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The parametric ntPET model (p-ntPET) estimates the kinetics of neurotransmitter release from dynamic PET
data with receptor–ligand radiotracers. Here we introduce a linearization (lp-ntPET) that is computationally
efficient and can be applied to single scan data. lp-ntPET employs a non-invasive reference region input
function and extends the LSRRM of Alpert et al. (2003) using basis functions to characterize the time course of
neurotransmitter activation. In simulation studies, the temporal precision of neurotransmitter profiles
estimated by lp-ntPET was similar to that of p-ntPET (standard deviation ~3 min for responses early in the
scan) while computation time was reduced by several orders of magnitude. Violations of model assumptions
such as activation-induced changes in regional blood flow or specific binding in the reference tissue have
negligible effects on lp-ntPET performance. Application of the lp-ntPET method is demonstrated on [11C]
raclopride data acquired in rats receiving methamphetamine, which yielded estimated response functions
that were in good agreement with simultaneous microdialysis measurements of extracellular dopamine
concentration. These results demonstrate that lp-ntPET is a computationally efficient, linear variant of ntPET
that can be applied to PET data from single or multiple scan designs to estimate the time course of
neurotransmitter activation.
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Introduction

Neurotransmission is central to synaptic signaling in the brain. Acute
fluctuations of specific neurotransmitters have been demonstrated in
normalmotor and cognitive function (Aalto et al., 2005; Badgaiyan et al.,
2003; Christian et al., 2006; Koepp et al., 1998), whereas dysregulation
of phasic release has been implicated in schizophrenia (Abi-Dargham
et al., 1998; Breier et al., 1997; Laruelle et al., 1999), substance abuse
(Busto et al., 2009; Cox et al., 2009; Martinez et al., 2005, 2007; Volkow
et al., 1997), stress (Oswald et al., 2005, 2007; Wand et al., 2007), and
subpopulations of Parkinson's disease patients (de la Fuente-Fernández
et al., 2004; Evans et al., 2006; Steeves et al., 2009). Investigators have
postulated that the magnitude and temporal kinetics of changes in
neurotransmitter concentration represent distinct aspects of the
responsewith differential implications in health, disease, and treatment
(Fried et al., 2001; Olive et al., 2002; Parasrampuria et al., 2007; Spencer
et al., 2006;Volkowand Swanson, 2003; Volkowet al., 1995, 1996, 1999,
2002).

PET and SPECT have been applied to image neurotransmitter
release using receptor–ligand tracers whose binding is sensitive to the
concentration of endogenous neurotransmitter. Data are often
analyzed using change in binding potential (ΔBPND; Innis et al.,
2007), which reflects an alteration in the number of available
receptors between baseline and activation scan conditions. It has
been shown that the timing and magnitude of neurotransmitter
release are conflated in measures of ΔBPND (Endres and Carson, 1998;
Yoder et al., 2004). More sophisticated experiment designs and data
analysis techniques have been described (Alpert et al., 2003; Aston
et al., 2000; Friston et al., 1997; Ikoma et al., 2009; Pappata et al.,
2002;Watabe et al., 2000; Zhou et al., 2006), but thesemethods either
fail to incorporate the dynamic nature of neurotransmitter release or
else prescribe the temporal kinetics a priori. Hence these approaches
focus on the detection of neurotransmitter release rather than its
characterization. It has been suggested that the limited temporal
information extracted from in vivo molecular imaging studies has
yielded results – and consequently, new hypotheses – that emphasize
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static aberrations and discount dynamic dysregulation of neurotrans-
mission which may underly certain disease phenotypes (Sarter et al.,
2007).

To address the limitations of existing methodologies, we have
developed data analysis techniques collectively termed ntPET (for
‘neurotransmitter PET’) which estimate the time course of neurotrans-
mitter release from dynamic PET data with displaceable radiotracers.
We have previously described two variants, one that is model-based or
“parametric” (p-ntPET; Morris et al., 2005) and another that is data-
driven or “non-parametric” (np-ntPET; Constantinescu et al., 2007).
Estimating the eleven parameters of the p-ntPET model is computa-
tionally intensive. The model-independent np-ntPET method can
recover response patterns of arbitrary shape and analyze data more
rapidly. However, without an underlying model structure the solutions
provided by this method can be more difficult to interpret or constrain
to a particular form. Both p-ntPET and np-ntPET require data from two
PET sessions, one at the baseline condition and the other during
activation (i.e., neurotransmitter-releasing challenge). Analysis
methods which require only one scan session (e.g., Alpert et al., 2003;
Carson et al., 1997; Endres et al., 1997; Friston et al., 1997; Ikoma et al.,
2009; Pappata et al., 2002; Zhou et al., 2006) are desirable to minimize
cost, radiation dose, and physiological variation.

Thus, we seek an ntPETmethod that is computationally efficient and
can be applied to data from a single scan session. Here, we extend the
LSRRM analysis technique (Alpert et al., 2003) using a basis function
approach to obtain a new model-based variant of ntPET, which we call
lp-ntPET (‘linear parametric ntPET’). By analyzing realistic simulated
datawe show that the lp-ntPETmethodperforms similarly to p-ntPET, is
computationally efficient, is insensitive to plausible violations of model
assumptions, and can be used to analyze data from experiments with
single or paired scan sessions. We also demonstrate application of the
technique to analyze [11C]raclopride data acquired in rats with a
dopamine-releasing pharmacological challenge and compare the
estimated response profiles to extracellular dopamine concentration
measured simultaneously by microdialysis.

