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2 The Dynamics of Linear, Time-
invariant Systems

Before considering the dynamics of compartmental systems in particular in
Section 2.4, we will review the input—output relationships for systems with
linear, time-invariant dynamics in general in Sections 2.1 to 2.3.

2.1 Singie-input, single-output (SISO) systems

Consider a dynamic system with input u(t) and response to that input x(t), as
shown in Fig. 2.1, Assume the following:

(i). The system is lumped, rather than distributed; that is, its behaviour can
be described over a finite number of points in space. The differential
equations describing the behaviour are ordinary rather than partial.

(ii). The system is linear so that the principle of superposition applies; that
is, the response to an input u,(t) + u,(t) is the sum of responses to u,(f)
and u,(t) applied separately.

(iii). The system is in steady state prior to the application of the input at time
t = 0. The quantities referred to in the remainder of this chapter are
deviations from the (steady) values u(0~) and x(0~) immediately prior
to the input perturbation. Higher-order derivatives are zero at t = 07

The input and output are then related by the convolution integral:

ﬂn:JQa—mmme @.1)

0

where 1 is a time variable ranging over the interval up to the present time ¢
during which the input has been applied and g(t) is the weighting function of
the system, which weights past values of the input to give the present value of
the output.

uit} g(t) x(t)

Figure 2,1 Dynamic system with weighting function g(t).
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Figure 2.2 Dynamic system with transfer [unction G(s).

We have further assumed that the system is time-invariant, that is, its
dynamics do not change with time. The weighting function is then the same
as the response of the system to a unit impulse.

Except for simple forms of input, the convolution integral of eqn (2.1) is
difficult to evaluate analytically and use is then made of the corresponding
Laplace transform relationship:

X(s)=G(s)U(s) (2.2)

where X (s) and U (s) are the Laplace transforms of x(t) and u(t) respectively
and G(s), the Laplace transform of g(t), is called the (Laplace) transfer
function of the system (Fig. 2.2).

See Appendix 1 for an exposition of Laplace transforms.

2.1.1 First-order systems

For a first-order, linear, time-invariant system, the input and output are
related by the ordinary differential equation:

T-3(t) + x(t) = K - u(t) (2.3)

where K is the steady-state gain of the system (i.e. the proportional factor
between x and u in the steady state), T is the time constant of the system and

d
x(t) Ed—)tc' The general solution of eqn (2.3) is given by the sum of the

complementary function and particular integral:

(]
x(t)=e "x(07) + J e“""’/Tg u(2) da. (2.4)

0

The Laplace transform of eqn (2.3) is
ST+ 1)X(s)—T-x(07)=K U(s) (2.5)

which, on rearrangement, gives

X(s) = T-x(07) K-U(s)
O =S7r1 tsrr1

(2.6)
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Assuming that x(07) is zero, or has been subtracted from all subsequent
values of x(t), eqns (2.4) and (2.6) become

o(t) = K i A)da 2.7

x(t) J e u(2) (2.7)
K-U(s)

X =%t (238)

Comparing these with eqns (2.1) and (2.3), it may be seen that the weighting
function is given by

K
glt) = ?e"” 2.9)
and that the transfer function is given by

_X(s) K .
TUG) sTH+1

G(s) (2.10)

If a unit impulse is applied to the system at t=0, then U(s)=1,
X (s) = G(s) and x{t) = g(t). The unit impulse response of a first-order
system is shown in Fig, 2.3. At time ¢t = T, the value of the response has
fallen to

K _, K
— D 1003682 2.11
x(T) =-7e 0.368 _ (2.11)

x(t)

Time

0 06937 T 2T 3T 4T

Figure 2.3 Unit impulse response of first-order system described by eqn (2.3).
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so that, in one time constant, the response has fallen to 36.8% of its
maximum value (at t = 0). The response falls to 19/ of its maximum value
when

001 =7
ie. too, = Tlog. 100 ~ 4.6057. (2.12)

