. The maintenance of these levels is achieved by internal
control mechanisms, and involves input into the system to balance the
loss which occurs through utilization and excretion.

One wishes to understand the kinetics of a substance under normal

m circumstances in order to better understand pathophysiological condi-
tions since these may be a result of abnormal kinetics. A fundamental
problem in biology and medicine, therefore, is to describe quantitatively

the kinetics of substances existing in the body. Among the tools that

are available, tracers have been extensively used. Tracers are substances
introduced externally into the system to provide data from which quan-
titative estimates of events characterizing the kinetics of the substance

can be made. Tracers can be substances such as dyes or, as described in
more detail below, substances labeled with radioactive or stable isotopes.

In this text, the focus will be on characterizing the kinetics of sub-
stances already present in the body by using isotopic tracers as probes.
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A naturally occurring substance is called a tracee. The tracers will
be assumed to be ideal where an ideal tracer is a substance with the
following characteristics:

a. it is detectable by an observer,

b. its introduction into a system does not perturb the system being
studied, and

c. it is indistinguishable with respect to the properties of the tracee
system being studied.

The first requirement, that of detectability, means that there must
be some method by which the amount of tracer in a sample can be
quantified. The second requirement means that the introduction of a
tracer into the system has no effect on the ongoing metabolic processes
which characterize the system under study. This requirement is usually
met by introducing an extremely small amount of tracer compared with
the amount of tracee already existing, and arguing this small pertur-
bation does not disturb the system. The third requirement means that
the system being studied is not able to distinguish between the tracer
and tracee, i.e. both follow the same processes with equal probabili-
ties. These requirements are usually met, but the investigator should be
aware that problems associated with them can arise.

By definition, the tracer has its own kinetics. The goal of a tracer
kinetic study is to infer from the tracer kinetics information on the tracee
kinetics. If the three requirements are met, this goal can be attained.

2.2 THE TRACER-TRACEE SYSTEM
2.2.1 Concepts and Definitions

A convenient scheme to illustrate the kinetics of a substance is shown

in Figure 2.2.1. In this figure, the circles represent h ses of two
interacting substances in _specific forms at specific locations, and the

arrows represent the transport or flux of material and/or biochemical
transformations. This figure shows two specific substances, A and B, to
make the point:that kinetics includes both transport between different
locations, and biochemical transformation. The goal of themiy
is to determine the masses and fluxes, i.e. transport and biochemical
transformation, in this system.

A fundamental assumption in using tracers is that there is at least
one component in the system under study which is accessible for tracer
administration, and tracer and tracee sampling. This special component
is called the accessible pool. Examples of accessible pools are a sub-
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PLASMA TISSUES

Figure 2.2.1. A schematic of the kinetics of a substance. The circles represent masses
and the arrows the fluxes of the substance. The bold arrow into circle A in the tissue
represents de novo synthesis. From this pool, it can (i) be irreversibly removed,
(ii) exchange with a plasma pool, or (iii) be transformed into form B. In turn, B can
exchange with a plasma pool, or irreversibly removed.

stance in physiological spaces such as plasma or a tissue, or a substance
in expired air.

Suppose in the system shown in Figure 2.2.1, the plasma component
for A is accessible. This means measurements of A can be obtained from
plasma. One can redraw this system to emphasize the accessibility of

_this component for tracee measurement; this is shown in Figure 2.2.2.
Notice that while B also exists in plasma, it may not be possible to
sample and measure it. Thus plasma B is not accessible, even though
it is in plasma. If B could be measured, then this system would have
two accessible pools, one for A and one for B. This simple observation
will have profound consequences when multiple input-multiple output
experimental designs are discussed later.

Suppose the kinetics of the tracee substance described in Figure 2.2.2
is to be studied. The characterization of the system by identifying the
components and interconnections, and the availability of at least one

accessible pool, set the stage for using a tracer to characterize these
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Figure 2.2.2. The system depicted in Figure 2.2.1 with an accessible pool identified
and highlighted by the dotted line with the bullet which indicates tracee measurement.
The bold arrow into tissue pool A represents de novo entry of material into the system.

kinetics. By appealing to the definition of an ideal tracer, one can assume
that the system described in Figure 2.2.2 for the tracee is the same as
" that for the tracer. Therefore, superimposing the tracer system on that
| ‘ shown in Figure 2.2.2, one has the system shown in Figure 2.2.3.
‘ } These two figures emphasize that the two systems for the tracee and
o tracer are structurally identical, and demonstrate the need for an acces-
sible pool into which tracer can be introduced and from which measure-
ments of tracer and tracee can be made. The main difference between
the two is in the inputs. In the tracee system shown in Figure 2.2.2, the
* input is endogenous into a nonaccessible component of the system. In
; the tracer system shown above, the input is exogenous, and is into the
3 accessible pool.
| Using these figures as representative of tracee and tracer systems, the
1l following will be discussed: (i) the tracee system, (ii) the tracer exper-
‘ iment and the tracer system, (iii) the relationship between the tracee
ik and tracer systems, and (iv) the quantitation of the tracee system from
the tracer data. Following a general discussion, the notions will then
be applied to radioactive and stable isotopic tracers where, to pass from
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Figure 2.2.8. 'The tracer system which corresponds to the tracee system depicted in
Figure 2.2.2. The administration of the tracer into and sampling from the accessible
pool is indicated by the tracer input arrow and tracer measurement sample respec-
tively. The figure implies that once in the system, the tracer is assumed to follow the
same pathways the tracee follows.