Materials and methods

Theory

The lp-ntPET model extends the LSRRM (Alpert et al., 2003) using
basis functions to estimate the time course of neurotransmitter
activation. The LSRRM is, in turn, a linear extension of the simplified
reference tissue model (SRTM; Lammertsma and Hume, 1996).
Integration of the SRTM equations yields a formulation that is linear
in its parameters,

CT tð Þ = R1CR tð Þ + k2∫
t

0
CR uð Þdu−k2a∫

t

0
CT uð Þdu ð1Þ

where CT and CR are concentration of tracer in the target and
reference regions, respectively, and the coefficients describe the
kinetics of tracer uptake and retention in the tissue. (This integral
expression was derived independently by Ichise et al. (2003) and
termed the multilinear reference tissue model, or MRTM.) Alpert et al.
generalized this model with time-varying parameters that reflect
transient changes in radiotracer influx, clearance, and binding. The
fluctuations of the parameters during the activation state were
described by the time course of the function h(t),

CT tð Þ = R1CR tð Þ + α∫
t

0

dCR

du
h uð Þdu

+ k2∫
t

0
CR uð Þdu + β∫

t

0
CR uð Þh uð Þdu

−k2a∫
t

0
CT uð Þdu−γ∫

t

0
CT tð Þh uð Þdu:

ð2Þ
Extending the logic applied previously for exogenous pharmaco-
logical competition with a radioligand (Friston et al., 1997) Alpert
recognized that k2a, the tracer efflux rate from the collapsed tissue
compartment to plasma, was sensitive to radiotracer displacement
caused by endogenous neurotransmitter release. The effect of
neurotransmission being of primary interest, the impact of changes
in tracer delivery and clearance were evaluated separately with a
reduced model having one time-varying parameter k2a(t) of the form
k2a+γh(t), where k2a is the baseline washout rate constant, h(t)
represents the time course of activation and γ encodes the magnitude
of its effect on the apparent tissue efflux rate. Provided h(t) is defined
in advance, the model can still be expressed in terms of linear
parameters:

CT tð Þ = R1CR tð Þ + k2∫
t

0
CR uð Þdu−k2a∫

t

0
CT uð Þdu

−γ∫
t

0
CT uð Þh uð Þdu:

ð3Þ

Alpert et al. set h(t)=e− τ(t−T)u(t−T) where u(t) is the unit step
function and T is the time at which the activation is initiated, an
expression used previously by Endres and Carson (1998) to model
dopamine release elicited by intravenous administration of amphet-
amine. This mathematical formulation applies to a neurotransmitter
response that becomes maximal instantaneously at the onset of the
challenge and decays exponentially to baseline thereafter. With the
temporal qualities of the response predetermined, applications of
LSRRM (Badgaiyan et al., 2003, 2007, 2008; Christian et al., 2006) have
focused on detection of neurotransmitter release by testing whether γ,
the response magnitude, was statistically different than zero.

We have extended LSRRM using a basis function approach for the
dual purposes of detection and characterization of neurotransmitter
responses that may have greater complexity than a single exponential
functions. We refer to this model as linear parametric ntPET (lp-
ntPET). The basis functions are of the form

Bi tð Þ = ∫
t

0
CT uð Þhi uð Þdu ð4Þ

where the constituent functions, hi(t), comprise a predefined catalog
of candidate response profiles. Because each basis function is
constructed from the same measured time activity curve, CT tð Þ,
every Bi(t) is affiliated with a unique response function. The
operational equation for lp-ntPET is

CT tð Þ = R1CR tð Þ + k2∫
t

0
CR uð Þdu−k2a∫

t

0
CT uð Þdu−γBi tð Þ: ð5Þ

This relationship can be expressed compactly in standard matrix
notation of the form y = Ax. The corresponding linear algebraic
equation for analysis of single-scan data is

CT t1ð Þ
⋮

CT tmð Þ

2
6664

3
7775 =

CR t1ð Þ ∫
t1

0
CR uð Þdu −∫

t1

0
CT uð Þdu −∫

t1

0
CT uð Þhi uð Þdu

⋮ ⋮ ⋮ ⋮

CR tmð Þ ∫
tm

0
CR uð Þdu −∫

tm

0
CT uð Þdu −∫

tm

0
CT uð Þhi uð Þdu

2
66664

3
77775

×

R1
k2
k2a
γ

2
664

3
775: ð6Þ
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For analysis of dual-scan data the relevant formula is

Cb
T t1ð Þ
⋮

Cb
T tmð Þ

Ca
T t1ð Þ
⋮

Ca
T tnð Þ

2
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775 ð7Þ

where the superscripts a and b designate PET data from activation and
baseline sessions, respectively.

For each basis function the overdetermined system of equations can
be solved rapidly using standard algorithms to obtain theweighted least

squares estimate ofmodel parameters x̂ = ATWA
� �−1

ATWy,whereW

is the weighting matrix having diagonal elements inversely propor-
tional to the variance of the PET measurement CT contained in the
matching row of the matrix equation. The optimal model parameters
and activation pattern are identified from the basis function that yields
the best model fit to the data. This approach is not unlike the basis
function implementation of SRTM (Gunn et al., 1997). However, instead
of constructing basis functions that map to different binding potential
values (the parameter of interest in SRTM), we employ basis functions
that map to distinct neurotransmitter response curves (the vector of
interest in lp-ntPET).

In the samemanner that Gunn et al. (1997) created basis functions by
discretizing the direct search parameter over a physiologically relevant
range, the curves included in the family hi(t) were chosen to restrict
the search to plausible response functions. As was done previously with
p-ntPET, the response profiles were parameterized by gamma variate
functions. Here, we have used the formulation of Madsen (1992),

hi tð Þ = t−tD
tP−tD

� �α
exp α 1− t−tD

tP−tD

� �� �
u t−tDð Þ ð8Þ

where u(t) is the unit step function and the variables tD (the delay
time at which the response starts relative to start of scan), tP (the peak
time of maximal response magnitude), and α (the “sharpness” of the
function) are incremented over finite intervals. Here we used the
following values to discretize the parameters, where tend designates
the time at which the scan ended: α equal 0.25, 1, or 4; tD equal−5 to
Fig. 1. Example response and basis functions. (A) Family of activation responses and (B) b
displayed and the basis functions are normalized by the integral of the corresponding respon
this subset all have the same onset time (t=0), whereas the entire set of functions include
(tend−10) in increments of 2.5 min; tP equal (tD+1.25) to (tend−5)
in increments of 2.5 min. Note that the lower limit of tP is conditioned
on the value of tD as it is not sensible for a response to peak before it
begins, and the limits of both tD and tP are restricted so that only
responses which occur during the PET session are evaluated. The
permutations of the discretized parameter values yield at total of 897
distinct functions.