In the medical and biological literature, the half-life, t,,,, is more often
quoted than the time constant. The half-life is the time taken for the response
to fall to 50 %, of its maximum value and so is related to the time constant by

05=¢"d7

whence =T log.2 ~0.693T. (2.13)

The unit step is the integral of the unit impulse and the unit-step response
may be found by integrating the unit-impulse response of eqn (2.9):

x(t) = Jlge"”dt =K(l — e (2.14)

0

which is illustrated in Fig. 2.4. The unit-step response may also be found

. . . 1
from the transfer function using eqn (2.10). For a unit step, U (s) = — so that
R S

K
X(s)=G6GB)U(s) = . 2.15
)= GOUE) = s 215)
x(t)
Kt—-—————====— T T T e e e e e e e e e —— — -
/1
/1
.
/ I
0632K -~ — ——— L ——
. ; !
/ 1
! 1
/ |
/ |
j |
1
I Time
0 T 2T 3T 4T

Figure 2.4 Unit step response of first-order system described by eqn (2.3).
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Taking partial fractions (see Appendix 1),

K KT
=—- 2.16
X(s) s sT+1 ( )
and using the Table of Laplace transforms in Appendix 1,
x(t)=K —Ke™", t20 (2.17)

which is the same as eqn (2.14).

Example 2.1. A resistor R and inductor L are connected in series as shown in
Fig. 2.5. The current is zero when, at time t = 0, the switch is closed. Find the
current i(t) for t = 0.

Solution. The voltage drops vg and v, across the resistor and inductor are:

di
vg=1i'R and v,_=L—l-

dt

Applying Kirchhoff’s Voltage Law (that the sum of voltage drops around a
circuit equals the applied voltage),

L$+iR:e(t):E, t=20.
dr

L 1
Comparing this with eqn (2.3), it may be seen that T = R and K = R 5° that

substituting into eqn (2.14),
E
it)=—=(1—e ™).
i) = (1L —e ™)

Alternatively, Laplace transformation of the differential equation above gives

E h ‘I _ E
- (SL + R)I(S) = ? so that (S) = m

Figure 2.5 Series RL circuit of Example 2.1.
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Taking partial fractions (see Appendix 1),

—Rt/L )

E . .
giving i(t) = R (1—e , on inverse Laplace transformation.

The question of units for an impulsive input sometimes gives rise to
confusion. The Dirac delta function is defined by

s(t)=0 t#0 (2.18a)

r s(rydt = 1. (2.18b)

Consider the pulse function f(¢) shown in Fig. 2.6, of height 1, width ¢ and
€
unit area. The delta function is given by

o(t) = lim f(¢) (2.19)
e—0

so that the delta function is a function of infinitely large height acting for an
infinitely short time. Such an idealized function cannot be realized in
practice, but its shape is approximated in a number of practical instances.
For example, an impulsive blow of magnitude P can be regarded as a force of
P-5(t) while a rapidly-administered dose of size D can be regarded as an
input rate of D-5(t). Note the use of “rate”, because 6(¢t) has units of
(time)~'. The delta function is clearly the derivative of the unit step function
H(r), 1e.

d
8(t) = 4 H(). (2.20)

To complete the discussion of the use of the delta function, let us return to
the circuit of Fig. 2.5, but suppose that, instead of a step E being applied at

f(t)

=

t

£
Figure 2.6 A pulse function of unit area.
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¢ = 0, an impulsive voltage E, 6(t) is applied. The impulsive voltage is one
whose time integral is E, and since the units of E, &(t) are volts and those of
5(t) are (time)~!, the units of E, are (volts) x (time). The differential
equation is thus

di

L+ iR = Ey ()

With i(07) zero,
(sL + R)-I(s) = Eo

Eq

) =R

giving, on inverse Laplace transformation,

E
i(t) = —L‘le-R‘/L, t>0.

