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retreatment Brain Activation During Stroop Task Is
ssociated with Outcomes in Cocaine-Dependent
atients

udson A. Brewer, Patrick D. Worhunsky, Kathleen M. Carroll, Bruce J. Rounsaville, and Marc N. Potenza

ackground: Cognitive behavioral and related therapies for cocaine dependence may exert their effects, in part, by enhancing cognitive
ontrol over drug use behavior. No prior studies have systematically examined the neural correlates of cognitive control as related to
reatment outcomes for cocaine dependence.

ethods: Twenty treatment-seeking cocaine-dependent individuals performed a Stroop color-word interference task while undergoing
unctional magnetic resonance imaging (fMRI) prior to initiating treatment. The primary outcome measures were percent of urine drug
creens negative for cocaine, percent days abstinent, and treatment retention. Correlations between regional brain activation during Stroop
ask performance and treatment outcome measures were analyzed.

esults: During Stroop performance, individuals activated brain regions similar to those reported in nonaddicted individuals, including the
nterior cingulate cortex, dorsolateral prefrontal cortex, parietal lobule, insula, and striatum. Activations at treatment onset correlated
ifferentially with specific outcomes: longer duration of self-reported abstinence correlated with activation of ventromedial prefrontal
ortex, left posterior cingulate cortex, and right striatum; percent drug-free urine screens correlated with striatal activation; and treatment
etention correlated with diminished activation of dorsolateral prefrontal cortex. A modest correlation between Stroop effect and treatment
etention was found.

onclusions: The functions of specific brain regions underlying cognitive control relate differentially to discrete outcomes for the
reatment of cocaine dependence. These findings implicate neurocircuitry underlying cognitive control in behavioral treatment outcome
nd provide insight into the mechanisms of behavioral therapies for cocaine dependence. They also suggest neural activation patterns

uring cognitive control tasks are more sensitive predictors of treatment response than behavioral measures.
ey Words: Addiction, cocaine, cognitive behavioral therapy, cog-
itive control, fMRI, Stroop, treatment outcomes

here are over 40 million Americans reporting lifetime use
of cocaine or crack (1). Behavioral therapies remain the
mainstay of treatment for cocaine dependence, as there

re no Food and Drug Administration (FDA)-approved pharma-
otherapies (2). Predictors of treatment outcomes, ranging from
emographics to biological markers, have yielded mixed results
3). Neurobiological features of cocaine dependence may help
dentify patients who can best utilize treatments. Compared with
elf-reported measures, brain activity may be able to better
redict outcomes, possibly by bypassing conscious or subcon-
cious processes (e.g., embarrassment, deceit, or denial).

Cognitive control has been defined as the series of processes
y which the human cognitive system is able to configure itself
or the performance of specific tasks through appropriate adjust-
ents in perceptual selection, response biasing, and the online
aintenance of contextual information (4). Prefrontal networks

nvolving the dorsolateral prefrontal cortex (dlPFC), orbitofrontal
ortex (OFC), and anterior cingulate cortex (ACC) are important
or executive cognitive functions governing cognitive control
uch as response inhibition and error monitoring (5). Dysregu-
ation in these networks may mediate core characteristics of drug
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addiction (6), as cocaine abusers have shown dysfunction in
tasks of decision making and cognitive control (7), which
correlates with abnormalities in these networks (8).

The objective of this study was to evaluate relationships
between pretreatment regional brain activations during a cogni-
tive control task and treatment outcomes in cocaine-dependent
individuals undergoing behavioral therapy. We chose the Stroop
color-word interference task because it is a well-validated cog-
nitive control task and has been used with cocaine-dependent
populations previously (8,9). Treatment outcome measures were
percent of urine toxicology screens positive for cocaine, self-
reported abstinence, and treatment retention. We hypothesized
that neurocircuitry activation underlying cognitive control would
correlate with treatment retention and drug abstinence. We also
hypothesized that Stroop performance would correlate with
treatment outcome, albeit less robustly.

