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Neuroimaging studies place great emphasis on not only the estimation

but also the standard error estimates of underlying parameters derived

from a temporal model. This allows inferences to be made about the

signal estimates and resulting conclusions to be drawn about the

underlying data. It can often be advantageous to interrogate temporal

models after spatial transformation of the data into the wavelet

domain. Wavelet bases provide a multiresolution decomposition of the

spatial data dimension and an ensuing reduction in spatial correlation.

However, widespread acceptance of these wavelet techniques has been

hampered by the limited ability to reconstruct both parametric and

error estimates into the image domain after analysis of temporal

models in the wavelet domain. This paper introduces a derivation and a

fast implementation of a method for the calculation of the variance of

the parametric images obtained from wavelet filters. The technique is

proposed for a class of estimators that have been shown to be useful in

neuroimaging studies. The techniques are demonstrated for both

functional magnetic resonance imaging (fMRI) and positron emission

tomography (PET) data sets.
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Introduction

Wavelets are now increasingly used in data analysis of

neuroimaging studies. For both positron emission tomography

(PET) and functional magnetic resonance imaging (fMRI), wave-

lets are used at different points in the chain of analysis (Bullmore

et al., 2003; Desco et al., 2001; Ruttimann et al., 1998; Turkheimer

et al., 1999, 2000a). Many such methods use the entire four-

dimensional data set to perform this analysis, making use of

temporal estimates of error to allow thresholding of wavelet
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components in the spatial wavelet domain (Müller et al., 2003;

Ruttimann et al., 1998, 2000b). However, current methods only

provide estimates of variance of the wavelet coefficients prior to

thresholding and performing the inverse transform. In this work,

we introduce a method for the estimation of the resulting error

estimates of the parameters in image space through the analysis of

the residuals to the model.

Wavelets and functional imaging

Wavelet methods are of use in neuroimaging due to the inherent

problems of data analysis in the image domain both spatially and

temporally. In this paper, the wavelet analysis considered will be

conducted exclusively in the spatial domain. In functional imaging,

data are spatially correlated due to the intrinsic way data are

measured, and ignoring this correlation will lead to spurious

results. However, the decorrelating properties and the sparse nature

of the signal representation, due to the multiresolution analysis

provided by wavelet transformation, lead to much more effective

methods.

Statistical parametric mapping (SPM) (Ashburner et al., 1999)

is the defacto standard in analysis of brain mapping studies.

Wavelet methods offer a different type of analysis to the SPM

method, as the output is a regularized parametric map as opposed

to probability of null-hypothesis map (p-map). Effective compar-

ison can be difficult without the error estimates being available

from the wavelet analysis. Previous work (Van De Ville et al.,

2003, 2004b) has looked at comparing wavelet methods and SPM

methods especially in the area of Gaussian smoothing, which is

used by SPM to improve signal to noise ratio. Indeed, it has been

shown (Van De Ville et al., 2003) that for certain carefully chosen

wavelets, a smoothing similar to SPM can be performed in the

wavelet domain. In addition, a method of thresholding the wavelets

to retain the underlying knowledge about the error estimates has

also been proposed (Van De Ville et al., 2004b), as well as an

estimate of the standard errors indirectly obtained using an absolute

value wavelet (Van De Ville et al., 2004a).
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Wavelet analysis is also of great interest in dynamic PET studies

where there can be quantitative measurements made through the

use of calibration to measured radioactivities (Turkheimer et al.,

1999). While hypothesis testing is still of interest, the estimation of

the signal is of prime importance and methods that concentrate on

signal estimation are highly applicable. Studies of this type include

metabolism studies and neuroreceptor ligand studies, examples of

which will be detailed below.