2.1.2 Second-order systems

The dynamics of a second-order, linear, time-invariant system may be
described by the differential equation

., 20,
— X+-——x+tx=1u (2.21)
wg Mg

where ¢, the damping ratio defines the degree of damping in the system, being
a measure of the presence and extent of oscillation in the system response and
0,, the undamped natural frequency is the frequency of oscillation (radians

per second) of the system in the absence of damping, i.e. with { = 0.
The transfer function of the system is

s X6 _ 3

at¥® _ Po . 222
I7TUG) - &+ 2wes + 0f (222)

Unit step responses for various values of { are shown in Fig. 2.7;
corresponding impulse responses may be found by differentiation. The unit

step responses are given by
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Figure 2.7 Unit step responses ([ i i
B A1), p resp (for various values of {) of second-order system described by

fm.d to find the inverse Laplace transform using the table given in Appendix 1,
it is necessary to complete the square in the denominator of G(s), by writing
§2 + 2lwmes + w3 = (s + {wo)? + w3 (1 — ?). (2.23)

The shape of the response depends on whether m? 2 w3(1 — {?) is positive
zero or negative, and we will consider these three cases in turn.

(@) 0 <! < 1. Since my is real, w3(1 — {?) is positive and the system is said
to be underdamped. The unit step response is the inverse transform of

X(s):l— s+ Lo _ {og
s (s+{wg) + (1 =g (5 + {wg)” + (1 — Mg
: _ — ot C .
ie. x(t)=1—e (cos gt + W sin wdt)- (2.24)

If { =0, the oscill;ltions are undamped, but if { > 0, the oscillations are
damped by the e *' factor (damped because { and w, are non-negative).
The roots of eqn (2.23) are a complex conjugate pair:

s=—a+jp (2.25)

where a = {0, is real and non-negative and f = w,; = wo(1 — {?)!/? is real.
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(b) { = 1. The term w}(1 — ¢?) is zero and the system is said to be critically
damped. The unit step response is the inverse transform of

X(s) = o} 221_ s+2w02

s(s +wg)* s (s+ wp)
ie. x(t)=1—¢e™ (1 + wot). (2.26)
The denominator of eqn (2.22) consists of a repeated real root (s = —myg).

The step response is no longer oscillatory (see Fig. 2.7).

(c) ¢ > 1. The term wj(1 — ¢?) is negative and the system is said to be
overdamped. The unit step response is the inverse transform of:

2

X - (01
)= 5 Coe T 0a@ = D)6 + Loy — o0 — 1)172)

Wy
2 -7

 Jexpl = + @ — D'"wof]  exp[—( — (€ — 1) wol]
4+ (- D (- (-1
The roots of eqn (2.22) are real and distinct and it may be seen from Fig. 2.7

that the unit step response is again non-oscillatory, and gets progressively
slower as ( gets larger.

ie. x(t)y=1+

}- (2.27)

Example 2.2. A4 resistor R, inductor L and capacitor C are connected in series
as shown in Fig. 2.8. The current i and capacitor charge q are zero when, at
t = 0, the switch is closed. Find the current i(t) for t 2 0.

E—T L

Figure 2.8 Series RLC circuit of Example 2.2.
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Solution. There are two storage elements (the inductor and the capacitor) so

a second-order differential equation is expected. The voltage drops across the
elements of the circuit are:

o, =1 % _ 9%
Eo7dr Tde
dgq
Ve =Ri=R—
R =5 dt

Comparing this with eqn (2.21), it may be seen that

1 1
2 1/2
% _re so ¢ =R(E)".
20 2\L

. Iiaplace» transformation of the differential equation gives, with
i(07)=4(07) =0,
E/L

(s> + (R/L)s + 1/LC)Q(s) = =~

1
s(s? + (R/L)s + 1/LC)

whence 0(s) = %

But = 34 : -
ut'i = a s that, with g(07) =0, I(s) = s- Q(s), giving

1
s+ (R/L)s + /LC

I(s)=%-

L . o C\'?
et us consider one case only, with circuit values so that — <—> <1
L bl

which, from the foregoing, will yield an underdamped system, since
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0 < ¢ < 1. From egns (2.22) and (2.24),