A subset of the functions included in the response catalog is
plotted in Fig. 1A for a fixed onset time. These functions have a variety
of shapes and peak times, and resemble neurotransmitter time
courses that we might anticipate in response to drug administration
or a behavioral task. We note that the model could readily
accommodate curves of any arbitrary form if additional information
were available to guide the choice of response profiles. Fig. 1B depicts
the basis functions generated according to Eq. (4) using the subset of
response functions and a noiseless simulated tissue curve. Note from
the operational Eq. (5) that the basis functions represent the
sensitivity curves dCT(t)/dγ for each hi(t), and their distinct shapes
distinguish one from another during the optimization process.

The lp-ntPETmodel has four explicit parameters (R1, k2, k2a, γ) that
describe tracer kinetics and response magnitude, and three implicit
parameters encoded by the basis functions (tD, tP, α) that describe the
time course of the response. This formulation represents a simplifi-
cation of p-ntPET which relies on the eleven-parameter enhanced
receptor model (Endres et al., 1997; Morris et al., 1995) which is an
extension of the two-tissue compartment model (Mintun et al., 1984)
that explicitly accounts for competition between the tracer and the
endogenous neurotransmitter at the receptor sites.

Simulated PET data

Dual-scan data
Realistic simulated PET data with kinetics chosen to resemble [11C]

raclopride were generated as previously described (Normandin and
Morris, 2008). Briefly, three types of noisy data sets were created: (i)
data without model violations, (ii) data with imperfect reference
regions biased by specific binding, and (iii) data with activation-
induced changes in blood flow. As in Normandin and Morris (2008),
changes in regional blood flow were simulated by 10% changes in K1

and k2 starting at the time of activation onset and lasting through the
end of the scan. In the target region the parameters were increased
and in the reference region were constant or decreased, in order to
mimic changes in blood flow previously observed after ethanol
administration (Volkow et al., 1988). Each simulated data set
consisted of four time activity curves (TACs), corresponding to target
and reference region curves during baseline and activation sessions.
All cases were replicated for neurotransmitter responses commencing
between 0 and 45 minutes in 5 minute increments, the only exception
asis functions generated from them. To aid visualization, a small subset of functions is
se function in order to yield bases of a similar scale. Also note that the response curves in
s profiles with a variety of start times.
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being data with changes in blood flow for which activation always
occurred at 15 minutes. Each neurotransmitter response peaked
10 minutes after take-off. “Null” data sets also consisted of four
TACs, but neurotransmitter levels were constant during both rest and
activation conditions. For each case at a given response start time,
1000 data sets with unique randomnoise realizations were generated.
This approach parallels the tests performed to characterize p-ntPET
with reference region-derived input functions (Normandin and
Morris, 2008).

It should be noted that lp-ntPET relies on a simplification of the
two-tissue compartment model that collapses the free and bound
tracer states into a single compartment, but the simulated data were
generated using the complete enhanced receptor model (Endres et al.,
1997; Morris et al., 1995) with parameters derived from experimental
data. Furthermore, none of the response functions in the hi(t) catalog
shared the same temporal profile as the neurotransmitter concentra-
tion curve used to generate simulated data with the enhanced
receptor model.

Single-scan data
Data were created in the same manner as for dual-scan sets as

described above, but only TACs from the activation scan were
generated and analyzed. All curves were noisy but unbiased. The
impact of specific binding in the reference tissue or alteration of blood
flow parameters was not assessed for the single-scan paradigm.

Parameter estimation

Optimization algorithms
The lp-ntPET model was fitted to data using linear least squares

estimation. Two optimization variants were evaluated. Weighted least
squares (WLS) was applied with each weighting factor set inversely
proportional to the variance of the corresponding target region PET
datum, as is customary in PET analysis (Landaw and DiStefano, 1984;
Mazoyer et al., 1986). The WLS solution is unique and can be obtained
efficiently using standard algorithms. Because WLS can estimate
positive or negative values for gamma, response profiles reflecting
increases or decreases in neurotransmitter level can be estimated. Non-
negative least squares (NNLS)was also appliedwith residuals weighted
in the same manner. The imposition of a non-negativity constraint
necessitates iterativefittingandallowsonlypositive responseprofiles to
be estimated. In p-ntPET estimations reported previously (Normandin
andMorris, 2006, 2008;Morris et al., 2005, 2008),we set a lower bound
of zero for the scaling factor of the neurotransmitter profile. Therefore,
lp-ntPET with NNLS most closely resembles the p-ntPET method.

Use of prior information to constrain fits
The response functions to be evaluatedduring estimation are chosen

at the discretion of the investigator. If information were known about
the experiment, for example when the challenge was initiated, one
could incorporate that knowledge into the lp-ntPET framework through
the exclusion of certain components in the response catalog (i.e., the set
of functions hi(t)). For these simulation experiments we selected
candidate functions in two ways: (i) using the full catalog of response
functionswithout constraints onresponse start time, or (ii) byexcluding
responses starting more than five minutes before the true neurotrans-
mitter response as a way of constraining responses based on prior
information (e.g., the experimentally known challenge initiation time).
We have previously applied p-ntPET with (Morris et al., 2008) or
without (Normandin and Morris, 2006, 2008; Morris et al., 2005)
constraints on time of response onset.

Significance testing

Each data set was fitted with both MRTM (1) and lp-ntPET (5).
MRTM is a nested model, identical to lp-ntPET absent the activation
term. The significance of the responses estimated by lp-ntPET was
assessed using model selection criteria and statistical testing on γ, the
estimated response magnitude.

