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Abstract While most cigarette smokers endorse a desire to quit smoking, only
14–49% will achieve abstinence after 6 months or more of treatment. A greater
understanding of the effects of smoking on brain function may result in improved
pharmacological and behavioral interventions for this condition. Research groups
have examined the effects of acute and chronic nicotine/cigarette exposure on
brain activity using functional imaging; the purpose of this chapter is to synthe-
size findings from such studies and present a coherent model of brain function in
smokers. Responses to acute administration of nicotine/smoking include reduced
global brain activity; activation of the prefrontal cortex, thalamus, and visual sys-
tem; activation of the thalamus and visual cortex during visual cognitive tasks; and
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increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens.
Responses to chronic nicotine/cigarette exposure include decreased monoamine ox-
idase (MAO) A and B activity in the basal ganglia and a reduction in α4β2 nicotinic
acetylcholine receptor (nAChR) availability in the thalamus and putamen (accom-
panied by an overall upregulation of these receptors). These findings indicate that
smoking enhances neurotransmission through cortico–basal ganglia–thalamic cir-
cuits by direct stimulation of nAChRs, indirect stimulation via DA release or MAO
inhibition, or a combination of these and possibly other factors. Activation of this
circuitry may be responsible for the effects of smoking seen in tobacco-dependent
smokers, such as improvements in attentional performance, mood, anxiety, and
irritability.

1 Introduction

Smoking remains a major health issue in USA and quitting smoking continues to
be a challenge. In a recent survey, approximately 23% of Americans were found
to smoke cigarettes (Balluz et al. 2004). While most smokers endorse a desire to
quit (Fiore et al. 2000), very few will quit smoking without treatment, and only
about 14–49% will achieve abstinence after 6 months or more of effective treatment
(Holmes et al. 2004; Hughes et al. 1999; Hurt et al. 1997; Jorenby et al. 1999; Killen
et al. 2000, 1999). Because cigarette smoking carries both considerable health risks
(Bartal 2001; Mokdad et al. 2004) and high societal costs (Leistikow et al. 2000a, b),
there is an urgent need for improved treatments for this condition. Functional brain
imaging (in conjunction with other lines of research) holds great promise for elu-
cidating both brain circuits and molecular targets that mediate the acute effects of
cigarette smoking and the chronic effects of tobacco dependence. A greater under-
standing of brain function associated with smoking may result in improved pharma-
cological (and behavioral) interventions.

Many functional brain imaging studies of tobacco use and dependence have been
performed, using four primary imaging modalities: (i) functional magnetic reso-
nance imaging (fMRI), (ii) positron emission tomography (PET), (iii) single photon
emission computed tomography (SPECT), and (iv) autoradiography. These imag-
ing modalities have been used to determine relationships between brain function
and the effects of acute and chronic cigarette smoking and of smoking-related be-
haviors. For this chapter, the MEDLINE database was searched using keywords
for the four imaging techniques mentioned above, cross-referenced with the words
“nicotine”, “cigarette”, and “tobacco.” Only data-driven functional imaging studies
were included in this review, and reference lists within papers found on MEDLINE
were also examined and relevant studies included here. In order to maintain focus
in this chapter, functional imaging techniques that provide measures of blood flow
and metabolism (which are closely related under normal conditions; Paulson 2002)
are combined under the general heading of brain activity (including fMRI and cer-
tain types of SPECT, PET, and autoradiography studies). Also, in order to build
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a cohesive model of brain activity responses to acute and chronic smoking, nico-
tine and cigarette studies will be reviewed together while recognizing that cigarette
smoke has many constituents other than nicotine (Baker et al. 2004; Fowles and
Dybing 2003).

The purpose of this chapter is to synthesize findings from functional brain imag-
ing studies of tobacco use and dependence, and present a coherent model of brain
function in smokers. Acute brain responses to nicotine/smoking will be reviewed
first, followed by chronic responses to nicotine/smoking, and concluding with a dis-
cussion of these imaging findings in the context of neuroanatomical work and the
clinical effects of smoking in tobacco-dependent subjects.

2 Brain Function Responses to Acute Nicotine Administration
and Cigarette Smoking

2.1 Brain Activity Responses to Nicotine/Cigarette Administration

Many functional brain imaging studies have been performed examining the effects
of administration of nicotine or cigarette smoking compared with a placebo or con-
trol state (Table 1). Though a wide range of brain regions have been reported to have
altered activity in response to nicotine or cigarette smoking, several global and re-
gional findings have been replicated, leading to general conclusions about the acute
effects of nicotine or smoking on brain activity.

One common finding is that nicotine administration (Domino et al. 2000b;
Stapleton et al. 2003b) or cigarette smoking (Yamamoto et al. 2003) results in de-
creased global brain activity. Similarly, smokers who smoke ad lib prior to SPECT
scanning (including the morning of the scan) have decreased global brain activity
compared to former smokers and nonsmokers (Rourke et al. 1997). These findings
are generally supported by studies using transcranial Doppler ultrasound or the Xe
133 inhalation method to measure responses to smoking, with some (Cruickshank
et al. 1989; Kubota et al. 1983, 1987; Rogers et al. 1983), but not all (Kodaira et al.
1993; Terborg et al. 2002), studies showing diminished cerebral blood flow.