Methods and Materials

Participants
All participants in two randomized clinical trials for treatment-

seeking, cocaine-dependent individuals were offered participa-
tion in this study prior to beginning treatment. Twenty-two
subjects agreed. Two were excluded for excessive motion dur-
ing functional magnetic resonance imaging (fMRI) tasks. Study 1
(n � 8) compared a computer-assisted version of cognitive
behavioral therapy (CBT) with a standard community-based drug
treatment program as described elsewhere (10). Participants
received either weekly individual plus group sessions (treatment
as usual [TAU]) or TAU plus a multimedia computer-assisted
version of CBT to which patients had access twice weekly during
8 weeks of treatment. Participants received urine screens twice

weekly. Study 2 (n � 12) was a randomized clinical trial of
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ocaine users randomized to individual CBT in conjunction with
ne of four conditions: 1) placebo, 2) disulfiram, 3) contingency
anagement � placebo, or 4) contingency management �
isulfiram. Contingency management consisted of providing
ositive reinforcement for cocaine-free urines. Participants re-
eived CBT once weekly plus medications and urine screens
hrice weekly.

Participants were English-speaking adults who met current
SM-IV criteria for cocaine dependence via structured clinical

nterviews (Structured Clinical Interview for DSM-IV [SCID]).
articipants were excluded if they had not used cocaine within
he past 28 days, were pregnant or breastfeeding, color blind,
eft-handed, had less than a third grade reading level, could not
ommit to completing 8 weeks of treatment, had an untreated
sychotic disorder that precluded outpatient treatment, had a
sychiatric disorder with current use of a prescribed psycho-
ropic medication that could not be discontinued (study 2 only),
r had any acute or unstable medical or neurological illness.

Participants in both studies were similar with regard to age,
ex, race, education level, drug use history, employment status,
nd Axis I comorbidity; blood oxygenation level-dependent
BOLD) signal changes; medication effects; treatment outcome
orrelations; and Stroop reaction time (RT) (all p � .2, Table 1)
nd were thus included in a single group for analyses as has been
one previously (9).

Participants reported last use of cocaine an average (�SD) of
.35 (�5.68) days (30%, 45%, and 80% reporting use within 1, 3,
nd 7 days, respectively) before imaging. Sixty-five percent
eported any use of alcohol in the month prior to treatment. Of
hese, participants reported their last use averaging 13.92
�10.29) days (5%, 5%, and 25% reporting use within 1, 3, and 7
ays, respectively) prior to imaging. Zero and 5% reported
arijuana use within 1 and 3 days before imaging, respectively,

nd 5% reported benzodiazepine use (as prescribed) the day
efore imaging. Participants showed no signs of intoxication or
ithdrawal from any drugs during imaging sessions.

MRI Task
The event-related fMRI Stroop color-word interference task

as been described previously (11–15). Briefly, subjects com-
leted 6 runs of 105 stimuli during the fMRI acquisition. Each
timulus was presented for 1300 msec with an intertrial interval
f 350 msec. Incongruent stimuli were presented pseudoran-
omly every 13 to 16 congruent stimuli, with a total of 7
ncongruent events in each run (which has been shown to
roduce a Stroop rather than an “oddball” effect) (14). Partici-
ants completed a maximum of 5 (4.58 � 1.21) additional runs to
ssess Stroop effect (difference in RT to incongruent versus
ongruent stimuli) (16,17) and percentage of correct responses to
ncongruent stimuli.

mage Acquisition
Images were obtained with a Siemens Trio 3T magnetic

esonance imaging (MRI) system (Siemens AG, Erlangen, Ger-
any). Localizer images were acquired for prescribing the

unctional image volumes, aligning the eighth slice parallel to the
lane transecting the anterior and posterior commissures. Func-
ional images were collected using an echo-planar image gradi-
nt-echo pulse sequence (repetition time/echo time [TR/TE]
500/27 msec, flip angle 60°, field of view [FOV] 22 cm � 22 cm,
4 � 64 matrix, 3.4 mm � 3.4 mm in-plane resolution, 5 mm

ffective slice thickness, 25 slices). Each stimulus run consisted of
124 volumes, including an initial rest period of 9 seconds that
was removed from analyses.

