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1 Introduction to Compartmental
Modelling

1.1 What is a compartmental system ?

Compartmental systems consist of a finite number of homogeneous, well-
mixed, lumped subsystems, called compartments, which exchange with each
other and with the environment so that the quantity or concentration of
material within each compartment may be described by a first-order
differential equation. A compartmental system may be used to model either
the kinetics of one substance, in which case the compartments occupy
different spaces and the inter-compartment transfers represent flow of
material from one location to another, or the kinetics of two or more
substances (such as a drug and its metabolites) in which case different
compartments may occupy the same space and some of the inter-
compartment transfers represent transformation from one substance to
another.

In the literature, the words “‘compartment” and “pool” have, to a
considerable extent, come to be interchangeable, although Atkins (1969)
observes that, strictly speaking, there is a distinction between the two. He
notes that Sprinson and Rittenberg (1949) defined a metabolic pool of an
animal (or organ or cell) as “that mixture of compounds derived either from
the diet or from the breakdown of the tissues, which the animal (or organ or
cell) employs for the synthesis of tissue constituents.” On the other hand,
Atkins defines a compartment—a term first used in this context by Sheppard
(1948)—as ‘“‘a quantity of a substance which has a uniform and dis-
tinguishable kinetics of transformation or transport.” With this distinction, a
pool will often be distributed among many compartments, although when
referring to plasma, the pool and compartment will usually be the same. In
this book, the term compartment will be used, as defined above.

The most general form of compartmental equations (Sandberg, 1978) for a
system with p compartments is:
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Figure 1.1 Two compartments of a general compartmental model, as described by eqn (1.1).

Arrowed quantities are flow rates.

where x; is the amount of material in compartment 7 (v; can also be taken to
represent concentration, but in this book it will be used for quantity); f;; is the
flow rate fo compartment / from compartment j (note that in the pharmaco-
kinetics literature, the order of the subscripts is reversed); and subscript 0
denotes the environment.

If the flow rates from all compartments to the environment are zero
(foi=0,i=1,2,..., p), the system is said to be closed—otherwise it is open.
Equation (1.1) is illustrated for two of the p compartments in Fig. 1.1.

We see that compartmental models are simply sets of constrained first-
order differential equations, the constraints being the physical requirement
that flow rates are non-negative. It is difficult to make progress with
equations of as general a form as eqn (1.1) and most of the work reported to
date has assumed a more specific form.

By lar the biggest body of theory and applications has been concerned with
linear, time-invariant compartmental models, for which the flow rates are
directly proportional to the quantity in the donor compartment, the constant
of proportionality being referred to as a rate constant. Equation (1.1) then
simplifies to:

dx;
dr

P p

Y okix;— Y kixi — ko +u(e),  i=1,2,..,p (1.2)
i=1 ji=1
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where the input flow rate f;, from the environment has been written as u;(r)
to conform with the usual notation of linear systems theory. Note that in this
model, the flow rate to compartment i from compartment j is k;;x;, i.e.
directly proportional to the quantity (x;) in the donor compartment but
independent of the quantity (x;) in the receptor compartment. Equation (1.2)
is illustrated for two of the p compartments in Fig. 1.2.

Such a model is a gross simplification of the actual system being modelled,
but it does seem to provide a good description of the responses of many
systems when a small perturbation is made to a system previously in a steady
state, for example to describe the kinetics of a labelled tracer added to a
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Figure 1.2 Two compartments of a linear, time-invariant compartmental model, as described
by eqn {1.2). The k’s are rate constants, so that [low rates are k;;x;, etc.; the inputs w;(t) and
u;(t) are low rates.

system. We will see in Chapters 3 and 4 that the responses of a linear, time-
invariant compartmental system to an impulsive perturbation consist of
sums of exponentials (usually with as many exponentials as compartments).
It is interesting to note how often tracer response data from human beings
and other animals approximate closely to this form, indicating that, over the
range of values covered by the responses, a linear-dynamics model is
reasonable.