A large (n = 86), recent study (Fallon et al. 2004) further characterized this de-
creased global activity with nicotine administration. 18F-fluorodeoxyglucose (FDG)
PET was performed while smokers and exsmokers performed the Bushman aggres-
sion task (designed to elicit an aggressive state) and wearing either a 0, 3.5-, or
21-mg nicotine patch. Smokers who were rated high on the personality trait hostil-
ity had widespread cerebral metabolic decreases while wearing the 21-mg patch and
performing the aggression task. Low-hostility smokers did not have these changes
during PET, suggesting that personality profile may determine which smokers have
global metabolic decreases in response to nicotine.

In studies examining regional activity responses to nicotine or smoking, the
most common findings are relative increases in activity in the prefrontal cortex (in-
cluding the dorsolateral prefrontal cortex, and inferior frontal, medial frontal, and



148 A. Sharma and A.L. Brody

Ta
bl

e
1

Fu
nc

tio
na

lb
ra

in
im

ag
in

g
st

ud
ie

s
of

ni
co

tin
e

or
ci

ga
re

tte
ad

m
in

is
tr

at
io

n

A
ut

ho
rs

Su
bj

ec
ts

M
et

ho
d

In
te

rv
en

tio
n

R
es

ul
ts

A
ni

m
al

st
ud

ie
s

L
on

do
n

et
al

.(
19

88
a,

b)
R

at
s

2-
D

eo
xy

-D
-

[1–
14

C
]gl

uc
os

e
au

to
ra

di
og

ra
ph

y

SC
ni

c
(0

.1
–1

.7
5

m
g

kg
−1

)
↑N

ic
ot

in
e

ri
ch

re
gi

on
s,

in
cl

ud
in

g
th

al
,c

er
eb

,
vi

su
al

sy
st

em
,o

th
er

s

M
ar

en
co

et
al

.(
20

00
)

R
at

s
–

ch
ro

ni
ca

lly
ni

c
ex

po
se

d
vs

.n
ic

na
iv

e
2-

D
eo

xy
- D

-[1
–14

C
]

gl
uc

os
e

au
to

ra
di

og
ra

ph
y

SC
ni

c
(0

.4
m

g
kg

−1
)

vs
.s

al
in

e
↑T

ha
l,

su
pe

ri
or

co
lli

cu
lu

s
in

ch
ro

ni
ca

lly
ex

po
se

d;
↑t

ha
l,

su
pe

ri
or

co
lli

cu
lu

s,
m

ed
ia

l
ha

be
nu

la
,a

nd
do

rs
al

la
te

ra
lg

en
ic

ul
at

e
in

ni
c

na
iv

e

H
um

an
st

ud
ie

s

R
ou

rk
e

et
al

.(
19

97
)

8
Sm

ok
er

s;
8

fo
rm

er
sm

ok
er

s;
17

no
ns

m
ok

er
s

Io
di

ne
-1

23
io

do
am

ph
et

am
in

e
(I

M
P)

SP
E

C
T

Sm
ok

er
s

sm
ok

ed
th

e
m

or
ni

ng
of

th
e

sc
an

;
ot

he
rg

ro
up

s
di

d
no

t

↓C
or

tic
al

up
ta

ke
of

IM
P

(a
m

ea
su

re
of

bl
oo

d
flo

w
)i

n
cu

rr
en

ts
m

ok
er

s
co

m
pa

re
d

to
ot

he
r

gr
ou

ps
St

ei
n

et
al

.(
19

98
)

16
Sm

ok
er

s
fM

R
I

IV
ni

c
(0

.7
5–

2.
25

m
g/

70
kg

w
t)

vs
.p

la
ce

bo

↑R
N

A
c

an
d

bi
la

te
ra

la
m

yg
,c

in
gu

la
te

,f
ro

nt
al

lo
be

s,
th

al
,o

th
er

s

D
om

in
o

et
al

.(
20

00
a)

18
Sm

ok
er

s
15

O
-P

E
T

N
ic

na
sa

ls
pr

ay
vs

.
pe

pp
er

sp
ra

y
↑T

ha
l,

po
ns

,v
is

ua
lc

or
te

x,
ce

re
b

D
om

in
o

et
al

.(
20

00
b)

11
Sm

ok
er

s
FD

G
-P

E
T

N
ic

na
sa

ls
pr

ay
vs

.
pe

pp
er

sp
ra

y
Sm

al
l↓

gl
ob

al
;↑

L
IF

G
,L

PC
,R

th
al

,v
is

ua
l

co
rt

ex
;↓

no
rm

al
iz

ed
L

in
s

an
d

R
in

fo
cc

ct
x



In vivo Brain Imaging of Human Exposure to Nicotine and Tobacco 149

Z
ub

ie
ta

et
al

.(
20

01
)

18
Sm

ok
er

s
15

O
-P

E
T

N
ic

na
sa

ls
pr

ay
vs

.
pe

pp
er

sp
ra

y
↑A

nt
er

io
rt

ha
l;