Estimation techniques

MSE evaluation of methods differs from those of the traditional

SPM setting. The focus of SPM is to provide the minimum linear

unbiased variance estimate (best linear unbiased, BLU) of the

parameter of interest and perform hypothesis testing based on this

estimate. MSE comprises two components, variance and squared

bias. MSE estimators obtain a large reduction in the variance at the

expense of introducing little bias into the estimate. Therefore,

while on average the estimate of the parameter will be slightly

different from the truth (biased), any one estimate of the parameter

could be far closer to the truth (smaller variance), assuming the

bias is small. As the study is only performed once, it can be argued

that MSE is a natural choice for finding the parameter, and

methods with smaller MSEs preferred.

Wavelet filters, through shrinkage thresholding, reduce the

variance of the parameters by introducing a small amount of bias,

and can be shown to be better estimators in terms of MSE than a

traditional BLU estimator. However, it has not previously been

possible to quantify the reduction in variance achieved in neuro-

imaging studies. Here, this problem is addressed with a fast

procedure for the calculation of the variance of images after

wavelet regularization.

The methods discussed here are primarily considered in four-

dimensional setting, where data are available in three spatial

dimensions and one temporal dimension. Thus, it is necessary to

not only consider a spatial model but also a temporal model. A

spatial wavelet model will be used, while the temporal model will

be a linear model of varying complexity depending on the type of

neuroimaging modality considered.
Theory

Estimation in image space

Let bI(x, y, z), where x, y, z represent voxel indices, be the

spatial distribution of a parameter of interest. This parameter may

result from a dynamic acquisition Y(x, y, z, t) in either fMRI or

PET. This acquisition consists of M discrete dynamic frames Y(x,

y, z, t1),. . .,Y(z, y, z, tM). Typical parameters of interest include

task-related changes in signal for fMRI, and blood flow,

metabolism, and receptor concentrations for PET.

An assumption of these models is that there is a biological

temporal process with associated spatial distribution of a parameter

of interest that can be encapsulated in the mathematical model,

bI x; y; zð Þ ¼ g Y x; y; z; tð Þð Þ ð1Þ

where g() can be linear or nonlinear. In this paper, only the case

where g() is linear will be considered, for reasons explained below.

The linear case covers many commonly used models in fMRI and
PET. As g() is linear, a design matrix X can be associated with the

model, where X has dimension M � p, the number of time frames

by the number of parameters in the model.

For convenience, the spatial dependence in the notation will be

dropped, but it should be noted that all the following equations

refer to a voxel by voxel analysis for each x, y, z. Let

Y tð Þ ¼ X b1 N bp

� �0 þ � tð Þ ð2Þ

where V represents the transpose operator. Here g() is assumed to be

a simple linear model (see below for a removal of this assumption).

b1,. . .,bp represent all the parameters in the model, and bI is a

linear (including any individual parameter b1,. . .,bp) combination

of these parameters. The least squares estimate of the parameters b
= [b1,. . .,bp]V is then given by

b̂b ¼ X 0Xð Þ�1
X 0Y tð Þ ð3Þ

where here ˆ represents estimate.

Let

r tð Þ ¼ Y ðtÞ � X b̂b ð4Þ

be the residuals to the fitted model. Then

r̂r2 b̂b
� �

¼ X 0Xð Þ�1

PM
i¼1 r tið Þ2

df
ð5Þ

where df are the degrees of freedom associated with the model.

This can of course be extended to general least squares

estimation, with the matrices (X VX)�1 replaced by the suitable

weighted least squares counterpart, for example,

r̂r2 b̂b
� �

¼ X 0Xð Þ�1
X 0RX X 0Xð Þ�1

PM
i¼1 r tið Þ2

df
ð6Þ

where R is the weights for the assumed error model. This is a

method of estimation that can be used for models with an

autocorrelated error component.

Estimation problem in wavelet space

Due to the linear nature of the wavelet transform, the estimation

of bI(x, y, z) in image space has an isomorphic representation in

wavelet space, namely, the problem of estimating bI
W(wx,wy,wz).