To date, much less work has appeared on nonlinear systems, and it has
concentrated on two forms of simplification of eqn (1.1). The first simpli-
fication is for systems where inter-compartment transfers, though nonlinear,
are still donor-controlled. Such a system is still described by egn (1.2), but
some (or all) of the k;; and kj; are no longer constants, and so are referred to
as rate coefficients. One [requently-occurring example describes capacity-
limited (Michaelis—Menten) excretion of a drug from a compartment (i, say),
when

Excretion flow rate fy; = m x;(t) (1.3)

' is a constant having dimensions of (time)™' and K,, is a constant
having the same units as x,(¢). (This is an adaptation of the Michaelis—Menten
form of enzyme kinetics; a good introduction will be found in Riggs (1963,
Chapter 11).) For small values of x(¢) such that K, » x(r),

where V,

o= 2 ) (14)

nt

which is of first-order linear form, with replacing the rate constant kg, in

m

eqn (1.2). For large values of x;(t) such that K, « x;{t),
fOl =~ Vm (15)
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which is constant. The elimination does not now depend on x;(t) and is
usually referred to as zero-order elimination. The model is no longer linear;
doubling the input will more than double the responses of the compartmental
quantities.

The second form of simplification of eqn (1.1) is for systems where some of
the inter-compartmental transfers are functions of two or more states
(quantities or concentrations) of the system:

kij = kiflxy, Xz, 000, x,). (1.6)

Such transfer occurs in chemical reaction kinetics (see Section 1.2). One
particular example occurs when the rate coefficient is a function of the state of
the receptor compartment, as well as that of the donor compartment:

kij = kijf(xi, x;). (1.7)

An example is discussed in Application Example 3 in Chapter 11.

Some work has also been reported recently on two further departures from
the linear, time-invariant compartmental model of eqn (1.2), the first
concerning time-varying models and the second, stochastic models, Most
work reported to date on time-varying models has assumed what to the
control engineer is a linear, time-varying model, that is, a model where the
rate coefficients in eqn (1.2) vary with time, but are not functions of the
states:

ki = ka(0). (1.8)

In the biochemistry literature, such a model is often called nonlinear. Of
particular interest are systems where some of the rate coefficients are periodic
functions of time, for example

ki(t) = k(1 + y sin ot) (1.9)

where y is a constant which must be less than one to preserve the non-
negativity of the rate coefficient.

Stochastic models by contrast have some feature (or features) which vary
randomly with time, and a substantial body of theory has been built up over
the past few years concerning such systems. The theory may be classified into
approaches where the rate coefficients are assumed stochastic and those
where the number of particles of interest within a compartment is assumed
stochastic (the rate coefficients being constant); some recent work has
combined the two approaches. Time-varying models and stochastic models
are discussed in Chapter 10.
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1.2 Some processes described by first-order differential

equations

Many processes can be described by first-order differential equations, and
many such equations are compartmental in form, although often not
described as such. A familiar example is the equation for radioactive decay:

d—N: — AN (1.10)
dr

where N () is the number of radioactive particles at time ¢ and 2 is a constant.
This is compartmental since ¥ is non-negative and AN is non-negative, (ii_]:,
being non-positive.

The diffusion of material across a membrane according to Fick’s Law is
also a first-order process. The material transfer takes place from regions of
high concentration to those of low concentration along the line of the
concentration gradient, and the flow of substance per unit area is propor-
tional to the gradient. If the concentrations in two constant-volume
compartments (volumes ¥, and V,) are C; and C,, then the mass transfer
equations according to Fick’s Law are:

dc S
Vld—t’=k-Y(C2—Cl) (1.11a)
dc S
VZthzk-Y(CI —C,) (1.11b)

where k is the coefficient of diffusion, S is the effective surface area between
the compartments, and X 1is the effective separation between the
compartments. If k, S and X are constants, eqns (1.11) are linear and time-
invariant.