For each data set a one-sample location test of the t statistic
(Fisher, 1925a; Gosset [Student], 1908) was used to assess whether or
not γ was statistically different than zero, indicative of a significant
response. For a given fit, the t statistic is the ratio of the estimated
parameter to its standard error. The parameter variance for an
individual fit was obtained from the Fisher information matrix. This
estimate of the variance is often called the Cramér–Rao lower bound
(Cramér, 1946; Rao, 1945) and represents the minimum variance
achievable by an unbiased estimator. Because the true parameter
variance is generally greater than the Cramér–Rao bound, the t
statistic calculated using this approximation may be artificially
inflated. We therefore calculated “uncorrected” t values using the
Cramér–Rao lower bound and “corrected” t values using a Monte
Carlo-based estimate of the variance for γ as observed across the 1000
replicate data sets for each simulation case.

Alternatively, a likelihood ratio test was performed using the
F statistic (Fisher, 1925b) to compare the goodness of fit of MRTM and
lp-ntPET for each data set. Comparing two models where model 1 is
nested within (i.e., is a degenerate form of) model 2, the F statistic is
given by

F =

WRSS1�WRSS2
p2−p1

� �

WRSS2
n−p2

� � ð9Þ

whereWRSS is the weighted residual sum of squares, p is the number
of model parameters, n is the number of data points, and the
subscripts designate whether the quantity applies to model 1 or 2. In
our application, model 1 is MRTM andmodel 2 is lp-ntPET.When only
two models are considered and an unbiased estimator is used, the
F statistic is equal to the square of the t statistic. In line with our
treatment of the t statistic, we calculated the “uncorrected” F statistic
according to (9) and the “corrected” F value normalized to reflect the
difference between the Cramér–Rao lower bound and the variance
determined by Monte Carlo estimation.

Similarly, the Akaike (AIC; Akaike, 1974) and Bayesian (BIC;
Schwarz, 1978) information criteria were calculated forMRTM and lp-
ntPET fits to each data set. The AIC is given by

AIC = nlog
WRSS

n

� �
+ 2p ð10Þ

and the BIC by

BIC = nlog
WRSS

n

� �
+ plog nð Þ: ð11Þ

The model with the lowest AIC or BIC is generally considered best.
The structure of Akaike weights (Akaike, 1978; Burnham and
Anderson, 1998) was used to assign a probability to a given model
being best. Briefly, for each model we define Δi=AICi−AICmin, where
AICmin is the minimum AIC of all candidate models and the subscript
i indexes the M candidate models. Here, we used M=2 to compare
MRTM and lp-ntPET with the optimal basis function. For each model
the Akaike weight is obtained by

wi =
exp −Δi = 2ð Þ

∑
M

j=1
exp −Δj = 2

� � ð12Þ

and represents the likelihood that the model is the best among those
evaluated. The same procedure can be applied to derive probabilities
from the calculated BIC values. In this manner, the AIC and BIC values
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from MRTM and lp-ntPET fits to each data set were used to test
whether the response estimated by lp-ntPET was significant.

For all of the above tests we considered lp-ntPET to have seven
parameters. Although only four parameters (R1, k2, k2a, and γ) are
explicitly estimated, the basis function search implicitly incorporates
the response onset time (tD), peak time (tP), and sharpness (α) into
the model.

Experimental PET data

Animal experiments were approved by the Brookhaven National
Laboratory Institutional Animal Care and Use Committee. Dynamic
PET and microdialysis were performed simultaneously as previously
described (Morris et al., 2008). Briefly, dynamic PET data were
acquired from rats using a microPET R4 scanner (Concorde Micro-
systems, Inc., Knoxville, TN) after a bolus administration of [11C]
raclopride. Microdialysis was performed simultaneously to assay
extracellular dopamine concentration. During the PET acquisition,
methamphetaminewas infused unilaterally through themicrodialysis
probe into the right striatum. A control animal underwent the PET-
microdialysis experiment but did not receive the drug.

PET images were reconstructed by Fourier rebinning followed by
filtered backprojection. Time activity curves were extracted from
regions of interest delineated on the left (untreated) and right
(cannulated) striata, as well as the cerebellum. As was done
Fig. 2.Unconstrained fits of dual-scan data. Responses estimated using non-negative (NNLS; p
(A, D), late (B, E), or no (C, F) neurotransmitter response. Data were generated without mod
data sets expressed as percentage of the estimated baseline k2a. Dashed red curves: envelope
Agreement between true and estimated responses for late activation is good, but degraded
lacking activation are temporally incoherent with the zero magnitude level enclosed within
previously with p-ntPET (Morris et al., 2008), lp-ntPET was applied
using the left striatal data as the rest condition and right striatal data
as the activation condition. The cerebellum was used as the reference
region.

Results

Analysis of simulated dual-scan data without model violations

Unconstrained fitting
The characterization of neurotransmitter profiles by lp-ntPET was

similar using either WLS or NNLS optimization. When prior
information was not applied to constrain the timing of estimated
profiles, the delay (tD) and peak (tP) time parameters estimated from
data with neurotransmitter release starting before 25 min had small
biases (b3 min) and moderate standard deviations (σ=3−6 min).
Fig. 2A shows the average response estimated using lp-ntPET with
NNLS from 1000 data sets having responses starting at 10 min; Fig. 2D
shows the same for data sets analyzed using WLS optimization.
Although temporal resolution deteriorated for later activation, the
estimated profiles still clearly resembled the true neurotransmitter
curves as depicted in Figs. 2B, E for responses starting at 35 min.
Timing parameters estimated from null data sets lacking a neuro-
transmitter response were highly variable (σ=20 min) and the
response profiles had no discernable pattern, as seen in Figs. 2C, F.
anels A–C) or weighted (WLS; panels D–F) least squares from dual-scan data with early
el violations. Solid red curve: average of the estimated responses from 1000 simulated
of ±1 standard deviation about the mean. Black curve: true neurotransmitter response.
compared to data sets with early activation. Responses estimated from null data sets
the ±1 s.d. interval.

image of Fig.�2


Table 1
Bias and precision of estimated timing parameters.