theory to practice, the measurement of the tracer will be discussed in
detail. This strategy will serve to emphasize similarities and differences
between using radioactive and stable isotopic tracers, and will form the
basis for the analysis of the tracer data with the concomitant inferences
about the metabolism of the tracee.

In this Chapter, only the single pool steady-state system will be dis-
cussed as a vehicle to introduce the necessary terminology. The precise
analyses and the extension to multipool systems will be discussed in
subsequent chapters.

2.2.2 The Tracee System

The tracee system to be discussed in this section is given in Fig-
ure 2.2.4. The system described in Figure 2.2.4 is a single pool system
which is accessible for measurement and in which it is further assumed
that the tracee is uniformly distributed. The accessible pool and the
system coincide in this particular situation.

bl
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Figure 2.2.4. The tracee system, depicted as a circle, consists of a single pool of
volume V containing tracee mass M. Tracee de novo production, U, and disposal F
occurs from this pool; they are indicated by the arrows into and leaving the system
respectively. The dotted line with the bullet indicates tracee measurement. The
symbols given in this figure are summarized in Table 2.2.1

The notation introduced in Figure 2.2.4 which will be used for the
tracee system is given in Table 2.2.1. U is sometimes called de novo
synthesis, and F' utilization, elimination or excretion. Concentration C
is defined below in (2.2.3).

Table 2.2.1. Notation for tracee variables

Symbol Definition and Unils

volume

mass

concentration (mass/volume)

de novo production (mass/time)
disposal {mass/time)

HQAQAR<

Assume the tracee system is in the steady-state case. A steady state
is an experimental situation where de novo production U and disposal
F are equal and constant. This means that the tracee mass M remains

_constant. To formalize this assumption in mathématical terms, one ap-

plies the mass balance principal to the tracee system, i.e. at any point in
time the rate at which the tracee mass changes is the difference between

‘
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de novo production and disposal. Remembering that U and F are equal,
the desired formalism can be expressed in the following equation:

dM (t)
dt

where ¢ denotes time. In other words, as a result of U = F, the rate of

=U—-F=0 (2.2.1)

change of the tracee mass as a function of time, dﬂg—t(t), is equal to zero.
This means M (t) does not change with time, hence

M (t) = M = constant (2.2.2)
For the tracee, the measured value is usually concentration C' where
— ——
M
=— 2.
C % (2.2.3)

In the steady state, C, as a result of the balance between U and F, is
a constant. However, from a knowledge of C alone, it is not possible to
estimate the fluxes U and F'; to do this, a tracer must be used.

2.2.3 The Tracer System

The tracer system to be discussed in this section is given in Fig-
ure 2.2.5. As in the previous case, this is single pool system which
is accessible for measurement and in which the tracer is assumed to
distribute uniformly. Because of tracer-tracee indistinguishability, the
volume V is equal to the volume of distribution of the tracee. The no-
tation used in this figure is summarized in Table 2.2.2 below. Note in
this table, unlike Table 2.2.1, the dependence of some variables such as
mass on time t is explicitly noted, i.e. m(t).

Table 2.2.2. Notation for tracer variables

Symbol Definition and Units
|4 volume
m(t) mass
u(t) rate of input (mass/time)
f(@®) disposal (mass/time)
d

total input (mass)

The analogue for (2.2.1) for the tracer can be written by again ap-
pealing to the mass balance principal, i.e. the rate of change of tracer

mass is the difference between the rate of tracer input u(t) and tracer
disposal f(t):

¥
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Figure 2.2.5. The tracer system, depicted as a circle, is a single pool of volume V'
containing tracer mass m(t). Tracer is introduced into the system at a rate u(t);
the rate of disposal from this pool is given by f(t). The dotted line with the bullet

indicates tracer measurement.

dm(t
l;i—) —u(t)- f®  m(0)=0 (2.2.4)
In (2.2.4), m(0) = 0 means that when the experiment starts at ¢ = 0,
there is no tracer mass in the system. (In mathematical terms, m(0) is
called the initial condition). In this situation, unlike the previous case

am(t) is no

where M is constant, m(t) changes with time and hence —g

longer equal to zero.