↓L
an

tt
em

p
an

d
R

am
yg

R
os

e
et

al
.(

20
03

)
34

Sm
ok

er
s

15
O

-P
E

T
C

ig
ar

et
te

vs
.n

o
ni

c
co

nt
ro

lc
on

di
tio

ns
↑L

fr
on

ta
lf

ac
to

r(
in

cl
.p

re
fr

on
ta

la
nd

A
C

C
),

↓L
am

yg
rC

B
F

Y
am

am
ot

o
et

al
.(

20
03

)
10

Sm
ok

er
s

99
m

T
c-

E
C

D
SP

E
C

T
C

ig
ar

et
te

vs
.a

bs
tin

en
ce

↓G
lo

ba
lb

lo
od

flo
w

St
ap

le
to

n
et

al
.(

20
03

a)
4

Sm
ok

er
s;

tw
o

no
ns

m
ok

er
s

2
FD

G
-P

E
T

s
(f

ul
ly

qu
an

tifi
ed

)
IV

ni
c

(1
.5

m
g)

vs
.

pl
ac

eb
o

↓G
lo

ba
la

nd
m

os
tr

eg
io

ns
st

ud
ie

d

Z
ub

ie
ta

et
al

.(
20

05
)

19
sm

ok
er

s
15

O
-P

E
T

N
ic

ot
in

e
co

nt
ai

ni
ng

vs
.

de
ni

co
tin

iz
ed

ci
ga

re
tte

s
↓G

lo
ba

lb
lo

od
flo

w

St
al

ey
et

al
.(

20
06

)
16

Sm
ok

er
s;

16
no

ns
m

ok
er

s
5

IA
-S

PE
C

T
R

ec
en

ta
bs

tin
en

ce
↑S

tr
ia

tu
m

,p
ar

ie
ta

lc
or

te
x,

fr
on

ta
lc

or
te

x,
an

te
ri

or
ci

ng
ul

at
ed

,t
em

po
ra

lc
or

te
x,

oc
ci

pi
ta

l
co

rt
ex

,c
er

eb
el

lu
m

A
ll

re
gi

on
al

ch
an

ge
s

re
pr

es
en

t
no

rm
al

iz
ed

ac
tiv

ity
,u

nl
es

s
ot

he
rw

is
e

st
at

ed
.

SC
su

bc
ut

an
eo

us
,

ni
c

ni
co

tin
e,

th
al

th
al

am
us

,
ce

re
b

ce
re

be
llu

m
,S

P
E

C
T

si
ng

le
ph

ot
on

em
is

si
on

co
m

pu
te

d
to

m
og

ra
ph

y,
fM

R
I

fu
nc

tio
na

l
m

ag
ne

tic
re

so
na

nc
e

im
ag

in
g,

IV
in

tr
av

en
ou

s,
R

ri
gh

t,
L

le
ft

,N
A

c
nu

cl
eu

s
ac

cu
m

be
ns

,
am

yg
am

yg
da

la
,F

D
G

18
F-

flu
or

od
eo

xy
gl

uc
os

e,
P

E
T

po
si

tr
on

em
is

si
on

to
m

og
ra

ph
y,

IF
G

in
fe

ri
or

fr
on

ta
lg

yr
us

,P
C

po
st

er
io

rc
in

gu
la

te
,i

ns
in

su
la

,i
nf

oc
c

ct
x

in
fe

ri
or

oc
ci

pi
ta

lc
or

te
x,

an
ta

nt
er

io
r,

te
m

p
te

m
po

ra
ll

ob
e,

AC
C

an
te

ri
or

ci
ng

ul
at

e
co

rt
ex



150 A. Sharma and A.L. Brody

orbitofrontal gyri) (Domino et al. 2000b; Rose et al. 2003; Stein et al. 1998), thala-
mus (Domino et al. 2000a, b; London et al. 1988a, b; Stein et al. 1998; Zubieta et al.
2001), and visual system (Domino et al. 2000a, b; London et al. 1988a, b). Addi-
tionally, a Xe 133 inhalation study reported increases in frontal lobe and thalamic
blood flow in smokers who smoked a cigarette (Nakamura et al. 2000). The human
studies here examined cigarette smokers, while the animal studies here used non-
dependent rats, with strong concordance of findings between these sets of studies.
Functional brain imaging studies of nicotine or cigarette administration to human
nonsmokers have not yet been reported, and would be important for a more com-
plete understanding of the effects of tobacco on brain activity. While this group of
studies demonstrates specific regional activation with nicotine or smoking, they also
imply activation of cortico–basal ganglia–thalamic brain circuits (Alexander et al.
1990) that mediate the subjective effects of smoking (see Sect. 4). Zubieta et al.
(2005) have conducted a 15O-PET study in 19 smokers using nicotine and denico-
tinized cigarettes, who were abstinent of smoking for 12 h before PET. In this study,
increases in the regional cerebral blood flow (rCBF) in visual cortex and cerebellum,
and reductions in rCBF in the anterior cingulate, the right hippocampus, and ventral
striatum were found. Cigarette craving in chronic smokers also was correlated with
rCBF in the right hippocampus, which is a region involved in associating environ-
mental cues with drugs, and in the left dorsal anterior cingulate, an area implicated
in drug craving and relapse to drug-seeking behavior.

Since regional activity was normalized to whole brain activity in at least some of
these studies, and whole brain activity has been found to decrease with nicotine or
cigarette administration, the regional findings presented here may represent either
increased regional activity or, possibly, less of a decrease in regional activity than in
other brain areas. Regional decreases in activity are generally not seen with nicotine
or cigarette administration, though at least two studies found relatively decreased
activity in the amygdala, left (Rose et al. 2003) and right (Zubieta et al. 2001)).