Let W represent the discrete wavelet transform (DWT) in either

two or three dimensions (the number of dimensions being

dependent on the imaging type as will be discussed later, see

fMRI spatiotemporal analysis section), and let wx,wy,wz be the

indices of the transformed volume. It should be noted here that W

represents a linear transform from the sampled data to the wavelet

coefficients. DWT can be seen as a combination of High (H) and

Low (L) pass filters applied to the data. There are many good texts

and papers on wavelet transform and further details can be found

in, among others, Chui (1992), Percival and Walden (2000), Mallat

(1999), and Daubechies (1992). An important part of the method is

the splitting of the image into resolution levels, which will have

importance in the analysis later. bI
W(wx,wy,wz) can be found in

exactly the same way as bI(x,y,z) except that the linear temporal

model is applied to the temporal sequence

YW wx;wy;wz; ti
� �

¼ WY x; y; z; tið Þ i : i ¼ 1; N ;M : ð7Þ

It must be remembered that W is a spatial transform only, with no

effect on the temporal dimension. However, for equivalence
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between image space and wavelet space when no thresholding is

applied, the temporal model must commute with the spatial model.

Thus, linear models are assumed for the temporal model.

Associated parameters can also be found, namely,

ˆbW
IbW
I wx;wy;wz

� �
; r̂r2 ˆbW

IbW
I wx;wy;wz

� �� �
and rW wx;wy;wz; t

� �
:

One of the major advantages of using the wavelet transform is

the ability to perform shrinking of the parameters to gain a better

signal to noise ratio. This is due to the multiresolution nature of

the transform in that the signal tends to be concentrated in a few

coefficients while the noise is spread through all coefficients.

Indeed, the wavelet coefficients in the highest (or coarsest) level

are not shrunk as they are assumed to be entirely signal. This

property can alternatively be considered as an approximation

(highest level) to the signal and the details (lower levels) that

make up the actual signal, some of the details being noise

components.

Again, for ease, spatial indexing is assumed. Before the

transformation of bŴ back into image space, through the inverse

wavelet transform, a thresholding method k() is applied. This

results in an estimate in image space b̂Iw, with superior MSE

properties to the original estimate in image space b̂I. It has been

demonstrated (Turkheimer et al., 2003) that linear filters can

provide better properties for the reconstructed images than non-

linear thresholders, and these will be used here. These linear

threshold techniques are calculated using the estimate r̂2(bˆI
W).

Alternative threshold estimators can also be used and the method

outlined will not be affected. The technique chosen here is merely

an example.

The threshold used is determined from the James–Stein

estimator and is given by

k bŴ
I

� �
¼ 1� n� 2

s

�
þ
bŴ
I

	
ð8Þ

where s =
P

quadrant (b
ˆ
I
W/r̂(bˆI

W ))2 and x+ = max(x, 0). The quadrant

is the index of all the wavelet coefficients in a particular level and

quadrant.

Thus, the estimator back in image space is given by

b̂bIw ¼ W�1 k bŴ
I

� �� �
ð9Þ

and if k() = Id(), the identity, then the analysis in the image domain

and in the wavelet domain after transformation will be identical for

a spatially invariant temporal linear model.

Variance relationship between image space and wavelet space

A key problem in the use of wavelet transform has been the

inability to estimate the variance of the reconstructed parameter

images after wavelet transformation. While it has been shown

through simulation that the MSE properties are superior, it has not

been possible to give variance values on an individual basis. The

method proposed here calculates this variance.

A previous study of this problem (Aston et al., 2003) yielded a

technique that was based on the assumed decorrelation properties

of the wavelet transform. This technique transformed the variance

parameters calculated in wavelet space back into image space.

However, while these properties may well be true in large samples,

it will be seen below that these do not hold well enough for the

technique to be readily used in the small temporal samples
available in common imaging studies. In addition, the technique

was time consuming to calculate.

The method proposed here is both fast and efficient, and also

does not require any assumptions about the decorrelating properties

of wavelet transform. It also has the appeal of being conceptually

simple.