. E O ot 12
)= ———————e “'sin (we{l — 12
I( ) (l)gL (1 . cz)l/z ( 0( C ) )
E (o Sin (@o(1 — 4HV2e)
L wo(1 — ()12
E _, sin wt
=—ce
L w
where o= {wy = oL
1 R*C 1 R?
and 0)2:0)5(1—C2)=E<1—E>=E—m

2.2 The state variables of a dynamic system

Much of the recent literature on time-domain analysis of a system utilizes the
concept of the state of a system. The state is a set of numbers such that
the knowledge of these numbers and the input functions will, together with
the equations describing the dynamics, give the future state and output of the
system. The state variable representation of a multi-input, multi-output
system is:

x = Ax + Bu. (2.28)

In this state equation, the vector x represents the state of the system. In some
applications, it is difficult to choose variables of direct physical significance
(and the state variable set is not necessarily unique) but in compartmental
modelling this problem does not exist because all the differential equations
are first-order and the state variables are compartmental quantities or
concentrations.

Equation (2.28) indicates that the first derivative of state variable x; is a
linear function of the p state variables and m inputs:

X; = Xy + Xy + ..+ QX + by + buy + o+ by, (2.29)

where the a’s and b’s are constants for a time-invariant system. Equations of
the form of (2.29) may be written for all the states:

Xy dy1 Giz2 .- Aip | X byy by . by ||lu

m

(2.30)

pl p2 e pm
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as in eqn (2.28). The outputs (or observations) are not necessarily the state
variables themselves, but may be linear combinations of them:

Vi =CiXq + CipXy + .. CipX, (2.31)
that is y = Cx. (2.32)

Note that the observation equation (2.32) is a non-dynamic relationship,
being an algebraic, rather than differential, equation.

If there are p states, m inputs and n outputs (observations), Ais a p x p
matrix, B is a p x m matrix and C is a n x p matrix.

Before proceeding further, let us see how the first-order and second-order
SISO systems considered earlier can be formulated in state variable form.
For the first-order system, eqn (2.3) can be rearranged as

1 K
X(t) = —=x(t) + = u(t 2.
x(t) TX()+Tu() (2.33)
which is to be compared with the state variable form
X(t) = Ax(t) + Bu(t). (2.34)
. . 1 K
Direct comparison shows that 4 = 7 and B = T

The second-order differential eqn (2.21) can be expressed as two
simultaneous first-order differential equations. Define x; 2 x, x, £ x so that
X = %; = x,. Then from eqn (2.21),

X=X, = —2weX; — 0dx, + wiu
= —2wex, — w3x, + wiu
which may be rearranged to give
Xy = X2
X, = —wix; — 2wex, + wiu.

In vector-matrix form,

] [ o 1 x, 0
| | —e2 =2, || x, + w3 !

ie. %x = Ax + bu. (2.35)

The approach is readily extended to higher-order equations.
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2.3 The dynamics of multivariable systems

2.3.1 The transfer function matrix

The transfer function matrix G(s) relates all the inputs making up U(s) to the
outputs Y(s). Taking Laplace transforms of eqns (2.28) and (2.32), with x(0™)
assumed zero,

s+ X(s) = AX(s) + BU(s) | (2.36)
Y(s) = CX(s). (2.37)
Rearranging eqn (2.36), ‘
(s — A)X(s) = BU(s)
whence X(s) = (s — A)"'BU(s). (2.38)
Substituting into eqn (2.37),
Y(s) = C(sI — A)"'BU(s) (2.39)
so that the transfer function matrix G(s) is given by
G(s) = C(sI — A)"'B. (2.40)
Example 2.3. Establish the transfer function matrix for the system whose state
equations are:

Xy = —2X; + X3 + Uy
X, =2x; —3x; +u,
yi=x; and y,=x,.