2.2 Effect of Nicotine on Brain Activation During Cognitive Tasks

There is evidence that nicotine administration improves performance on tasks that
require vigilant attention in nicotine-dependent smokers (Newhouse et al. 2004).
Nicotine administration also has been reported to improve reaction time, regardless
of smoking status (Ernst et al. 2001a). Consistent with these findings are studies
that demonstrate that acute abstinence from smoking (within 12 h) results in slowed
response times (Bell et al. 1999; Gross et al. 1993; Thompson et al. 2002).

In examining brain mediation of the cognitive effects of smoking, several groups
have performed functional imaging studies in subjects performing cognitive tasks
during administration of nicotine (compared to a control condition) (Table 2).
For most of these studies, subjects performed a cognitive task that involved vi-
sual recognition and working memory, such as the n-back task. Results of these
studies have been somewhat mixed, showing both decreased (Ernst et al. 2001b;
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Ghatan et al. 1998) and increased (Jacobsen et al. 2004; Kumari et al. 2003) ante-
rior cingulate cortex (ACC) activation in response to nicotine administration while
performing the task. Brain activation responses to nicotine during cognitive tasks
have been more consistent in other brain areas such as the thalamus (Jacobsen et al.
2004; Lawrence et al. 2002) and visual cortex (Ghatan et al. 1998; Lawrence et al.
2002), while nicotine had no effect on the visual cortex during photic stimulation
(Jacobsen et al. 2002). This last finding indicates that nicotine activates the visual
cortex only during demanding visual tasks, rather than on simple stimulation.

2.3 Brain Dopamine Responses to Nicotine and Smoking

A common pathway for the positive reinforcement associated with most, if not all,
addictive drugs is the brain dopamine (DA) reward pathway (Koob 1992; Leshner
and Koob 1999). Laboratory animal studies demonstrate that DA release in the ven-
tral striatum (VST)/nucleus accumbens (NAc) underlies the reinforcing properties
of nicotine (Koob 1992; Leshner and Koob 1999). Microdialysis (Damsma et al.
1989; Di Chiara and Imperato 1988; Pontieri et al. 1996; Sziraki et al. 2001) and
lesion (Corrigall et al. 1992) studies in rats indicate that nicotine-induced DA re-
lease is strongest in this region, and is more robust than the DA release found in
associated structures receiving dopaminergic input, such as the dorsal striatum (Di
Chiara and Imperato 1988). These studies generally used nicotine dosages that sim-
ulated human cigarette smoking. Acute exposure to cigarette smoke and nicotine
has been found to upregulate dopamine transporter mRNA in the ventral tegmental
area (VTA) and substantia nigra (Li et al. 2004), and chronic exposure to cigarette
smoke, more so than chronic nicotine alone, has also been found to upregulate D1
and D2 receptor mRNA in the VST (Bahk et al. 2002). Additionally, many in vitro
studies of the VST have reported DA release in response to nicotine administration
(Connelly and Littleton 1983; Marien et al. 1983; Rowell et al. 1987; Sakurai et al.
1982; Westfall et al. 1983).

Functional brain imaging studies of the DA system (Table 3) corroborate and ex-
pand upon these laboratory findings. Striatal DA release in response to a nicotine or
cigarette challenge has been demonstrated repeatedly in both nonhuman primates
and humans (Brody et al. 2004b, 2006; Dewey et al. 1999; Marenco et al. 2004;
Tsukada et al. 2002), with most of these studies using PET and the radiotracer 11C-
raclopride (a specific D2/D3 DA receptor binder) to demonstrate DA release through
radiotracer displacement. These studies have reported a wide range of DA concen-
tration change. In two studies that examined the question directly (Marenco et al.
2004; Tsukada et al. 2002), nicotine was found to result in less radiotracer displace-
ment than amphetamine, while it has also been reported that nicotine-induced DA
release is comparable in magnitude to that induced by other addictive drugs (Pontieri
et al. 1996). Also, an association between 11C-raclopride displacement and the he-
donic effects of smoking (defined as elation and euphoria) has been demonstrated
(Barrett et al. 2004), though this study did not find an overall difference between the
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smoking and nonsmoking conditions. Thus, while most studies do provide evidence
for nicotine/smoking-induced DA release, there are disparities between studies in
the extent of human smoking-induced DA release, leaving this issue currently unre-
solved. Disparities between these studies may be due to differences in methodology
(e.g., nicotine administration vs. cigarette smoking) and/or technical complexities in
performing such studies. (As an aside, effects of smoking on dopamine projections
to the prefrontal cortex (Goldman-Rakic et al. 1989) have not yet been reported with
functional brain imaging.)

Nicotine-induced DA release in the NAc has been reported to be mediated by
stimulation of nicotinic acetylcholine receptors (nAChRs) on cells of the VTA that
project to the NAc rather than by nicotinic receptors within the NAc itself (Nisell
et al. 1994). Lesioning of mesolimbic VTA neurons projecting to the NAc leads
to decreased nicotine self-administration (Corrigall et al. 1992; Lanca et al. 2000).
Additionally, the effects of nicotine on the dopaminergic system appear to be mod-
ulated by glutamatergic and GABAergic neurons (Picciotto and Corrigall 2002),
with nicotine stimulation of gluatamatergic tracts from the prefrontal cortex to the
VTA leading to increased DA neuron firing (Kenny and Markou 2001) and GABA
agonism leading to a dampening of DA neuron responses (Cousins et al. 2002).
Recent work indicates that nicotine administration causes prolonged depression of
GABAergic firing, leading to relatively large excitatory (glutamatergic) input into
the mesolimbic DA system and increased DA neuron firing (Mansvelder et al. 2002).