As was shown in Eq. (9), the parameter of interest is inverted

from image space after thresholding. It is not possible to apply this

inversion directly to standard errors as they are a second-order

estimator (matrix) as opposed to the first order (vector) parameter

estimate. However, there does exist a first-order estimate that can

be used to calculate the standard errors, namely the residuals. The

residuals can be thresholded using the parameter thresholder and

then inverted back into image space. These can then be used to

calculate the variance of the image space parameters, that is,

rw wx;wy;wz; t
� �

¼ W�1 kbI
rW wx;wy;wz; t

� �� �� �
ð10Þ

r̂r2ðb̂Iw x; y; zð ÞÞ ¼ X VXð Þ�1

PM
i¼1 rw x; y; z; tið Þ2

df
ð11Þ

where kb I
() is the thresholding operator calculated and used for the

image of the parameter of interest. Eq. (11) can be compared with

Eq. (5) and extended in the same manner as with Eq. (6).
The procedure

The procedure for analysis of the image data is therefore as

follows

Step 1. consists of calculation of YW(wx, wy, wz, t) as in Eq. (7).

Step 2. consists of application of g() using the design matrix X to

each wavelet vector in time to produce a parametric image

bI
W(wx, wy, wz).

Step 3. is to calculate the residuals rW(wx, wy, wz, t) as in Eq. (4).

Step 4. is to calculate the variance using Eq. (5) from the residuals

rW(wx, wy, wz, t) and X, the model matrix. This is required

for the thresholding estimation, specifically the estimate of

s in Eq. (8).

Step 5. applies kb I
() to the parameter image bI

W(wx, wy, wz), and to

the residuals rW(wx, wy, wz, t).

Step 6. applies the inverse wavelet filterW�1 to both the thresholded

parametric image and the thresholded residuals.

Step 7. calculates the variance of b̂Iw
(x, y, z) using rw(x, y, z, t) as

in Eq. (11).

Data examples

Three examples from differing modalities are presented. The

first is an fMRI activation study. Here we also look at whether the

decorrelation assumption is adequate to transform variances

directly, as well as validating the method without thresholding.

The others involve PET in two different settings; a metabolism

study and a neuroreceptor ligand study.

fMRI spatiotemporal analysis

There is growing interest in the application of spatiotemporal

wavelet models in fMRI, as it is understood that there is often more



J.A.D. Aston et al. / NeuroImage 25 (2005) 159–168162
sensitive analysis available if local information is combined.

Indeed, there has been investigation into the use of fMRI in the

wavelet domain, and a preliminary study carried out (Desco et al.,

2001). This study looked at how different wavelet bases performed

at different noise and signal levels. However, these studies tend to

focus on ideal conditions and further work is needed to evaluate

methods using more complex analysis schemes with more realistic

experimental noise conditions.

It should be noted here that there is an inherent problem with

three-dimensional spatiotemporal modeling in fMRI. It has been

shown in PET that there is a difference between two- and three-

dimensional wavelet modeling (Turkheimer et al., 2000b). Slices in

fMRI are not acquired simultaneously but rather in a sequence of

the duration of the time frame (TR). This leads to problems when

trying to infer a spatial model in the data, as data that are next to

each other in the image may have been collected up to the TR

(usually in the order of 2 s apart). If the model is focusing on

effects that are very short in duration, this can cause considerable

differences in the information sequence in two neighboring pixels

across slices. Thus careful decisions must be made in choosing the

models both in a spatial and temporal sense to take account of this

problem. In the wavelet setting, it is convenient to only use a

wavelet spatial model slice by slice (in effect a two-dimensional

model) so the temporal information in each pixel and wavelet time

sequence is not distorted. This is similar to the image domain

approach in Worsley et al. (2002), where a modified linear model is

applied at each slice to correct for slice timing.

A standard linear model along the lines of the general linear

models used in SPM (Friston et al., 1995) was used for the

temporal analysis of the data. The temporal data in fMRI are well

known to be autocorrelated. However, depending on the method

chosen to deal with these errors, the procedure described here will

continue to be applicable. The methods that account for autocorre-

lation in SPM99 (Friston et al., 2000) and SPM2 (Friston et al.,

2002) while being very different from one another both possess the

feature that the same overall model is used at every voxel. Indeed,

this is one of the important desires mentioned in Friston et al.