Solution. For this system,

1 0 1 0 -2 1
C= =1, B= =1 and A=
0 1 0 1 2 -3
- A s+2 -1
ST 22 543

R

so CI-A7 =351 2 s+2
s+2 -1

where A(s) = =s 4+ 55+4=(s+4)s+1).
—2 s+3
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s+ 3 1
G(s) = s+4)s+1) (s+4)(s+1)
2 s+2
s+4)s+1) +4)s+1)
and Y(s) = G(s)U(s).

If there are m inputs and n outputs, G(s) is an n x m matrix. Term Gii(s)
within the matrix is the transfer function between the jth input and the ith
output.

If oniy a few of the G;;(s) terms are required, for example because only a
few of the states may be perturbed and only a few observed, it is usually easier
to use Cramer’s rule rather than inverting (sI — A)—see Appendix 2. Thus, in
Example 2.3, if it were possible only to perturb x, and only to observe x, (i.e.
u, =0, y, = 0), and it were required to find only G, (s), this could be more
easily done as follows:

Transforming the two scalar-state equations,

(s + 2)X,(5) — X,(s) = U,(s)
—2X,(s)+ (s +3)X,(s) =0

U(s) -1
] 0 s+3|
s+2 -1
-2 s+3|

so X,(s) =

(5 +3)U,(s)
T s+ 4)(s+1)

and since Y,{s) = X, (s),

Yi(s) _ s+3
Uls) (s+4)s+1)

Gui(s) =

2.3.2 The transition matrix
The solution of eqn (2.28) is given by
t
x(t) = e x(07) + J e* =4 Bu() dA (2.41)

o-

(cf. the solution of eqn (2.4) for the first-order system described by eqn (2.3)).
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The matrix e* is called the transition matrix and is sometimes written as @(t).
It is the sum of the infinite series
t? I

e"’=I+At+A2?+A3§+... (2.42)
which is usually an inconvenient expression to evaluate in practice because of
the uncertainty as to how many terms must be computed for acceptable
accuracy and the need to compute the powers of A. It is often easier to use
Laplace transforms. Transforming eqn (2.28),

s+ X(s) — x(07) = AX(s) + BU(s) (2.43)
whence (sI — A)X(s) = x(07) + BU(s)
giving X(s) = (sI — A)"'x(07) + (sI — A)"'BU{(s). (2.44)

Inverse transformation gives
x(t) =L (I — A)"'x(07)] + L[] — A)"'BU(@s)].  (2.45)
Comparing eqns (2.41) and (2.45), it may be seen that
eM =L (s - A)1]. (2.46)

For a system with zero initial conditions, we have, from eqns (2.32) and
(2.45),

y(t) = Cx(t) = CL7'[(sI — A)"'BU(s)] = £ '[G(s)U(s)],
as expected.

Example 2.4. Find the transition matrix for the system of Example 2.3.

Solution. For that system,

s+3 1
s+4)s+1) (s+d)s+1)
— _1:
(sT = A) 2 s+2

| s+4)s+1) (s+4)s+1)

1/3 + 2/3 —1/3+ 1/3

s+4 s+1 s+4 s+1
—-2/3  2/3 2/3 1/3
| s+4  s+1 s+4+s+1_
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¢
so the transition matrix = £~ ![(sI — A)~'] is given by WA
1.,—4t | 2 .— - -
A e t_l_iel _%e 4'—{-%6'
e = (D(t) = 2 ,—4t 2 .-t 2 .4 1 .-t .
—3¢ T +3¢ 3¢ " +3e

2.3.3 Eigenvalues and eigenvectors
The eigenvalues 4; of a p x p matrix A are the solutions of the equation:
|AL — Al =0. (2.47)