fMRI Data Analysis
Functional images were analyzed using SPM2 (Wellcome

Functional Imaging Laboratory, London, United Kingdom). Each
run was separately realigned using INRIAlign (Wellcome Func-
tional Imaging Laboratory) (18) and was examined for head
motion in excess of one voxel. Single runs were removed from 3
of the 20 subjects for excessive motion. Realigned image volumes
for each session were used to construct a mean functional image
volume, which was then used for spatial normalization into
Montreal Neurological Institute (MNI) standardized space. The
normalization parameters for each participant were then applied
to the corresponding functional image volumes using an auto-
mated spatial transformation resulting in an isometric voxel size
of 4 � 4 � 4 mm3. Normalized images were then smoothed with
a 9 mm full-width at half-maximum Gaussian filter.

Data were analyzed using the general linear model approach.
Analysis was performed by modeling congruent and incongruent

Table 1. Demographic and Clinical Characteristics (n � 20)

Demographics %
Age: years (SD) 38.60 (9.29)
Gender, female 8 40
Race

White 6 30
Black 10 50
Hispanic 4 20

Ethnicity
Hispanic 4 20
Non-Hispanic 16 80

Employment status
Full-time 1 5
Part-time 4 20
Unemployed/Not working 15 75

Education: years (SD) 12.70 (1.17)
Shipley Scale IQ score: mean IQ (SD) 90.35 (12.77)

Clinical Characteristics
Cocaine use prior to treatment: days out of 28 (SD) 12.30 (9.49)
Lifetime cocaine use: years (SD) 11.05 (7.86)
Daily tobacco smoker 17 85
Comorbid Diagnosis

Current Depressive Disorder 0 0
Lifetime Depressive Disorder 10 50
Anti-social Personality Disorder 4 20
Lifetime Alcohol Dependence/Abuse 11 55
Current Alcohol Dependence/Abuse 4 20
Lifetime Marijuana Dependence/Abuse 12 60
Current Marijuana Dependence/Abuse 2 10
Lifetime Opioid Dependence/Abuse 4 20
Current Opioid Dependence/Abuse 3 15

Treatment Conditions
Study 1

CBT � TAU 5 25
TAU 3 15

Study 2
CBT � Placebo 4 20
CBT � Disulfiram 4 20
CBT � Placebo � CM 3 15
CBT � Disulfiram � CM 1 5

CBT, cognitive behavioral therapy; CM, contingency management; TAU,
treatment as usual.
stimuli separately in an event-related design using the hemody-
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amic response function with time derivative provided by SPM2.
high-pass filter (cutoff period � 128 sec) was used to remove

ow-frequency signals and the SPM2 first-order autoregressive
AR[1]) process was used to correct for serial correlations.
esulting images representing the estimated hemodynamic re-
ponse amplitude (positive and negative) for each condition
ere then reestimated with a latency variation amplitude-correc-

ion method (19). The latency-corrected contrast images were
hen used in random-effects and correlational group analyses.

Main effects were examined in a one-sample t test at a
ignificance level of p � .00005 uncorrected and a cluster
hreshold of k � 20. Correlations between the activation con-
rasts for the Stroop task and treatment outcome variables were
ssessed using SPM2 simple regression analysis and a signifi-
ance level of p � .005 uncorrected and a cluster threshold of
� 20. If no significant correlations were found at p � .005, the

ignificance threshold was relaxed to p � .01. Covariants were
nalyzed using SPM2 multiple regression models. Significant
lusters (main effect activation and outcome correlations) were
sed to define regions of interest. Average percent signal change
ithin each region was calculated using the latency-corrected

ontrast image for each subject.

esults

ehavioral Results–Stroop Task Performance
Reaction time to congruent stimuli correlated with RT to

ncongruent stimuli and Stroop effect (Table 2). Stroop effect
nversely correlated with RT to incongruent stimuli and percent
ncorrect responses, perhaps because the Stroop effect is calcu-
ated from RTs. Percent cocaine-free urine toxicology correlated
ith self-reported longest abstinence. Reaction times to congru-
nt and incongruent stimuli and Stroop effect correlated moder-
tely with number of weeks in treatment. No other correlations
etween Stroop performance, urine toxicology, reported absti-
ence, and treatment retention were found. Participants perform-
ng the Stroop task had an average (�SD) incorrect response
ercentage of 27.0% (�24.9%) to incongruent stimuli.