(2000). This feature means that if this model is also used in wavelet

temporal analysis, the procedure follows through as above (with

the small modification for the weighting factor). However, if there

is a voxel-by-voxel estimate of autocorrelation in the analysis (i.e.,

a different model is used at each voxel such as in the case of

spatially variant prewhitening), then the results of using wavelet

analysis and image analysis to estimate the temporal autocorrela-

tion are no longer equivalent. Methods such as that suggested by

Worsley et al. (2002) estimate the autocorrelation at each voxel and

then prewhiten the data using the spatially smoothed but not

globally pooled autocorrelations across the image. This will not

give the same parameter values in wavelet space and image space

even when the identity threshold is used, in contrast to the standard

linear model or the SPM techniques mentioned above. As was

noted before, the wavelet transform is a spatial transform and so

any spatially invariant temporal linear model will commute with

the wavelet transform. Here a temporal method similar to SPM99

was used to analyze the data.

The wavelet analysis in this fMRI study was carried out using

orthonormal cubic-spline Battle–Lemarie wavelets, which have

been shown to be suitable bases for functional images (Ruttimann

et al., 1998; Unser et al., 1995). The length of the filters was

chosen as the minimal that produced efficient signal representation.

The actual lengths used were 16 coefficients with four resolution
levels (depths). These were linearly thresholded as described

previously (Turkheimer et al., 2003). The wavelet transform was

calculated using the wavelet toolbox Uvi-wave 3.0 (Śanchez SG et

al, Grupo de Teoria de al Señal, Universidad de Vigo, Spain).

Measured data

Measured data previously analyzed in the image domain (Chen

et al., 2002; Worsley et al., 2002) were used to test the method.

Wavelet analysis was carried out in two-dimensional slice by slice

due to the slice timing effects as mentioned above. The fMRI data

set came from a study with a pain stimulus. A hot stimulus and

warm stimulus were applied to the skin of a subject, with

interleaved periods of rest. The contrast of interest looked at the

difference between the hot and the warm condition.

As can be seen in Fig. 1, the wavelet image of the effects

shows the areas where there is a difference between the hot and

cold stimulus. The identity threshold has been applied in these

images, as the purpose of this comparison is to show that analysis

in the image domain and wavelet domain can be transformed

backwards and forwards. Three different methods of calculating

the variance are shown. The figures have been displayed using a

monochromatic color map as the primary purpose of this study is

to show how signal and error estimates can be found. Fig. 1b

contains the variance calculated directly in image space. This is the

reference image to which comparison with Figs. 1c and d needs to

be made. Fig. 1c contains the variance image if complete

decorrelation between the wavelet coefficients is assumed. This

approximate method is calculated by taking the matrix product of

the diagonal variance matrix and the discrete wavelet transform

matrix and its transpose (Aston et al., 2003). A detailed description

of the method is omitted due to both its complexity and the

unsatisfactory nature of its performance relative to the proposed

method. As can be seen in Fig. 1c, the resulting image has both a

loss of magnitude in the errors and also the loss of resolution in the

image. This shows that while the wavelet transform is well known

to decorrelate the data, it is not possible to assume that the

coefficients have zero correlation between them, certainly if only a

small temporal sample is available. This variance map does retain

the same layout as the true image, but does not provide an

adequate estimate of the variance. Fig. 1d, however, perfectly

captures the variance image of Fig. 1b as they are analytically

identical. Thus the residuals method can be used to generate

variance images back in image space for parameters calculated in

wavelet space.