Other functional imaging studies of the DA system have reported decreased D1
receptor density (Dagher et al. 2001), increased 18F-DOPA uptake (a marker for
increased DA turnover) (Salokangas et al. 2000), and both decreased (Krause et al.
2002) and no alterations (Staley et al. 2001) in dopamine transporter binding in
smokers.

To summarize these studies of the DA system, there is extensive evidence that
nicotine administration and smoking result in activation of the brain DA mesolimbic
pathway, resulting in increased DA release and turnover in the VST/NAc. Because
dopaminergic input to the NAc modulates neurotransmission through cortico–basal
ganglia–thalamic circuitry (Haber and Fudge 1997), smoking-induced increases in
DA concentration may explain some of the clinical effects of smoking, as discussed
in Sect. 4.

2.4 Functional Imaging of Nicotinic Acetylcholine
Receptors (nAChRs)

Because stimulation of nAChRs is intimately linked with the effects of smoking,
a longstanding and still developing area of research is the labeling of nAChRs us-
ing functional brain imaging. Nicotinic acetylcholine receptors are ligand-gated ion
channels consisting of α and β subunits (Court et al. 2000; Hogg et al. 2003).
Many nAChRs have been identified, with the heteromeric α4β2 being the most
common subtype in the brain and the homomeric α7 being the next most common.



In vivo Brain Imaging of Human Exposure to Nicotine and Tobacco 155

Postmortem (Benwell et al. 1988; Breese et al. 1997) and laboratory (Yates et al.
1995) studies demonstrate that smokers have widespread upregulation of nAChRs,
likely related to desensitization of these receptors from nicotine exposure. Many
animal studies also demonstrate upregulation of nAChRs in response to chronic
nicotine administration (e.g., Pauly et al. 1996; Shoaib et al. 1997; Zhang et al.
2002). Thus, nAChRs are a natural target for tracer development in the pursuit of
a greater understanding of tobacco dependence and other illnesses with abnormal
nAChR levels.

Animal research demonstrates that nicotine binds to nAChRs in the brain to me-
diate a variety of behavioral states (Lukas 1998), such as heightened arousal and
improved reaction time and psychomotor function (Paterson and Nordberg 2000).
Nicotine administration also produces reward through DA release in the NAc, at
least in part through stimulation of nAChRs in the VTA (Blaha et al. 1996; Corrigall
et al. 1994; Nisell et al. 1994; Yeomans and Baptista 1997; Yoshida et al. 1993).
Nicotinic acetylcholine receptors are widespread throughout the brain, with a rank
order distribution of nAChR density being thalamus > basal ganglia > cerebral cor-
tex > hippocampus > cerebellum (Broussolle et al. 1989; Cimino et al. 1992; Clarke
et al. 1984; Davila-Garcia et al. 1999, 1997; London et al. 1985, 1995; Pabreza et al.
1991; Pauly et al. 1989; Perry and Kellar 1995; Valette et al. 1998; Villemagne et al.
1997).

Radiotracers for the nAChR have been developed in recent years, with labeled
A-85380 (3-(2(S)-azetidinylmethoxy pyridine) (Koren et al. 1998) compounds hav-
ing the most widespread use. Radiolabeling of A-85380 was a major advance in
imaging nAChRs, because administration of radiolabeled nicotine (used for previ-
ous imaging studies) resulted in high nonspecific binding and short drug–receptor
interaction times (Sihver et al. 2000). 2-[18F]F-A-85380 or simply 2-FA and related
compounds (Chefer et al. 1999; Horti et al. 1998; Koren et al. 1998) are being used
for PET imaging, and 5-[123/125I]iodo-A85380 is being used for SPECT imaging
(Chefer et al. 1998; Horti et al. 1999; Mukhin et al. 2000) of α4β2nAChRs.

Studies of nonhuman primates and humans have examined distributions of
nAChRs with these new radiotracers, and found regional densities of these recep-
tors similar to those in the animal work cited above (Chefer et al. 2003, 1999; Fujita
et al. 2002, 2003; Kimes et al. 2003; Valette et al. 1999). Two recent studies on
baboons examined effects of nicotine or tobacco smoke on nAChR availability. In
a 2-FA PET study (Valette et al. 2003), IV nicotine (0.6 mg), inhalation of tobacco
smoke from one cigarette (0.9 mg nicotine), and IV nornicotine were all found to
reduce the volume of distribution of the tracer by roughly 30–60% in the thalamus
and putamen at 80 min, and this reduction of 2-FA binding was relatively long lived
(up to 6 h). Similarly, a 50% reduction in nAChR availability was found with IV
nicotine administration to baboons using an epibatidine analog and PET scanning
(Ding et al. 2000). Taken together, these studies demonstrate that radiotracers for
nAChRs can be administered safely to measure nAChR densities, and that nicotine
and smoking substantially decrease α4β2nAChR availability.