Single-scan Dual-scan Dual-scan (non-ideal ref. region) Dual-scan (task-induced change in blood flow)

tD = 15 min WLS tD −1.26 (3.53) 0.77 (3.48) −0.20 (3.49) 0.65 (3.41)
tP 1.23 (2.72) 2.01 (3.19) 2.14 (3.20) 1.69 (3.04)

NNLS tD −1.78 (3.53) 1.17 (3.52) −0.01 (3.54) 1.09 (3.39)
tP 1.43 (2.70) 1.93 (3.21) 2.12 (3.50) 1.58 (3.14)

tD=35 min WLS tD −0.70 (4.23) 0.46 (4.65) 0.43 (4.96) N/A
tP 4.00 (6.62) 4.02 (6.43) 4.92 (6.63) N/A

NNLS tD −0.69 (4.33) 0.75 (4.76) 0.97 (5.16) N/A
tP 3.97 (6.55) 4.03 (6.05) 4.87 (6.22) N/A

Bias and standard deviation (in parentheses) of delay and peak time estimates across 1000 simulated data sets, in units of minutes. N/A: not applicable.
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Constrained fitting
Incorporation of prior information improved the accuracy and

precision of neurotransmitter timing parameters. Performance was
best for responses starting before 25 min, with small biases (≤2 min)
and standard deviations (σ=3−4min) in estimates of both tD and tP.
Bias of delay time remained stable for responses occurring throughout
the scan duration whereas precision degraded slightly as true
response delay time increased, reaching σ=5 min at tD=45 min.
Later activations led to slightly larger biases (up to ~4.5 min) and
variability (σ up to ~6.5 min) in tP. The biases and standard deviations
of timing parameters for neurotransmitter responses starting at 15 or
35 min are reported in Table 1. Average responses estimated from
data with activation at 35 min are shown in Fig. 3A. Analyses of null
data yielded responses that lacked temporal coherence, as shown in
Fig. 3B for challenge without neurotransmitter release at 35 min (that
is, null data analyzed with constraint tD≥30 min). Throughout the
remainder of this manuscript we report results from the application of
lp-ntPET with constrained timing parameters unless otherwise noted.

True and false positive classification rates for activation at 15 and
35 min are given in Table 2. All significance tests consistently detected
true neurotransmitter responses early in the scan using either NNLS or
WLS estimation. Model selection criteria (AIC and BIC) and “uncor-
rected” statistical tests indicated strong significance for activations
having start times ranging throughout most of the scan duration.
Fig. 3. Constrained fits of single- and dual-scan data. Comparison of responses estimated by l
task. Data in upper panels include neurotransmitter release, while those in lower panels are
challenge initiation. Results are presented as described in Fig. 2. Note the strong corresponde
applied to dual-scan versus single-scan data sets.
“Corrected” statistical tests (t and F values modified to reflect the
observed variance of γ using Monte Carlo-based estimates) consis-
tently designated the estimated responses as significant for early
activation. Responses starting later than 25 min were detected with
lower sensitivity. False positive rates estimated from null data were
high for model selection criteria and uncorrected statistical tests,
particularly for data with early responses analyzed using the WLS
optimization algorithm. Corrected t and F tests generally had better
specificity when WLS was used. False discovery rates from corrected
t tests remained high with NNLS estimation.
Analysis of simulated dual-scan data with non-ideal reference region

The presence of receptors in the reference region had little impact
on the performance of lp-ntPET. Estimation of timing parameters was
largely insensitive to specific binding in the reference region. Using a
non-ideal reference tissue having receptor density equal to 40% of that
in the target region, biases and standard deviations of the timing
parameters were typically within one minute of those from unbiased
data (refer to Table 1). Table 2 highlights classification results
obtained using the same biased (reference region) input function.
Performance was very similar to the case with an ideal reference
region.
p-ntPET with WLS from dual-scan (A,B) or single-scan (C,D) data sets for late activation
null data sets. Responses were constrained to begin no earlier than 5 minutes before the
nce between true and estimated responses, and between the performance of the model

image of Fig.�3


Table 2
Sensitivity and specificity of neurotransmitter response detection.

single-scan dual-scan dual-scan (biased input) dual-scan (task-induced change in blood flow)

tD=15 min WLS AIC 0.99 (0.11) 1.00 (0.38) 1.00 (0.38) 1.00 (0.41)
BIC 0.93 (0.02) 1.00 (0.22) 1.00 (0.20) 1.00 (0.23)
tCR 1.00 (0.73) 1.00 (0.76) 1.00 (0.77) 1.00 (0.78)
tMC 0.50 (0.00) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
FCR 1.00 (0.17) 1.00 (0.45) 1.00 (0.46) 1.00 (0.48)
FMC 0.01 (0.00) 0.98 (0.00) 0.99 (0.00) 0.99 (0.00)

NNLS AIC 0.99 (0.12) 1.00 (0.16) 1.00 (0.19) 1.00 (0.23)
BIC 0.91 (0.02) 1.00 (0.08) 1.00 (0.10) 1.00 (0.12)
tCR 1.00 (0.71) 1.00 (0.37) 1.00 (0.37) 1.00 (0.45)
tMC 0.89 (0.16) 1.00 (0.15) 1.00 (0.14) 1.00 (0.17)
FCR 0.99 (0.19) 1.00 (0.20) 1.00 (0.21) 1.00 (0.27)
FMC 0.25 (0.01) 0.98 (0.05) 1.00 (0.04) 0.99 (0.05)

tD=35 min WLS AIC 1.00 (0.03) 1.00 (0.22) 1.00 (0.25) N/A
BIC 0.97 (0.01) 0.98 (0.10) 0.98 (0.11) N/A
tCR 1.00 (0.44) 1.00 (0.61) 1.00 (0.63) N/A
tMC 0.01 (0.00) 0.03 (0.01) 0.03 (0.01) N/A
FCR 1.00 (0.05) 1.00 (0.29) 1.00 (0.32) N/A
FMC 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) N/A