While (2.2.4) is written in terms of tracer mass m(t),
in which the amount of tracer is actually quantified depends upon the
tracer chosen. As discussed in §2.4, the radioactive tracer is usually

quantified in terms of tracer concentration c(t), i.e. tracer mass per unit

volume:

the manner

m(t)
c(t) = —— 2.2.5
=" (225)
In contrast, the most convenient way to express stable isotope measure-
ments as discussed in §2.5 is the tracer mass per unit tracee mass:

2() = %t) (226)
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Since the volume V is the same for both the tracee and tracer, z(t) also
represents the ratio between tracer and tracee concentrations:
m(t) _ ct)
C

z(t) = =

= (2.2.7)

2.2.4 The Tracer-Tracee System

The link between the tracer and tracee system comes from the tracer-
tracee indistinguishability assumption. This assumption implies that
the probability that the tracer leaves the pool is equal to the probability
that a particle in the pool is a tracer. This can be written as

f@)  __m@

= 2.2.8
Tt~ Mtm) (2.2.8)
This equation can be reorganized:
— =M 2.2.9)
t (t) (
1+ 480 4 m
from which one obtains
1(t) = 2m(®) (22.10)
=37 2.

which, when this expression for f(t) is substituted into (2.2.4), gives

dm(t F
dmi(t) =u(t) — f(t) = u(t) — —=m(t) = u(t) — km(t) (2.2.11)
dt M
where k = —I\FT‘ This equation is a linear, constant coefficient differential
equation which provides the link between the tracer and tracee systems
F

since the tracer parameter k reflects tracee events, k = 4;.

2.2.5 System Parameters from Tracer and Tracee
Measurements

In the single pool system under consideration, the unknown parame-
ters of interest are F' and M. It is the purpose of the tracer experiment
to generate the tracer and tracee data from which these parameters can
be estimated. One possible method is based on the solution of the tracer
model given by (2.2.11). Here m(t) is expressed as a function of the un-
known tracer parameter, k, (and thus of the tracee parameters since
k = F/M) and the known tracer input u(t). For instance, if the tracer
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- S((\ experiment consists of injecting the tracer as a bolus of dose d at time
gr ¢ \0’\" zero, then the solution of (2.2.11) is

| \ m(t) = de*t (2.2.12)

Hence the tracer measurement can be related to the model parameters.

. @ M " In particular, if a radioactive tracer is used and its concentration c(t) is
|’\ ) measured, then

m (t) d i

| c;\:;owL pf}'\ o(t) = T = Se (2.2.1'3)

here the unknown parameters are the volume V and the exponential

|l
| Yo k. Both parameters can be estimated from the tracer data: the ratio %
W equals the tracer concentration at time zero whence
d

while k can be estimated from the rate of decay of the tracer. From
_the estimates of k and V, ax_@_kug;g the tracee concentration C, the

‘_ f " _system tracee mass and fluxes can be g quantified since, from the definition
a of C and k,

M=C.V (2.2.15)
U=F=kM

M/ . The same procedure applies if a stable isotope is used. In this case, the
‘ tracer measurement is the tracer to tracee ratio z(t). The counterpart
&Q\ of (2.2.13) become

" :"‘. ‘ Vi[w

a b d

il i / n= "m0 _ ekt 2.1

“'QU' («V “t) =37 = 27° (2.2.16)
\Nb Here M plays the role that V played in (2.2.13). The parameters k and

@\ M can be estimated from the tracer data as before, whence U = F =

‘; V= %G (2.2.14)
|
|

The rationale applied above serves as the basis for the compartmental

“Amodeling analysis which will be expanded in Chapters 4-6. Alterna-
tlvely, the flux F' can be quantified from the tracer and tracee data, by
Q using the noncompartmental analysis approach discussed in Chapter 3.
% Briefly, thmgﬁhed to the tracer (i.e., the
amount of tracer introduced into the system equals the amount leavmg

a the system), can be written

jl ® oo [o) _
" d= /0 w(t)dt = /0 fF(t)dt (2.2.17)
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since d, the total amount of tracer introduced into the system, is equal

to fo° u(t)dt. Substituting the expression for /(%) given in (2.2.10) into
this equation, one obtains

® F
d= /0 —m(t)ds (2.2.18)
which, when solved for F, gives
F= d =U 22.1
i e

From (2.2.19), F can be expressed as a function of tracer and tracee
measurements. If the tracer is quantitated in terms of the tracer to
tracee ratio z(t), it follows immediately from the definition that

d
F=—-n——=U 2.
INEGE (2:2.20)
If the tracer measurement is concentration c(t), then the expression for

F as a function of c(t) can be derived from the equality —";J/[Q = %t—,z,
hence

__d4 _ dCc
R [Pet)dt

(2.2.21)