In a recent study (Brody et al. 2006), human cigarette smokers were studied using
2-FA and PET scanning. In this study, only one to two puffs of a cigarette resulted in
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50% occupancy of brain α4β2nAChRs, and this occupancy lasted for at least 3.1 h
after smoking. Smoking a full cigarette resulted in 88% occupancy, and was ac-
companied by a reduction in cigarette craving. Binding of nicotine to α4β2nAChR
causes desensitization of these receptors, and this 2-FA PET study indicated that
smoking may lead to withdrawal alleviation by maintaining nAChRs in the desen-
sitized state.

[123 I]5-IA or simply 5-I-A is a SPECT radioligand that binds to β2nAChRs. In
a recent study, Staley et al. (2006) hypothesized that an abnormally high number
of β2nAChRs in early abstinence may be responsible for continued tobacco usage.
In this study, 16 smokers and 16 nonsmokers underwent 5-I-A SPECT scanning.
Smokers were imaged in the abstinent phase, 7 days after their last cigarette. Each
group consisted of seven men and nine women who were matched for age. Women
smokers and nonsmokers were also matched by phase of menstrual cycle. Smokers
quit cigarettes with brief behavioral counseling, and no medication was used for
smoking cessation. In this study, recently abstinent smokers were found to have
significantly higher 5-I-A uptake in the striatum, parietal cortex, frontal cortex, an-
terior cingulate, temporal cortex, occipital cortex, and cerebellum, which suggests
that smoking upregulates the number of β2nAChRs.

2.5 Glutamatergic (and Other) Effects of Nicotine/Cigarette
Smoking

Recent autoradiography studies of rodents have examined the effects of nico-
tine/smoking in other neurotransmitter systems that may be activated by nAChR
stimulation. For example, in response to nicotine, glutamate release has been
demonstrated in the prelimbic prefrontal cortex (Gioanni et al. 1999), and gluta-
mate and aspartate release have been demonstrated in the VTA (Schilstrom et al.
2000). The finding of nAChR-induced glutamate release in the prefrontal cortex has
also been demonstrated by measuring spontaneous excitatory postsynaptic currents
(Lambe et al. 2003). Importantly, one of these studies (Gioanni et al. 1999) also
demonstrated that nicotine administration facilitates thalamo-cortical neurotrans-
mission through stimulation of nAChRs on glutamatergic neurons.

3 Brain Function Responses to Chronic Nicotine Administration
and Cigarette Smoking

3.1 Functional Brain Imaging of Cigarette Craving

As for brain imaging studies of chronic tobacco/nicotine dependence, cigarette
smokers experience craving for cigarettes (urge to smoke) within minutes after the
last cigarette, and the intensity of craving rises over the next 3–6 h (Jarvik et al.
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2000; Schuh and Stitzer 1995). Cigarette-related cues have been shown to reliably
enhance craving during this period, compared to neutral cues (Carter and Tiffany
1999).

Two studies used a cigarette versus neutral cue paradigm paired with functional
imaging to evaluate brain mediation of cigarette craving. In one study (Due et al.
2002), six smokers and six nonsmokers underwent event-related fMRI when pre-
sented with smoking-related images (color photographs) compared with neutral im-
ages, for 4 s each. For the smoker group, craving increased during the testing session
and exposure to smoking-related images resulted in activation of mesolimbic (right
posterior amygdala, posterior hippocampus, VTA, and medial thalamus) and visu-
ospatial cortical attention (bilateral prefrontal and parietal cortex and right fusiform
gyrus) circuitry, whereas the nonsmoker group did not have these changes. In the
second study (Brody et al. 2002), 20 smokers and 20 nonsmokers underwent two
FDG–PET sessions. For one PET session, subjects held a cigarette and watched
a cigarette-related video, while for the other, subjects held a pen and watched a
nature video (randomized order) during the 30-min uptake period of FDG. When
presented with smoking-related (compared to neutral) cues, smokers had higher re-
gional metabolism in bilateral (ACC), left orbitofrontal cortex (OFC), and left an-
terior temporal lobe. Change in craving scores was also positively correlated with
change in metabolism in the OFC, dorsolateral prefrontal cortex, and anterior insula
bilaterally.

Taken together, these studies of cigarette craving indicate that immediate re-
sponses to visual smoking-related cues (fMRI study) activate the brain reward sys-
tem, limbic regions, and the visual processing system, while longer exposure to cues
(FDG–PET study) leads to activation of the ACC, which mediates anxiety, alertness,
and arousal (Chua et al. 1999; Critchley et al. 2001; Kimbrell et al. 1999; Naito
et al. 2000; Rauch et al. 1999) and the OFC, which functions in part as a secondary
processing center for sensory information (Rolls et al. 1998; Rolls and Baylis 1994).

In a related preliminary study, 17 smokers underwent the same FDG–PET crav-
ing versus neutral cue protocol as in the second study of craving listed above (Brody
et al. 2002) after treatment with a standard course of bupropion HCl (tapered up to
150 mg orally twice a day for a mean of 5.6 weeks). This group of treated subjects
had a significant reduction in smoking levels from pre- to post-treatment (mean 27.1
down to 3.7 cigarettes per day). These treated smokers also had reduced cigarette
cue-induced craving and diminished ACC activation when presented with cigarette-
related cues, compared to untreated smokers (Brody et al. 2004a). This diminished
ACC activation was due to elevated baseline-normalized ACC activity in treated
smokers, giving an indication that bupropion treatment of smokers increases resting
ACC metabolism.

