Coronary Flow Reserve Imaging to Direct Optimal Therapy in Atherosclerosis

Robert deKemp, PhD
Head Imaging Physicist, Cardiac Imaging
University of Ottawa Heart Institute
Associate Professor, Medicine, Engineering & Physics; Medical Scientist, Faculty of Medicine
University of Ottawa

Monday March 16, 2015
12 noon (Please arrive early for lunch)
Brady B131 Auditorium, 310 Cedar St.

Abstract: Nuclear cardiology imaging with SPECT or PET is used widely in North America for the diagnosis and management of patients with coronary artery disease. Conventional myocardial perfusion imaging (MPI) can identify areas of reversible ischemia, as suitable targets for coronary artery revascularization by angioplasty or bypass surgery. However, the accuracy of this technique is limited in patients with advanced disease in multiple coronary arteries, where there is no normal reference territory against which to assess the 'relative' perfusion defects. We have developed methods for the routine quantification of absolute myocardial blood flow (MBF mL/min/g) and coronary flow reserve (stress/rest MBF) using rubidium-82 dynamic PET imaging. The incremental diagnostic and prognostic value of absolute flow quantification over conventional MPI has been demonstrated in several recent studies. Clinical use of this added information for patient management to direct optimal therapy and the potential to improve cardiac outcomes remains unclear, but may be informed by recent progress and clinical adoption of invasive fractional flow reserve (FFR)-directed revascularization. This talk will present recent progress in this field, towards non-invasive CFR image-guided therapy with cardiac PET and SPECT.