maging Results–Brain Activation During Stroop Performance
During Stroop performance, subjects showed significantly

reater BOLD signal in the contrast of incongruent versus
ongruent conditions. Regional activations predominantly in-

able 2. Stroop Task Performance Correlates Minimally with Treatment Ou

Mean (SD)
RT

Incongrue

troop Performance
Reaction time, congruent stimuli (msec) 579.5 (75.5) .87c

Reaction time, incongruent stimuli (msec) 792.3 (155.0)
Stroop effect (msec) 212.8 (96.5)
Percent incorrect incongruent responses 27.0 (24.9)

utcome
Percent cocaine-negative urines 58.4 (46.8)
Longest abstinence from cocaine (days) 32.0 (21.4)
Weeks in treatment 5.5 (3.1)

RT, reaction time.
Data are given as mean � standard deviation.
ap � .05.
bp � .01.

cp � .001.

ww.sobp.org/journal
volved the 1) dorsal ACC extending dorsally and anteriorally into
the medial and superior frontal gyri; 2) putamen/globus pallidus;
3) dlPFC including the inferior and middle frontal gyri, extending
posteriorally to the precentral gyri and ventrally into the insula
and superior temporal gyri; and 4) superior parietal lobule
extending into the inferior parietal lobule bilaterally (Supplement
1, Table 3A).

Clinical Correlations–Brain Activation Correlates with
Treatment Outcome Measures

Brain activations during Stroop performance correlated differ-
entially with treatment outcome measures. Percent cocaine neg-
ative urine toxicology correlated with activations centered in the
right putamen (Figure 1A, Table 3B). Self-reported longest
duration of cocaine abstinence correlated with activation of the
1) right putamen; 2) left ventromedial prefrontal cortex (vmPFC),
involving the medial frontal gyrus/OFC and ventral portion of the
superior frontal gyrus, extending dorsally into the ventral ACC;
and 3) left posterior cingulate cortex (PCC) extending into the
superior parietal lobule (Figure 1B and 1C, Table 3C). Inverse
correlations between activation during the Stroop task and
number of weeks in treatment were observed in left dlPFC
(Figure 1D, Table 3D).

Clinical Correlations–Brain Activation Correlates Modestly
with Stroop Performance

Post hoc region of interest (ROI) analysis (all regions listed in
Table 3) revealed a moderate inverse correlation between incon-
gruent and congruent RTs and percent signal change in the left
dlPFC associated with retention (r � �.47, �.46; p � .05). The
correlation between this region and Stroop effect, however, did
not reach but trended toward significance (r � �.39, .1; p � .05).
No other correlations between RTs, Stroop effect, and brain
activation were found in any ROI. No correlations between ROI
activation and age, education, gender, last reported cocaine use,
or days of cocaine use in the month before treatment were
found.

Discussion

This study is one of the first to investigate the relationship
between brain activations and treatment outcomes for individu-
als with cocaine dependence and the first to investigate brain

e Measures

Pearson Correlation Coefficient (r)

Stroop Effect
% Incorrect
Responses

% Cocaine
Negative

Urines

Longest
abstinence

from Cocaine
Weeks in

Treatment

.62b �.32 .00 �.09 .45a

.92c �.46a .11 .09 .50a

�.50a .18 .23 .46a

�.21 �.11 .12

.74c .01
.03
tcom

nt
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ctivations underlying cognitive control in relation to outcome
easures for behavioral treatment of cocaine dependence. Dur-

ng Stroop task execution, individuals activated brain regions
imilar to those reported in nonaddicted individuals on this task
14,20,21). Regional brain activations at treatment onset corre-
ated differentially with outcome measures, supporting our hy-
othesis that cognitive control neurocircuitry activation would
orrelate with treatment retention and drug abstinence. Our
ypothesis that Stroop performance would correlate with treat-
ent outcome was partially supported, as RTs only correlated
ith dlPFC activation.

troop Performance in Addiction
A study of cocaine-dependent individuals compared Stroop task

ubscale and Hamilton Depression Rating Scale scores using logistic
egression analysis to predict treatment completion (9). They found
hat treatment completers performed better on color naming and
nterference on the Stroop task and that models based on Stroop
cores predicted dropout more robustly than did those based on
epression scores. In accord with these results, we also found a
odest correlation between Stroop effect and treatment retention.