Table 1 contains the shrinkage values for the fMRI study, which

were calculated using the James–Stein procedure. Image maps in

Fig. 2 were produced through shrinkage using these values and by

ensuing transformation back into the image domain. As can be

seen, the parameter estimates in Fig. 2c are not changed to a great

extent from those in Fig. 2a, but the variance in Fig. 2d is reduced

from that in Fig. 2b. This is mainly due to the fact that the wavelet

coefficients in the highest level are not shrunk as they are assumed

to contain only signal, whereas noise is distributed across the

coefficients.

PET spatiotemporal analysis—metabolism

A dynamic [18F]Fluorodeoxyglucose (FDG) study of glucose

metabolism in normal brain was also considered. Arterial samples

were available and were used as input function for the method.



Fig. 1. fMRI activation study investigating the effects of warm and hot stimuli. These images are the differences between the warm and hot stimuli and the

standard errors associated with the difference. Here no shrinking of the wavelet coefficients (i.e., the identity threshold) has been carried out to provide an exact

equivalence between the methods in the image domain and the wavelet domain.
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In the FDG model (Phelps et al., 1979; Sokoloff et al., 1977),

transport of FDG across the blood–brain barrier is described by K1

(ml/g/min), the reverse process by k2 (1/min), and phosphorylation

by k3 (1/min). Total cerebral activity is then given by

CT tð Þ ¼ bCp tð Þ þ K1k2

k2 þ k3

Z t

0

Cp sð Þe� k2þk3ð Þ t�sð Þds

þ k2k3

k2 þ k3

Z t

0

Cp sð Þds ð12Þ

where CT and Cp are the tissue and input time activities,

respectively, and b is the intravascular distribution volume of the

tracer (either blood or plasma). (k2k3) / (k2 + k3) is the FDG

metabolic rate and is the parameter of interest.

After a certain time from tracer injection, the free tracer in

the tissue reaches equilibrium with the plasma. Therefore, the
Table 1

Shrinkage values from fMRI study

x H L H

y L H H

k Shrinkage values

1 0.9442 0.9492 0.9411

2 0.9658 0.9697 0.9641

3 0.9835 0.9827 0.9812

x and y refer to the portions of the two-dimensional data structure involved

and k is the level of the transform. H and L are high and low pass filtering,

respectively.
model reduces to a simple one-compartment model and Eq. (12)

reduces to

CT tð Þ ¼ bCp tð Þ þ K1k2

k2 þ k3ð Þ2
Cp tð Þ þ k2k3

k2 þ k3

Z t

0

Cp sð Þds: ð13Þ

This allows estimation of the metabolic rate by linear least squares

(Turkheimer et al., 2000a).

PET images do not suffer from the temporal autocorrelations

that are present in the fMRI study and as such is not necessary to

consider here. Wavelet analysis was again carried out using Battle–

Lemarie wavelets with the same parameters (although a three-

dimensional setup was used), and these were again linearly

thresholded.

Measured data

There are nonstationary noise conditions in FDG images, thus

wavelet methods are needed over methods that assume stationarity.

The data set is a full three-dimensional image volume and can be

processed fully in three dimension due to the data being collected

simultaneously. The shrinkage values for different portions of the

wavelet image are given below in Table 2. These values indicate

the proportion of the signal that is shrunk in the linear thresholding.

Again, those wavelet coefficients in the highest level were assumed

to be signal and consequently not shrunk.

The results of the measured FDG data are shown in Figs. 3

and 4 below. Again, the identity threshold wavelet analysis

and the traditional analysis produced identical answers (not

shown).

The figures below give the analysis when the linear shrinkage

thresholds are applied in three dimension. The metabolic rate



Fig. 2. fMRI activation study investigating the effects of warm and hot stimulus. These images are the differences between the warm and hot stimuli and the

standard errors associated with the difference. These were calculated in wavelet space and a linear (James–Stein) threshold estimator used to linearly shrink the

data. The values for the shrinkage are given in Table 1.
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parameter image is not changed to a great extent when applying

linear thresholding but the variance is again reduced as in the fMRI

case. These demonstrate that the techniques described are

independent of the dimensionality of the image and can thus be

carried out in either two or three dimension.