As we have seen in Section 2.3.2, the transition matrix e*' is given by

et =Z (s — A)"1]
— 3—1 |:ad] (SI — A)
N [sT — A|

(see the material on matrix inversion in Appendix 2). Writing the individual
elements of the transformed matrix as a;(s), so that

apg(s) aya(s) ... 0‘1,;(5)
M= (2.48)
api{s) apa(s) ... a,(s)

we note that |sI — A| appears in the denominator of all the elements o;(s).
From the definition of the eigenvalues, |sI — A| has factors s — 2,
k=1,2,...,p corresponding to the roots A, of eqn (2.47). Thus

aij(s)
(s—2)s—4)...(s—4,)

where a;;(s) is a polynomial in s of degree (p — 1) or less. By taking partial
fractions, assuming the eigenvalues are all different,

aij(s) =

B B2 By
ii(s) = . 2.49
2j(s) s—&l+s—ﬂz+ +s—lp 249)
where f8, ... B, are constants. Thus each element of the transition matrix e* £

will have the form B, e!t' + B, e’ + ... + f, e,

If we consider solution of the homogeneous equation % = Ax, the
foregoing suggests that we can find solutions of the form x = ¢**m, where m is
a non-zero constant vector. From the system equation,

x=Jle"m=AeMm
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whence m = Am
ie. (A —Am=0. (2.50)

The vector m is called an eigenvector (of A), and there is an eigenvector
associated with each eigenvalue. The p eigenvectors are linearly independent,
and the general solution of X = Ax may be written as

Apt
X = c; e''my + ¢, e*?'m, + ... + ¢, e*'m, (2.51)

where ¢,, ¢, ..., ¢, are arbitrary constants which depend on the init_ial
conditions. The eigenvectors form the columns of the modal matrix M, which
is used in a number of approaches to the identifiability problem (see Chaptf?r
5). For the purposes of this book, the above discussion of eigenvectors is
sufficient, and for a more detailed description of the use of the modal matrix
in system dynamic analysis, the reader is referred to Chapter 2 of Power and
Simpson (1978) or Chapter 1 of Owens (1981).

Example 2.5. For the system of Example 2.3, find the eigenvalues of A and ﬁna’

the responses y,(t) and y,(t) to perturbation u,(t) = (t), u,(t) = 0. Determine

the eigenvectors of A.

Solution. The eigenvalues are given by:

A+2 -1
-2 A+43

giving 22 + 54 + 4 =0 whence 4, = —4, 4, = —1.

Y(s) = C(sI — A)"'BU(s)

=0

s+ 3 1
s+d)s+1) s+4)s+1)1]1
- 2 s+2 0
_(S+4)(S+1) s+4ds+1)
[ s+3
| e aE+ D
B 2
( +4)s+ 1)
whence vt % e

)=
() 41+2 —l.
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Taking the first eigenvalue (4, = —4), eqn (2.50) gives

—44+2 —1 myy -0 (AI’A')M 0
-2 —4+3 || my,
whence —2m;; —my; =0

and —2myy —my, = 0.

Note that the same equation is obtained twice, so that only the ratio between
myy and my, is available. This is evident from eqn (2.51) because if any m,
satisfies the equation, so does any scalar multiple of m,.

1
Thus m; =m;, [ 2}

Taking the second eigenvalue, eqn (2.50) gives

—142 -1 my, 0
_2 _1+3 n722 B

whence My, —my, =0

—2my, + 2my, = 0

1
so that m, = m;, I:I:I

Thus for this example, the modal matrix M is given by
m m
M _ [ 11 12:| ]
—2my; my,

2.4 Dynamics of compartmental systems

As noted previously in this chapter, the state variable description is
particularly appropriate for compartmental systems since these consist of sets
of first-order differential equations (one per compartment) and the states are
the compartmental quantities or concentrations. For a linear, time-invariant
compartmental system with p compartments, A is p x p and has elements

ay=ky, i#j (2.52)

— koj. (2.53)
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Thus the compartmental form constrains all elements on the main diagonal
of A to be non-positive and all other elements to be non-negative. Further

14
Iajjl = Z kij (254)
i

the equality applying only if ky; = 0. So, for example, the system

X, = —x; +x, +u, (2.55a)

Xy =X + x5+ Uy (2.55b)
is non-compartmental because «a,, is positive, while the system

Xy = —x1+2x, +uy (2.56a)

X, =2x5 — 2X, + Uy (2.56b)

is non-compartmental because |a;,| is less than a,,. On the other hand, the
model considered in Examples 2.3 to 2.5 is compartmental, as it satisfies both
of the above requirements. For this system,

—dyy —a;;, =0

ay; = —2, dy =ky; =2 so ky;
and = —3, aj,=ki; =1 50 koy=—da;, —a;, =2.