NNLtMCS AIC 1.00 (0.03) 0.99 (0.13) 0.99 (0.11) N/A
BIC 0.97 (0.01) 0.97 (0.05) 0.97 (0.04) N/A
tCR 1.00 (0.36) 1.00 (0.33) 1.00 (0.27) N/A
tMC 0.01 (0.11) 0.04 (0.14) 0.01 (0.09) N/A
FCR 1.00 (0.05) 0.99 (0.17) 0.99 (0.10) N/A
FMC 0.00 (0.01) 0.00 (0.04) 0.00 (0.02) N/A

True and false (in parentheses) positive rates for response detection tests with α=0.01. AIC: Akaike information criterion. BIC: Bayesian information criterion. t: t test. F: F test.
CR (subscript): parameter variance from Cramér–Rao bound. MC (subscript): parameter variance from Monte Carlo analysis.
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Analysis of simulated dual-scan data with change in blood flow during
activation

Activation-induced alteration of blood flow resembling changes
elicited by ethanol administration had negligible impact on the
performance of lp-ntPET. The estimated responses shown in Fig. 4
correspond to data having increased blood flow to the target region
and decreased blood flow to the reference region during activation
(based on [15O]water PET studies (Volkow et al., 1988)). These
response profiles are nearly identical to those estimated from data
without activation-induced alteration of blood flow. The biases and
Fig. 4. Activation-induced change in blood flow. Responses estimated from dual-scan data w
reference region during activation. Data shown in upper panels include neurotransmitter rele
Fig. 2. Changes in blood flow had little impact on the performance of lp-ntPET (compare to re
no effect on the target region) were similar.
precision of estimated timing parameters were insensitive to this
model violation (Table 1). Sensitivity and specificity of response
detection were similar to comparable simulation cases without blood
flow changes, although false positive rates were elevated by
approximately 50% with NNLS optimization (see Table 2).

Analysis of simulated single-scan data

The temporal characteristics of responses extracted from single-
scan data sets (i.e., without a separate baseline session) compared
favorably to the profiles estimated from analogous dual-scan data
ith concomitant increased blood flow in the target region and decreased blood flow in
ase, while those in lower panels are null data sets. Results are presented as described in
sults in Fig. 2 and Table 1). Outcomes with decreased flow in the reference region (and
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sets, as evidenced by the similarity of estimated responses shown in
Fig. 3 for dual- vs. single-scan data with activation at 35 min. Timing
parameters obtained from single-scan analyses were inaccurate and
inconsistent if responses occurred very early in the scan (before
15 min), but converged to performance as good as dual-scan analysis
for responses starting at 15–20 min or later (Table 1). Estimated
responses were consistently classified as significant across all
statistical tests for responses starting at 20–25 min, however the
sensitivity of corrected statistical tests diminished progressively
thereafter. Model selection tests exhibited better specificity with
single-scan analyses as compared to analogous dual-scan analyses
(Table 2).
Analysis of experimental data

The activation profiles estimated by lp-ntPET with NNLS are
compared in Fig. 5 to the extracellular dopamine levels measured in
the striatum by microdialysis. Panels A–C show the measured data
and lp-ntPET results obtained from an animal that received
intracranial infusion of methamphetamine. The lp-ntPET fit was
statistically better than MRTM (pb10−7 in all significance tests) and
yielded a response profile that was in good temporal agreement with
dopamine concentration measured by microdialysis (Fig. 5C). The
results obtained from a control animal that did not receive drug
treatment are shown in Figs. 5D–F. The response estimated by lp-
ntPETwas not statistically significant (pN0.98 in all significance tests).
MRTM, which contains no neurotransmitter response term, provided
satisfactory fits when applied simultaneously to baseline and
sham data in the control experiment (Figs. 5D, E), but was unable
to reconcile the rest and activation data in the drug condition
(Figs. 5A, B).
Fig. 5. Simultaneous PET-microdialysis experiments. Measured data and modeling results
panels, A–C) and a control animal that received a sham infusion (lower panels, D–F). Baseline
striatum are shown in middle column (B, E). Open circles: striatal PET data. Filled black ci
optimization. Dashed black curve: MRTM model fit. Neurotransmitter responses measured
plotted in the right panels (C,F). Filled gray circles: measured microdialysis data. Dashed
responses estimated by lp-ntPET. In the control animal, lp-ntPET andMRTM provide nearly id
tests). In the animal that received drug, the fit from the MRTMmodel (no activation term) is
ntPET is significant (pb10−7 in all tests) and in good agreement with microdialysis measu
Discussion

lp-ntPET was constructed as a basis function augmentation of the
linear extension of the simplified reference region model (LSRRM;
Alpert et al., 2003). LSRRM incorporated a temporal variation in
neurotransmission, which is absent from conventional analysis
techniques that typically estimate change in binding potential
(ΔBPND). However, the inclusion of temporal qualities was limited
because the model used a canonical response function. LSRRM was
introduced to address the binary question of whether or not the
prescribed response existed in the data. A noteworthy consequence of
this limitation was that the onset of the neurotransmitter response
needed to be known in advance and, in practice, was fixed to the time
of task initiation. The lp-ntPET model is free of this restriction and can
therefore estimate the full time course of neurotransmitter release.
Our analysis methods may also have alternative applications for
characterizing time-varying receptor occupancy by exogenous drugs.
Performance of lp-ntPET: Comparison to p-ntPET

The lp-ntPET model was devised to address the limitations of
LSRRM in order to provide a computationally efficient alternative to
p-ntPET. We have examined lp-ntPET using the same simulation tests
applied previously to characterize the reference region formulation of
the p-ntPET model (Normandin and Morris, 2008). When data were
noisy but without model violations, both p-ntPET and lp-ntPET
exhibited good precision in estimated timing parameters (standard
deviation approximately 3–4 min for neurotransmitter responses
starting earlier than 25 min post-injection). p-ntPET was previously
tested on responses starting as late as 30 min, and a slight degradation
in its temporal precision was observed for later responses. Here,
obtained from a rat that received intra-cranial infusion of methamphetamine (upper
PET data from left striatum are shown in left panels (A, D) and activation data from right
rcles: cerebellar PET data. Solid black curve: model fit obtained by lp-ntPET with WLS
by microdialysis (left vertical axis) and estimated by lp-ntPET (right vertical axis) are
gray curves: gamma variate function fitted to microdialysis data. Solid black curve:
entical fits (D,E); the response (F) estimated by lp-ntPET is not significant (pN0.98 in all
poor while lp-ntPET provides a good fit to the data (A,B); the response estimated by lp-
rements of dopamine (C).
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lp-ntPET was evaluated using responses initiated as late as 45 min; a
similar trend of reduced precision for later responses was observed.