MRI of Stroop in Cocaine Dependence
Activation patterns during the Stroop task were seen in

egions previously reported in both substance abusers and
ontrol groups (8,14,15,20), thus supporting the validity of the
troop fMRI paradigm. As the current study did not involve
ealthy control subjects, future investigations are needed to
xamine directly for possible between-group differences during

able 3. Regional Brain Activation During Stroop Task Performance and Co

. Stroop Main Effect Contrast (Incongruent vs. Congruent)

eak voxel threshold: p � .00005; cluster threshold: k � 20
R Dorsolateral Prefrontal Cortex/Insula 13, 38, 4
L Dorsolateral Prefrontal Cortex/Insula 13, 38, 4
Medial Frontal Cortex/Anterior Cingulate 6, 8, 9,
L Medial Globus Pallidus/Putamen
R Medial Globus Pallidus/Putamen
L Parital Lobule 7, 40
R Parital Lobule 40

. Stroop Main Effect Correlation with Percent Cocaine-Negative Urine Toxi

eak voxel threshold: p � .005; cluster threshold: k � 20
R Putamen

. Stroop Main Effect Correlation with Longest Duration of Cocaine Abstine

eak voxel threshold: p � .005; cluster threshold: k � 20
L Posterior Cingulate Cortex 31
L Ventral Medial Prefrontal Cortex 10, 32
R Putamen

. Stroop Main Effect Correlation with Weeks in Treatment

eak voxel threshold: p � .01b, cluster threshold: k � 20
L Dorsal Lateral Prefrontal Cortex 8, 9

BA, Broadman Area; BOLD, blood oxygenation level-dependent; C, cong
A. Brain regions showing significant differences with incongruent versus

rine toxicology over the course of treatment. C. Longest duration of self-re
aFor A: Z indicates I � C BOLD signal; no C � I BOLD signal was observe

orrelation.
bNo significant correlations were found at p � .005 and thus the signific
troop performance.
Cognitive Control and Behavioral Therapy for Cocaine
Dependence

Prefrontal cortex regions contribute to cognitive control in-
volving error detection, performance monitoring, and establish-
ing motivational value of rewards (22). Reward prediction error
signals correlate with activation of the putamen (23), indicating
that corticostriatal brain regions function as a circuit during
cognitive control processes. In this circuit, the dorsal striatum
“gates” afferent information entering the PFC, allowing for the
preservation and updating of goals (24,25). The PCC, which is
anatomically linked to the PFC and striatum, has been implicated
in sensory arousal (e.g., cocaine cues) (26,27), motivationally
linked attention (28), and the evaluation of emotional memories
(29). We found that during Stroop task performance, activation in
specific corticostriatal regions correlated with reported absti-
nence and cocaine-free urine toxicology. Increased activity in the
putamen may reflect gating of informational processing with
concomitant increased PFC and PCC activation signifying attend-
ing to, resisting, or reevaluating motivationally salient stimuli,
such as cravings and/or emotional memories elicited by stressful
situations or drug-related cues, which have been associated with
dysfunction in this circuitry and concomitant relapse (30–32).