The form of A for a compartmental system imposes some restrictions on
the form of the dynamic responses. Firstly, the transition matrix e* is non-
negative for all ¢ (Bellman, 1960, p. 172). The essence of the proof is to take

the largest-magnitude element on the main diagonal, d;;, and to express A as

A=aI+R (2.57)
where R contains only non-negative terms, by definition. Then

eAt = e(ﬁ,,[+R)t

= eﬁ,,lr . eRt (2.58)
the latter manipulation being possible because I commutes with any other
matrix so that IR = RI. Although 4;; is negative, e®! is non-negative, being a
diagonal matrix with all its principal diagonal terms non-negative. Since R
has only non-negative elements, e® is also non-negative because there are
only non-negative terms in the infinite series for e® (see eqn (2.42)). Thus,
from eqn (2.58), e* is non-negative. For a compartmental system, all
elements of B are non-negative, so that for a positive input vector u(t) and
non-negative initial state x(07), all the states of a compartmental system are
non-negative, from eqn (2.41).

Secondly, the eigenvalues of a compartmental system are real if, for all

)
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cycles of r compartments within a system, a cycle being a series of
interconnected compartments o — f — e

Kaghpy - Ky = Kok ... ke, (2.59)

(Goldberg, 1956). This is a sufficient, rather than a necessary, condition for
real eigenvalues so that if it does not hold, the eigenvalues may be real or
complex.

One of the main implications of this result is that Jor a two-compartment
system, the eigenvalues must be real, since k,,k, = ki ky,. This is also
evident from the definition of the eigenvalues [AI — A| = 0 giving

(A — a5 )(A — ay3) — a3a,;, =0 (2.60)
whence 44,4, = %{(011 +ay) + [(a; —az)* + 4”12“21]1/2} (2.61)

Now, (ay; — a,,)> 20 and since a,, = k,, and a,, = k,,, the product
52055 2 0 so the part under the square root sign in eqn (2.61) cannot be
negative and the eigenvalues must be real.

The other main implication concerns two types of compartmental system
of considerable practical interest—mammillary systems and catenary-
connected systems (Sheppard and Householder, 1951). A mammillary system
(Fig. 2.9) is one in which a central compartment (no. 1) is surrounded by
(p — 1) peripheral compartments which exchange material only with the cen-
tral compartment and not with each other. A catenary-connected system
(Fig. 2.10) is one in which the compartments are arranged in a chain, each

Figure 2.9 A mammillary compartmental system.

ka ks2
k k T
% 12 % 23 % %
ko ko Kos X op

Figure 2,10 A catenary-connected compartmental system.
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compartment exchanging material only with the immediately preceding and
following compartments; in some applications, exchange is unidirectional.
For both mammillary and catenary systems, the eigenvalues must be real
because at least one pair of rate constants k;; and k; must be zero, so that
both sides of eqn (2.59) are zero. Hearon (1979) has shown that, for
compartmental systems with real eigenvalues, in which x(0”) =0 and an
impulsive input is introduced to compartment r at t = 0, the subsequent
decay of x,(t) is monotonic, i.e.

'<0, t>0. (2.62)

This result does not necessarily hold for systems with complex eigenvalues.

For systems in which three or more compartments are connected in a cycle
for which eqn (2.59) does not hold, complex eigenvalues are possible.
Because A is real, all complex eigenvalues must occur as complex conjugate
pairs:

Am’ An = —a ijﬂ

wherej = ./—1,ais reaNand positive and f is real. These give rise to terms of
the form Ee™* sin (Bt + ¢) in the state responses x(¢). (Here, E and ¢ are
constants.) However, such oscillatory terms are in practice heavily damped
by the e™* term, and as we have seen above, no state response (compart-
mental quantity) may cross zero. A particular form of compartmental
system giving rise to complex eigenvalues, the unilateral circulation system,
will be considered in more detail in Chapter 4.