p-ntPET and lp-ntPET exhibited comparable behavior when
applied to data with model violations. The presence of receptors in
the reference region, which biases the model input function, caused
underestimation of binding potential but did not compromise the
ability of either technique to estimate neurotransmitter timing
parameters with accuracy and precision. This raises the possibility
of using non-ideal reference tissues to improve the signal-to-noise
properties of the input function if it can be assumed that neurotrans-
mitter fluctuations in the reference region are negligible during the
scan and accurate estimation of BPND is not required. These
assumptions should be considered and appropriately validated on a
case by case basis. The impact of changes in blood flow (alteration of
both K1 and k2 coincident with activation) was also negligible for both
methods. Changes in K1 alone were detrimental to the performance of
both models, affecting sensitivity to neurotransmitter responses and
obscuring their timing (data not shown). We note that changes in K1

decoupled from changes in k2 are physiologically implausible for
tracers whose transport between blood and tissue is governed by
passive diffusion. If such effects did occur they would adversely affect
conventional analysis methods as well, as shown previously forΔBPND

(Normandin and Morris, 2008).

Constraints based on prior information
Although the structures of the p-ntPET and lp-ntPET models differ,

analogous adaptations can be made to restrict parameters to fixed
values or within reasonable bounds based on knowledge of
physiology or experimental conditions. Prior information has been
used in p-ntPET to constrain the peak time and baseline binding
potential (Morris et al., 2008; Normandin and Morris, 2008). Said
constraints were imposed via penalty functions, terms added to the
objective function which promote solutions having particular quali-
ties (e.g., responses that peak during scan period). We can also
incorporate prior information into the optimization of lp-ntPET. For
instance, the member functions hi(t) of the response catalog were
chosen to exclude responses whose maximum occurred after the end
of the scan. Similarly, it is possible to use an independent
measurement of binding potential at rest to substitute for either k2
or k2a to reduce the number of estimated parameters. (In MRTM, BPND
is given by (k2/k2a)−1, which also holds in lp-ntPET for the binding
potential of baseline data.) Thus the p-ntPET and lp-ntPET models are
similar not only in their performance but also in their abilities to
accommodate prior information.

Magnitude of estimated responses

Like SRTM, lp-ntPET is based on a one-tissue compartment model.
Neurotransmitter concentration is incorporated implicitly via time-
varying change in k2a, the rate of tracer efflux from the tissue
compartment. In our simulations, which are based on an enhanced
model that explicitly includes neurotransmitter concentration, the
maximum receptor occupancy by released neurotransmitter was less
than 30%. If we assume that neurotransmitter binding to receptors is
instantaneous, the resulting increase in occupancy translates to an
increase in apparent washout rate of 26%. This is in excellent
agreement with the estimated peak values of k2a(t) at ~30% above
baseline (see Figs. 2–4).

We further note that the magnitude of neurotransmitter release
examined in our simulations in physiologically plausible. Consider
microdialysis findings following i.v. amphetamine administered to
rhesus monkeys reported in Endres et al. (1997). Peak receptor
occupancies by dopamine were estimated to be 52% and 62%
following amphetamine doses of 0.2 mg/kg and 0.4 mg/kg, respec-
tively. By comparison, we can classify our simulations based on 30%
peak occupancy and ΔBPND less than 20% (Normandin and Morris,
2008) as conservative.

Statistical detection of responses

Another difference between lp-ntPET and p-ntPET is the manner by
which significant responses are detected. The p-ntPET model utilizes a
threshold on the peak height of the estimated response to determine its
significance. Here, we have evaluated a battery of statistical tests and
model selection criteria to assess the significance of responses estimated
by lp-ntPET. The p-ntPET model accurately classified responses for
activation starting as late as 30 min (Normandin and Morris, 2008).
Using model selection criteria and “uncorrected” statistical tests,
lp-ntPET reliably detected true neurotransmitter responses starting
as late as 35 to 40 min into the scan. “Corrected” statistical tests
using Monte Carlo estimates of parameter variance were less
sensitive to responses after 25 min (see Table 2). All detection
methods showed high false discovery rates, particularly for dual-scan
analyses with WLS optimization.

The false positive rates obtained for single-scan data sets also
tended to be high but were in better agreement with the anticipated
specificity based on the selected significance level (α=0.01 in the
simulation studies presented here). However, the responses estimat-
ed from single-scan null data deviated from ideal behavior. The
average magnitude across repeated simulations was biased toward
positive values (Fig. 3D). While this was not a surprising finding for
NNLS optimization, where decreases in neurotransmitter below
baseline levels were not permitted, the behavior was not expected
with WLS estimation. The same skewness toward positive γ values
was not seen in analogous dual-scan data sets (see Figs. 2C, F and 3B),
suggesting that the etiology of the phenomenon lies in the experiment
design and not intrinsic model deficiencies. We hypothesize that
without a complete rest scan the model cannot unambiguously
distinguish tracer washout from neurotransmitter release. The use of
a bolus-plus-infusion protocol to achieve steady-state might elimi-
nate such transient confounds. The bolus-plus-infusion protocol could
also provide a more uniform signal-to-noise ratio over the scan
duration, reducing the time-dependence of sensitivity and specificity.
Although we found activation-induced changes in blood flow to have
minimal impact on the performance of lp-ntPET, the use of a bolus-
plus-infusion protocol should further mitigate its impact (Carson
et al., 1997). Bolus-plus-infusion administration of tracer for both rest
and activation sessions might also increase the reliability of dual-scan
analyses.