Another process in which first-order differential equations arise is a simple
irreversible, single-stage chemical reaction whereby chemicals 4 and B react
to give products. The change of mass, x,, of A is described by the equation

ddit,l = —k,+sC4C% (1.12)
where C,, is the concentration of A; Cyis the concentration of B;a is the order
of the reaction with respect to 4; f§ is the order of the reaction with respect to
B; o+ f is the order of the reaction; k,,, is a constant with dimensions
dependent on a + f.
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For a first-order reaction (o + f =1) with A (only) reacting to give
products

dx,

T —k,C,, (1.13)
and if the reaction takes place in a vessel of constant volume,
dx
d—t": —kx,. (1.14)
For a reversible first-order reaction
k
A=B
ky
(1.15)
dx
dvtA = —k x4+ kyx,.
For a reaction of the form
ky
A+B=C
ky

the forward reaction is at rate k,C,Cj and the backward reaction is at rate
k,C., so that

dt

= —k,C,Cy + k,C. (1.16)

which is of nonlinear compartmental form, with the first term on the right-
hand side dependent on two states. Many equations involving conservation
of mass or energy are of compartmental form.

1.3 The origins of compartmental modelling

The fact that many first-order differential equations are compartmental
without necessarily being described as such makes tracing the exact origins of
compartmental models rather difficult. In the biological area, Atkins (1969)
notes that, while radioactive tracers were first applied to biological systems as
long ago as 1923, the majority of work on such systems up to the early 1940s
was of a qualitative nature. During the 1940s, there was a trend towards
treating data in a more quantitative manner, so that the use of differential
equations (and, consequently, compartments) to describe the behaviour of
tracers became increasingly important. The first good quantitative treatment
was probably that of Zilversmit, Entenman and Fishler (1943), but the term
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“compartment™ was first introduced by Sheppard in 1948. A further
significant early paper was that of Sheppard and Householder (1951)
discussing the mathematical basis for interpreting tracer experiments.

The origins of pharmacokinetics are usually attributed to Teorell who
published a systematic study of the kinetics of drugs introduced into the
mammalian body via extravascular routes (1937a) and via intravascular
routes (1937b). He gave four differential equations representing the transfer
of material from the subcutaneous depot to the blood, elimination of drug
from the blood to the urine, the exchange between blood and tissue, and
tissue elimination. Teorell derived expressions for the quantity ol drug in the
subcutaneous depot (for the extravascular administration), in the blood and
in the tissue and found that the last two were tri-exponential.

In a review of linear compartmental analysis in ecosystem modelling,
O’Neill (1979) notes that linear, time-invariant compartmental modelling has
played an important role in the development of systems ecology since its
inception in the late 1950s, but models closely resembling compartmental
models had appeared much earlier than this—certainly as early as 1935 in the
atmospheric sciences.

These, then, seem to be the beginning of compartmental modelling in the
three main applications areas. In Section 1.4, the present-day role of
compartmental modelling will be assessed.

1.4 The role of compartmental modelling

Compartmental modelling has been and is being used widely in biomedicine
(particularly in the modelling of metabolic processes), in pharmacokinetics
and in ecosystem modelling.

In modelling metabolic system dynamics, compartmental modelling is the
most widely-used approach, although it is not universally applicable.
Probably the best guide on when to consider using such a model is to return
to the definition given at the beginning of this chapter and for experimenters
to ask themselves whether the concept of homogeneous, well-stirred tanks is
appropriate to their particular application. Two recent reviews have given
guidelines on when it is appropriate to model metabolic systems using
compartments (Carson, Cobelli and Finkelstein, 1981; Carson, Godfrey and
Reeve, 1982). In some instances, it is appropriate to model only part of a
system with compartments; for example, models of the role of insulin in the
regulation of blood glucose level (Carson, Godfrey and Reeve, 1982, Section
1.4.3) have equations of compartmental form in the forward path, with a
non-compartmental feedback control mechanism incorporated into the
overall model. Carson, Cobelli and Finkelstein (1981) note that where a
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compartmental structure is not well-defined, or where experimental data aré
insufficient for its identification, it may be more appropriate to adopt a non-
compartmental approach, focusing on overall input-output relationships,
especially at the level of the whole organism; several examples are cited.

Compartmental models have also been used elsewhere in biomedicine, for
example, to model gas exchange in lungs, where, with modern measuring
devices, it is now possible to verify such models by externally scanning
radioactivity in the lungs. Examples of such modelling are given by Bajzer
and Nosil (1977) and Bache, Gray and Murray-Smith (1981). External
scanning has also featured in the modelling of metabolic systems—see
Application Example 2 in Chapter 11.