PET spatiotemporal analysis—neuroreceptors

The second PET example considered a dynamic [11C]raclopride

study of D2-receptor distribution in normal brain. Wavelets have

been previously used to analyze neuroreceptor transmitter data

(Cselenyi et al., 2002; Millet et al., 2000; Turkheimer et al.,

2000a). Frames were acquired with an ECAT 953B PET camera

(CTI/Siemens). Arterial samples were not available, and a

reference region placed on the cerebellum was used as input

function. Estimates of the distribution volume ratio (DVR) were
Table 2

Shrinkage values from PET FDG study

x H L H

y L H H

z L L L

k Shrinkage values

1 0.8671 0.8564 0.8790

2 0.9125 0.9096 0.8973

3 0.9654 0.9687 0.9351

4 0.9961 0.9961 0.9688

x, y, and z refer to portions of the three-dimensional data structure involved and k is

respectively.
obtained with the Logan plot (Logan et al., 1990, 1996). The

original equation of this plot readsZ t

0

Ci sð Þds=Ci tð Þ ¼ DVR

Z t

0

Cref sð Þds=Ci tð Þ þ c ð14Þ

where Ci(t) is the tissue time activity, Cref(t) is the time activity in

the reference region that is assumed to be devoid of D2-receptors,

and c is a constant. Although Cref(t) can be assumed noise-free as

being sampled on a large ROI, the same cannot be said for the term

Ci(t), which appears on both sides of the linear equation. However,

Carson (1993) showed that the simple rearrangement of Eq. (14) as

Ci tð Þ ¼ � DVR=cð Þ
Z t

0

Cref sð Þds þ 1=cð Þ
Z t

0

Ci sð Þds ð15Þ

substantially reduces the bias of the estimated parameters even

with noise levels typical of voxel time courses and allows the use
L H L H

L L H H

H H H H

0.8916 0.8578 0.8480 0.8743

0.9585 0.8897 0.8947 0.8829

0.9940 0.9833 0.9829 0.8960

0.9986 0.9967 0.9974 0.9538

the level of the transform. Here H and L refer to high and low pass filtering,



Fig. 3. Glucose metabolism rate as measured in a PET FDG scan. The image has been linearly thresholded in the wavelet domain and then returned to the

image domain.
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of the Cramer–Rao lower bound (Beck and Arnold, 1977) to

estimate the standard deviation of the parameters.

The frames for the time interval 5–60 min (nine frames) were

used for the linear estimation of DVR after previous verification

that the plot of Eq. (14) showed linear behavior in this time

window. Again, Battle–Lemarie wavelets were used with the same

parameters as before.

The model in Eq. (14) can be seen to be linear as is its

rearrangement in Eq. (15). However, in the latter formulation,
Fig. 4. Glucose metabolism rate as measured in a PET FDG scan. The image ha

associated errors.
DVR is no longer a linear parameter of the model. The advantage

of the formulation of Eq. (15) is that it provides more accurate

measures of variance of the parameters due to the underlying

nonlinear nature of the true model (Carson et al., 1993).

The methods developed in this paper are only of theoretical

validity when applied to truly linear parameters in linear models.

However, due to the approximately linear nature of the model in

Eq. (15), it was deemed worth exploring the benefits of trying the

method in this case. Further work would be required to determine
s been linearly thresholded in the wavelet domain. This is an image of the



Fig. 5. [11C]Raclopride PET image of DVR. The image has been linearly thresholded in the wavelet domain and then returned to the image domain.
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how much of an approximation this is, probably through the use of

a comprehensive simulation study.

Fig. 5 shows the results of parameter estimation using wavelet

coefficients. As can be seen, the wavelet image (Fig. 5b) is

smoother compared with the image space analysis (Fig. 5a). This

is due to the smooth signal being present in the coarsest level,

while noise is in the lower levels, which as can be seen from

Table 3 are shrunk heavily. The image space analysis and wavelet

space analysis with the identity threshold again produced identical

parameter images (not shown) due to the means of the parameters

being the same regardless of which linear model is used.