An experiment of practical interest in physiological applications is the
washout test, in which a continuous infusion is made for a long time into one
compartment until the system is in a steady state. The infusion is then
withdrawn at 1 = 0, and the washout curves are the plots of x(¢) for ¢t > 0.
From eqn (2.41), the washout curves are given by

x(t) =e* x(07) (2.63)

where x(07) are the compartmental quantities just before the infusion is
withdrawn. Hearon (1968) has shown that for any compartmental system,
including those with complex eigenvalues, all the washout curves decay
monotonically to zero, i.e.

dx(t)
dr

<0, t>0. (2.64)
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The most general form of B:

byy by ... by

b,

b b

p2 s pm

allows for proportions of the same input to be introduced to more than one
compartment. In almost all compartmental applications, each input is
introduced to one compartment only, so that the off-diagonal elements of B
are zero. The vector u in the general system eqn (2.30) is, for compartmental
systems, a vector of input rates to the p compartments:

u="luy uy...u,]"

For an impulsive input of magnitude D, for example, the input rate would be
D+ 6(t), where 6(t) is the Dirac delta function, while for a step (constant
continuous infusion) of magnitude k; per unit time, the input rate would be
ki, t>0.

For the diagonal form of B, which will be assumed in the remainder of this
book, the product Bu is the vector

Bu = [b,u, byu, ...bu,]" (2.65)
M

where u; ... u, are the input rates to compartments 1 to p and b, ... b, are
the input gains, i.e. those fractions of the inputs administered which appear in
the compartmental system. For most experimental situations, b, = b, =
...=b, =1, but an important exception occurs in metabolic systems and
pharmacokinetics when a substance is administered via an extravascular
route. Then, some of the dose administered does not at any stage appear in
the compartmental system; the fraction which does is called the bioavail-
ability fraction and is often not known beforehand.
Similarly, the most general form of C:

Cu1 CnZ e Cnp

allows for proportions of different states to be included in any one
measurement. In most compartmental applications, each observation
(measurement) is of one state only, so that Cx is a vector:

Cx = [c1x1 €%, ... ;%17 (2.66)

An exception to this may occur when external scanning is being used; then,

T 00000
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the measurement of radioactivity may include a portion from more than one
compartment. In the remainder of this book though Cx will be taken as the
vector form of eqn (2.66).

2.5 Frequency-domain characterization of system dynamics

In this chapter, emphasis has deliberately been placed on the time-domain
characterization of system dynamics, and the corresponding expressions in
the Laplace operator s. There is also a considerable body of theory
concerning frequency-domain characterization which gives no additional
information, but which presents the same information in a different manner.
This is sometimes more appropriate, particularly when sinusoidal input
functions are feasible. Such functions are not feasible for most compart-
mental system applications, for which the inputs are more usually impulse
and/or step functions. Details of frequency-domain characterizations will
therefore not be given in this book, and the interested reader is instead
referred to a standard text, for example Richards (1979).

r

3 Analysis of Systems with
One and Two Compartments

In this chapter, the dynamic response of linear, time-invariant compart-
mental systems with one and two compartments will be considered.

3.1 One-compartment system

In some practical situations, the system being modelled can be approximated
by a model with only one compartment. In physiological systems, for
example, the compartment would contain the systemic blood and well
perfused tissue, and the effect on the kinetics of less well perfused tissue would
be negligible.

The one-compartment system is shown in Fig. 3.1. The differential
equation for the quantity x, in the compartment is

X1 (t) = —koyxy(t) + byu,(t) (3.1)
so that

;): Xl(s): by .
6[ Ui(s) s+ ko (3:2)

The observation is
() = c1x, (1) (3.3)

where c; is the observation gain. If the observation (i.e. measurement) is of
concentration, for example, and x,(¢) is a quantity,

€ =— (3.4)

Figure 3.1 One-compartment model.