In pharmacokinetics, it is rare for compartments to be assigned a
physiological label. For linear modelling, the model is tailored to the
observations, the number of compartments of an open model being made
equal to the number of observed exponentials, This approach is often referred
to as “black-box” modelling. If the drug in plasma concentration-time curve
has two exponentials, the two compartments are called the central compart-
ment and the peripheral compartment. If there are three exponentials, a form
of model is assumed with a central compartment exchanging with a shallow
peripheral compartment and a deep peripheral compartment; the peripheral
compartments do not exchange directly with each other. The adjectives
“shallow” and “‘deep” reflect fast and slow exchange with the central
compartment and the only physiology in the model is that the central
compartment contains the systemic plasma.

With no assumption of physiological significance for the compartments,
the purpose of a linear compartmental model describing the time course of
drug in plasma (or urine) becomes difficult to define. The lack of relevance of
such models has been commented upon by experts in the pharmacokinetics
field (see, for example, Wagner, 1975). As noted above, an approach focusing
on overall input—output relationships seems preferable (provided, of course,
that the resulting model is as economical a description as the compartmental
alternative). Such a relationship in this case would be the fitting of
exponentials (or the corresponding Laplace transfer function) to the
responses of compartmental quantities to impulse or step perturbation.
Going further, some pharmacokinetic quantities of interest, such as the area
under the curve (AUC) and, following oral administration, peak concen-
tration (C,,,) and time to peak (7,,) do not even require the fitting of
exponentials and can be found from a plot of concentration v. time.

Linear compartmental models are useful in pharmacokinetics in the
simultaneous description of the kinetics of a drug and its metabolites. A
metabolite is a substance formed from a drug by biotransformation (usually
mainly in the liver) and is of considerable importance in that, while it may
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occasionally have the same therapeutic effect as the drug, it quite often
produces side-effects which can limit the quantity of drug administered,
particularly orally. A multi-species example, with two compartments each for
the drug and its metabolites (Boxenbaum and Riegelman, 1976) is discussed
in Application Example 4 in Chapter 11.

In most pharmacokinetics trials, drugs are administered in therapeutic
quantities rather than minute (trace) quantities, so that some nonlinear
effects might be expected (Wagner, 1973b). Although, as noted above, linear
compartmental models do not seem necessary for describing the time course
of drugs alone, modelling nonlinear drug kinetics within a compartmental
framework proves particularly useful. Much of the work hitherto reported
has been on systems with Michaelis—Menten elimination kinetics (Wagner,
1973a). Wagner (1973b) has given examples from the literature to suggest
that the elimination pathways (both hepatic and renal) for many drugs are
very liable to become saturated. The importance of recognizing capacity-
limited elimination cannot be overemphasized. Pharmacokinetics measured
following a single administration may appear linear but if a multiple-dosing
regimen is then designed on the basis of linear (first-order) elimination, it can
lead to a considerable build-up of drug in the body if the elimination pathway
becomes saturated at higher drug levels. This has been graphically illustrated
in simulation results by Wagner (1978), while Garrettson and Jusko (1975)
quote an example of children overdosed with diphenylhydantoin which led
these authors to fit Michaelis—-Menten kinetics to the subsequent decline in
drug concentration in the children.

The first application describing fitting Michaelis-Menten elimination
kinetics to a single concentration-time curve seems to be that of Lundquist
and Wolthers (1958) concerning alcohol elimination. The recent impetus
towards nonlinear modelling in pharmacokinetics has been fostered by the
publication of a single journal (Journal of Pharmacokinetics and
Biopharmaceutics) which contains a high proportion of the good-quality
papers on mathematical modelling in pharmacokinetics.

A further recent development involving compartmental models in the
pharmacokinetics area concerns the simultaneous measurement of drug
concentration in venous plasma (pharmacokinetics) and the pharmaco-
logical response (pharmacodynamics). The pharmacodynamics are tradition-
ally modelled as a nonlinear function of the drug concentration at the
receptor site, but this gives rise to two problems. Firstly exactly what form of
nonlinear function should be used, and secondly, how should the concen-
tration at the receptor site be related to the (measured) concentration in the
central compartment and/or the (unmeasured) concentration in the peri-
pheral compartment of the model describing the pharmacokinetics? Recent
work in this area will be discussed in Application Example 7 in Chapter 11.