Dorsolateral PFC function is involved in working memory,
attention, initiation of cognitive control, and conflict-induced behav-
ioral adjustment (20,33–36). Studies have found decreased dlPFC
activation after CBT for phobias (37) and depression (38). We found
an inverse correlation between dlPFC activation and treatment
retention: the less participants activated their dlPFC, the longer they
stayed in treatment. This may reflect more efficient processing (39),

tions with Treatment Outcome Measures

Size Za x y z

, 47 415 6.34 36 28 �8
, 46, 47 539 6.03 �40 8 32
2 572 5.97 �4 12 52

49 4.95 �16 4 0
67 4.86 12 0 �4
51 4.71 �32 �60 44
22 4.48 52 �48 48

y

45 4.11 24 0 �4

31 3.72 �24 �36 40
24 3.69 �12 48 �8
35 3.20 24 0 12

46 �2.88 �28 40 48

t; I, incongruent; L, left; R, right; Size, cluster size.
ruent stimuli during Stroop task performance. B. Percent cocaine-negative
d cocaine abstinence. D. Total weeks in treatment.

r B–D: Z � 0 indicates a positive correlation and Z � 0 indicates an inverse

threshold was relaxed to p � .01.
rrela

BA

5, 46
4, 45
24, 3

colog

nce

ruen
cong
porte
d. Fo
leading to improved ability to access previous choices and adjusted
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ehavioral decisions. Alternatively, this may represent less conflict
rising in individuals who have committed to treatment (36). These
nd other possibilities warrant further investigation.

egional Activations and Treatment Outcomes
Correlations between treatment, craving-related brain activa-

ion, and relapse have been previously examined in cocaine-
ependent patients (26). Activation in the left precentral, supe-
ior temporal, posterior cingulate, and right middle temporal
ortices during exposure to videotapes depicting cocaine use
orrelated with worse treatment effectiveness scores (26). The
ifferent nature of the task, intervention, and outcome measures
ay explain differences in brain activation patterns reported in

he previous study compared with ours. However, similar to our
indings, brain activations were more strongly correlated with
elapse than were subjective reports of craving. These studies are
n accord with an investigation finding that fMRI activation
atterns in temporal, right insular, and posterior cortices during
simple two-choice decision-making task early in recovery

igure 1. Regional brain activation during Stroop task performance correla
ctivation as denoted numerically in Table 3 (left side of figure) with corresp
rine toxicology over the course of treatment (p � .005), (B) and (C) longes

reatment (p � .01). Red/white indicates areas of positive correlations betw
ncongruent versus congruent contrast. Blue/green indicates areas of nega
ignal changes in the incongruent versus congruent contrast. Numbers in
xygenation level-dependent; MNI, Montreal Neurological Institute.
redicted relapse in methamphetamine-dependent individuals

ww.sobp.org/journal
(40). Together, these suggest that brain activation may be a more
sensitive measure than self-report or task performance assess-
ments for predicting treatment outcomes.

Strengths and Limitations
Strengths of this study include a sample where selection

criteria, assessments, and outcomes were well defined and
validated and participants were exposed to behavioral therapy
with a strong empirical basis. The Stroop paradigm is well
validated and has long been used to study cognitive control.
Limitations include a relatively small sample size that received
different treatments, a small number of incongruent trials, a short
intertrial interval, and frequent co-occurring substance use dis-
orders. However, the latter may provide greater face validity
given comorbidities in this population (41). Future investigations
should address limitations of the present study by using a single
behavioral treatment and larger sample size. Larger samples may
identify other brain regions, such as the insula, that have been
implicated in other studies of drug dependence treatment out-

ith treatment outcome measures. Brain slice correlation images of regional
g percent signal change (right side of figure). (A) Percent cocaine negative

ation of self-reported cocaine abstinence (p � .005), and (D) total weeks in
he indicated outcome measure and increased BOLD signal changes in the
orrelations between the indicated outcome measure and increased BOLD
e z axis MNI coordinates. Right side of brain is on the right. BOLD, blood
tes w
ondin
t dur
een t
tive c
dicat
come.
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onclusions and Future Directions
Treatment outcomes correlated with activation patterns of

rain circuitry important in cognitive control, and the correla-
ions appeared more robust and related to a broader range of
easures than behavioral performance measures. These findings
rovide insight into neurobiological underpinnings of the treat-
ent of cocaine dependence and hold promise to help target

pecific therapies for specific individuals and improve treatment
utcomes.
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