A more recent study examined (Brody et al. 2007) brain activation during resis-
tance of the urge to smoke when smokers were presented with cigarette-related cues.
In this study, activation was found in the cigarette cue resist condition compared
with the cigarette cue crave condition in the left dorsal ACC, posterior cingulate cor-
tex (PCC), and precuneus. Other findings of this study include lower magnetic reso-
nance signal for the cigarette cue resist in the cuneus bilaterally, left lateral occipital
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gyrus, and right postcentral gyrus. These activations and deactivations were stronger
when the cigarette cue resist condition was compared with the neutral cue condition.
The urge to smoke scale (craving) score had positive correlations with MR signal in
the medial aspect of superior frontal gyrus, supramarginal gyrus, precuneus, inferior
frontal gyrus/anterior insula, bilateral corpus callosum, left precentral gyrus, puta-
men, and middle frontal gyrus, and right lingual gyrus extending to the fusiform
gyrus. Negative correlations were found for the cuneus, left occipital gyrus, ante-
rior temporal lobe, postcentral gyrus, insula, and right angular gyrus. This study
concludes that active suppression of craving during cigarette cue exposure is associ-
ated with activation of limbic and related brain regions and deactivation of primary
sensory and motor cortices.

3.2 Functional Brain Imaging of Cigarette Withdrawal

Abstinence-induced changes have also been studied (McClernon et al. 2005) in 13
dependent smokers using event-related fMRI. FMRI images were taken after usual
smoking and following overnight abstinence. Self-reported craving measures were
also conducted before, during, and after scanning. Results revealed larger hemody-
namic responses to smoking compared to control cues in ventral anterior cingulate
gyrus and superior frontal gyrus. Results show that brain responses to smoking cues,
while relatively stable at the group level following short-term abstinence, may be
modulated by individual differences in craving in response to abstinence, particu-
larly in regions subserving attention and motivation.

Rose et al. (2007) also studied smokers (n = 15) with functional brain imaging
following treatment for nicotine dependence. In this study, subjects were given nico-
tine patches and denicotinized cigarettes. PET scans were obtained at baseline, after
2 weeks of nicotine patch and denicotinized cigarettes, and 2 weeks after patients
returned back to smoking. Craving of cigarettes was lower at the second session
compared to the other two. After 2 weeks’ exposure to nicotine patches and denico-
tinized cigarettes, the authors found decreased brain metabolic activity in the right
hemisphere anterior cingulate cortex.

Brain activity changes (measured with fMRI) during cigarette withdrawal were
recently reported for nicotine-dependent rats (Shoaib et al. 2004). In this study, sub-
cutaneous mecamylamine (1 mg kg−1), a nicotine receptor antagonist, was admin-
istered to precipitate withdrawal during scanning, and this state was compared to a
control state after subcutaneous saline administration. After subcutaneous mecamy-
lamine, nicotine-dependent rats had bilateral increases in NAc activity compared to
the control state.

3.3 Monoamine Oxidase (MAO) Function in Smokers

Fowler and colleagues have performed a series of important studies demonstrat-
ing decreases in MAO A and B activity in cigarette smokers using the PET tracers
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[11C]clorgyline (Fowler et al. 1996b) and [11C]L-deprenyl-D2 (Fowler et al. 1996a,
1998b), respectively. When compared to former smokers and nonsmokers, average
reductions for current smokers are 30 and 40% for MAO A and B (Fowler et al.
2003a). These reductions were the result of chronic smoking behavior rather than
a single administration of intravenous nicotine (Fowler et al. 1998a) or smoking a
single cigarette (Fowler et al. 1999, 2000, 2005), and are less than those seen with
antidepressant MAO inhibitors (Fowler et al. 1994, 1996b). MAO A levels were
found to be reduced up to 50% in peripheral organs (heart, lungs, and kidneys) in
smokers when compared to nonsmokers. Additionally, a human postmortem study
of chronic smokers demonstrated a modest reduction in MAO A binding that did
not reach statistical significance (Klimek et al. 2001). Peripheral MAO B is also
reduced in cigarette smokers (Fowler et al. 2003b).

MAO participates in the catabolism of dopamine, norepinephrine, and serotonin
(Berlin and Anthenelli 2001; Fowler et al. 2003a), and it has been postulated that
some of the clinical effects of smoking are due to MAO inhibition, leading to de-
creases in monoamine breakdown with a subsequent increase in monoamine avail-
ability (Berlin and Anthenelli 2001). Thus, smoking may enhance DA availability
and the rewarding properties of smoking both through DA release (as described
above) and MAO inhibition. Smoking may also alter mood and anxiety through
MAO inhibition effects on norepinephrine and serotonin availability and turnover.
Comprehensive reviews of the role of MAO in tobacco dependence have recently
been published (Berlin and Anthenelli 2001; Fowler et al. 2003a).