Application of lp-ntPET relies on significance testing to establish
that γ is non-zero (i.e., fits are statistically better with a time-varying
activation term than without). Each of the tests evaluated here has
limitations in this application. One limitation is that the γ values
estimated from null data sets do not conform to an unbiased Gaussian
distribution.WithWLS themodel always invokes a non-zero response
to reduce the sum of squares. With NNLS the non-negativity
constraint imposes a positive bias. Hence uncorrected t and F tests
are not for the analysis of null data and tend to exaggerate the
significance of estimated responses. Corrected t and F tests using a
Monte Carlo-derived estimate of parameter error do not correct the
distribution of γ and cannot be readily applied to the analysis of
experimental data sets. On the other hand, AIC and BIC rely on the
quality of the model fit to the data. Results from these measures were
in better agreement with theoretical expectations, although AIC and
BIC still exhibited relatively high false positive rates (see Table 2). We
posit that lp-ntPET sometimes invoked small responses to compen-
sate for partial inadequacy of the underlying simplified model, as
evidenced by WLS fits to null data which yield average estimated
responses that are insubstantial but not identically zero (Figs. 2F
and 3B,D). Of the significance tests investigated here, BIC showed the
best combination of sensitivity and specificity. We therefore advise
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using BIC with lp-ntPET. The NNLS optimizationmethod generally had
lower false positive rates using model selection tests than the WLS
algorithm. NNLS is appropriate if it is known a priori whether
neurotransmitter changes will increase or decrease. If such informa-
tion is known in advance and the increased computation time
(discussed in next section) is acceptable, NNLS is recommended as a
more selective algorithm than WLS.

The generally unsatisfying performance of statistical tests for
discrimination of significant responses warrants further examination.
A hybrid analysis approach might utilize lp-ntPET to estimate
neurotransmitter kinetics in combination with more conventional
analysis methods such as binding potential for assessment of response
significance. ΔBPND is frequently used to detect changes in neuro-
transmitter levels between baseline and activation scan sessions.
Although this method has known deficiencies for temporally variable
responses in paired bolus experiments (Yoder et al., 2004), ΔBPND is
proportional to the integral of the neurotransmitter release profile in
equilibrium studies (Endres and Carson, 1998). In addition to yielding
steady-state conditions, bolus-plus-infusion tracer administration
permits measurement of ΔBPND in single-scan studies (Carson et al.,
1997; Endres and Carson, 1998; Endres et al., 1997). Thus, ΔBPND or
other standard analyses could potentially be used to screen or mask
data sets for detection of significant activation profiles estimated by
lp-ntPET, even in single-scan experiments.
Computational efficiency
The most noteworthy difference between p-ntPET and lp-ntPET is

in computational burden. p-ntPET relies on a compartmental model
characterized by eleven parameters. Estimation of these parameters
requires iterative, non-linear fitting. Because the fits exhibited some
sensitivity to initial parameter guess, we fit each data set fifty times
with different initial parameter values. The entire procedure takes
approximately 60 to 90 minutes for a typical data set using the
Levenberg–Marquardt algorithm on a standard computer worksta-
tion. lp-ntPET is based on a simplified compartmental model and has
just four explicit parameters, all of which occur as linear coefficients in
the operational equation. Although the model must be fitted to the
data multiple times (once per basis function), each fit is very fast and
requires iteration only if NNLS is used. Analysis of a typical dual-scan
data set with a full catalog of response functions took less than
1.5 seconds using NNLS and less than 0.1 seconds using WLS. This
represents a reduction in computation time of several orders of
magnitude over p-ntPET with otherwise very similar performance.

The efficiency of lp-ntPET makes it practical to perform voxel-by-
voxel analysis of the whole brain, an intractible task for p-ntPET. The
resulting parametric images of γ could be processed using the well
established framework of statistical parametric mapping (SPM;
Friston et al., 1995) for detection of significant responses. In addition
to facilitating statistical testing, the ability to perform parametric
analysis with lp-ntPET would permit investigation of spatially and
functionally heterogeneous responses or localized activation patterns
that might be diluted using pre-defined regions of interest. Voxelwise
analysis with lp-ntPET could produce informative visualizations,
including 4D (3D in space, 1D in time) neurotransmitter “movies”
or parametric images of key response parameters (e.g., time of peak
neurotransmitter response), such as those generated from fMRI data
(Marota et al., 2000) and recently demonstrated using results from
non-parametric ntPET (Morris et al., 2010). These possibilities
motivate ongoing work to evaluate the efficacy of denoising
techniques (e.g., Alpert et al., 2006; Christian et al., 2010; Joshi
et al., 2008; Zhou et al., 2003) and develop adaptations of lp-ntPET
(such as constraining baseline BPND as described above, or using a
global clearance rate for the reference region as in SRTM2 (Wu and
Carson, 2002) and MRTM2 (Ichise et al., 2003)) to promote robust
performance on noisy voxel-level data.
Conclusion

The lp-ntPET technique presented here is a basis function
augmentation of the LSRRM method. LSRRM assumes that the time
course of activation is known, and in particular, that the response
onset coincides with task initiation. Our extension is more flexible. It
permits temporal characterization of neurotransmitter fluctuations,
including estimation of the response onset, peak time, and sharpness.
Analysis of realistic simulated data demonstrated that the perfor-
mance of lp-ntPET is similar to that of p-ntPET, which relies on an
elaborate compartmental model to estimate the time course of
neurotransmitter release. Computation time was several orders of
magnitude faster using lp-ntPET. Simulation studies revealed that lp-
ntPET is insensitive to anticipated model violations and may be
applied to single-scan paradigms. Activation profiles estimated from
PET data acquired in rats receiving methamphetamine were in good
agreement with simultaneous microdialysis measurements of dopa-
mine concentration. These results support the use of lp-ntPET as an
efficient and practical technique for estimation of neurotransmitter
dynamics from PET data.
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