4 Discussion: Functional Neuroanatomy of Tobacco
Use and Dependence

Both acute and chronic effects of nicotine/cigarette exposure have been elucidated
with functional brain imaging. Replicated responses to acute administration of nico-
tine/smoking include a reduction in global brain activity (perhaps most prominently
in smokers with high levels of hostility as a personality trait); activation of the
prefrontal cortex, thalamus, and visual system; activation of the thalamus and vi-
sual cortex (and possibly ACC) during visual cognitive tasks; and increased DA
concentration in the ventral striatum/NAc. Replicated responses to chronic nico-
tine/cigarette exposure include decreased MAO A and B activity and a substantial
reduction in α4β2 nAChR availability in the thalamus and putamen (accompanied
by an overall upregulation of these receptors).

This group of findings demonstrates a number of ways in which smoking
might enhance neurotransmission through cortico–basal ganglia–thalamic cir-
cuits (Alexander et al. 1990), in addition to demonstrating direct effects of
chronic nicotine exposure on nAChR availability (Fig. 1). Given that the thala-
mus (Groenewegen et al. 1999; Herrero et al. 2002; Sommer 2003) and ventral
striatum/NAc (Groenewegen et al. 1999; Herrero et al. 2002) function as relay
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cognitive effect of cigarette smoking, namely, improved attentional performance
(Newhouse et al. 2004), and also related effects, such as improvements in reaction
times (Hatsukami et al. 1989; Pritchard et al. 1992; Shiffman et al. 1995), arousal
(Parrott and Kaye 1999), motivation (Powell et al. 2002), and sustained attention
(Rusted et al. 2000). Prefrontal (including both dorsolateral and ventrolateral)
(Duncan and Owen 2000; Rees and Lavie 2001; Smith and Jonides 1999) and ACC
(Carter et al. 1999; Duncan and Owen 2000; Peterson et al. 1999; Smith and Jonides
1999) cortices are reported to activate during attentional control tasks (especially
visuospatial tasks) (Pessoa et al. 2003). Cigarette smoking may enhance attentional
control through direct stimulation of nAChRs within these structures or perhaps
through subcortical stimulation of nAChRs in the thalamus and via DA release
and/or MAO inhibition in the basal ganglia.

In addition to improvement in attention, smoking improves withdrawal symp-
toms, such as depressed mood, anxiety, and irritability in tobacco-dependent smok-
ers (Cohen et al. 1991; Parrott 2003), and all these effects depend (at least in part) on
the expectations of the smoker (Perkins et al. 2003). Though nicotine administration
generally results in increased activity along prefrontal and paralimbic brain circuits,
it is interesting that both increased and decreased ACC activation during cognitive
task performance has been reported (see Sect. 2.2). ACC activity has been associated
with anxiety and mood, with increased activity being associated with greater anxi-
ety (Chua et al. 1999; Kimbrell et al. 1999) and decreased activity being associated
with depressed mood (Drevets et al. 1997). This combination of findings suggests
a potential interaction between expectation of the effects of smoking (e.g., mood
improvement, anxiety reduction, or decreased irritability) and direction of ACC ac-
tivity change during cognitively demanding tasks. Perhaps smokers who expect to
and do have anxiety alleviation from smoking have deactivation or decreased acti-
vation of the ACC while performing cognitive tasks, whereas those who expect to
and do experience mood improvement from smoking have increased activation of
the ACC.

In addition to these primary effects of nicotine and smoking, other functional
imaging studies reviewed here focus on smoking-related states, such as cue-induced
cigarette craving. Such studies are part of a large body of literature examining cue-
induced craving for addictive drugs. Studies specific for cigarette cues/craving re-
veal that exposure to visual cigarette cues immediately activates mesolimbic (VTA,
amygdala, and hippocampus) and visuospatial cortical attention areas of the brain,
and acutely (over a 30-min period) activate paralimbic regions (ACC and OFC),
and that this cue-induced activation may be diminished by a course of bupropion
treatment. These results are similar to those of functional imaging studies for drugs
other than tobacco (Goldstein and Volkow 2002; Miller and Goldsmith 2001), and it
has been posited that at least some of the activations seen with cigarette-related cues
(cortical attention areas and OFC) are associated with an expectation of smoking in
the nontreatment-seeking subjects who participated in these studies (Wilson et al.
2004).
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5 Future Directions

New radioligands are in development for nAChRs. Currently, 2-FA, 6-FA, and 5-I-A
radiotracers are available, which have affinity to bind to the α4β2 nAChR subtype.
Other radiotracers are in development for this subtype, but there is need for radioli-
gands for imaging of other subtypes of nicotinic receptors, including the α7 subtype,
which is abundant in humans. Future research is likely to focus on radioligands for
imaging α4β2 nAChR in the thalamus with faster kinetics than 2-FA, 6-FA, and
5-I-A. Radiolabeled antagonists for imaging of α4β2 nAChR may prove very ben-
eficial for greater understanding of receptor binding and ultimately in development
of pharmacological agents to help with quitting smoking (Pomper et al. 2005; Horti
et al. 2006).

New treatments are being discovered for smoking cessation, and the Food and
Drug Administration has recently approved varenicline, which is a partial nAChR
agonist and antagonist. The agonist effect is caused by binding to nicotinic recep-
tors and stimulating receptor-mediated activity. The antagonist effect occurs when
varenicline blocks the ability of nicotine to activate nicotinic receptors. Imaging
studies with varenicline may tell us more about nicotine dependence and the role of
the α4β2 nicotine receptor.
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