Fig. 6 shows the standard error images from the Raclopride

study. Due to the linearization of the Logan plot, the variances

between the image space calculation and the wavelet space

calculation differ. However, as linearization is not spatially

dependent, it can be argued that neither image space nor wavelet

space estimation of the parameters is intrinsically more correct.

Indeed, with better signal to noise properties in the wavelet

coefficients for those containing signal, it is probable that the

analysis will indeed be more accurate in wavelet space. This is

borne out by looking at Figs. 6a and b. It is expected that the
Table 3

Shrinkage values from PET raclopride study

x H L H

y L H H

z L L L

k Shrinkage values

1 0.3520 0.3675 0.2828

2 0.2075 0.3327 0.1370

3 0.8572 0.8842 0.4336

4 0.9263 0.9637 0.5420

x, y, and z refer to portions of the three-dimensional data structure involved and k

respectively.
variance of DVR will be proportional to signal (Aston et al., 2000)

and as such structure will be present in the DVR variance image. In

Fig. 6a, the image space variance estimate, there is no structure

present, whereas in Fig. 6b there are signs of structure. As

mentioned above, further simulations and theoretical work will

need to be carried out in order to validate this technique further.

Again, there is a reduction in variance in the wavelet smoothed

image (Fig. 6c). The reduction is greater than in the FDG image, as

the shrinkage values are much smaller for many components.

There are greater amounts of structure present in the thresholded

variance than either of the other images.
Conclusions

Wavelet-based methods are increasingly used to perform

neuroimaging analysis. However, due to the need for comparison

between methods, general acceptance of these methods has been

restricted to special circumstances.

The methods described above yield an image of the errors on

the estimates obtained using wavelet modeling. This allows error
L H L H

L L H H

H H H H

0.0353 0.4364 0.5420 0.5084

0.7320 0.3212 0.0769 0.3960

0.9451 0.8554 0.9017 0.2564

0.9792 0.9818 0.9579 0.1474

is the level of the transform. H and L refer to high and low pass filtering,



Fig. 6. [11C]Raclopride PET image of DVR. The image has been linearly thresholded in the wavelet domain. This is an image of the associated errors along

with those from the unthresholded studies.
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estimates that have previously been calculated in image space to be

compared with those in wavelet space, assuming a linear temporal

model. These methods can be used with existing linear temporal

modeling methods for neuroimaging while allowing a different

form of noise suppression to be used to allow better MSE estimates

of the parameters.

It is important to note that the methods here cannot be directly

applied to hypothesis testing in the way BLU estimates can. In

traditional SPM type methods, the parameters are subsequently t

tested (using Student’s t distribution) to evaluate experimental

hypotheses. The distributional properties of the wavelet estimators

are less clear cut, and as such direct hypothesis testing cannot be

performed easily. However, often it can be of more interest to look

at the signal itself as opposed to a binary yes/no decision

(Turkheimer et al., 2004), and this can be facilitated by wavelet

methods. Parametric maps regularized by wavelet methods and

associated errors may play an important role in the newly proposed

dissociation type inference for functional studies (Jernigan et al.,

2003). In this framework, the statistics obtained from the temporal

model are used for within-brain comparisons to assess significant

differential association (i.e., dissociation) of one location compared

to others. This approach can benefit from the regularization
properties of wavelet filters that reduce the noise in the map but

still allow inference when a reduced variance map can be

produced. Future work will address this issue further.

Here the methods have been developed for linear temporal

models. This is due to the need for linearity in the time domain to

allow wavelet and image spaces to commute. However, it is

possible that for some classes of nonlinear models, these

techniques will provide good approximations even without true

linearity being present. Indeed, a slight deviation from linearity in

the third example suggests that this may provide a better estimation

of variance than traditional methods, despite its approximate

nature. It is also the case that the thresholding techniques used

here are linear shrinkage operators. This technique can be used

with nonlinear threshold techniques, and the linear techniques here

are just an example. While the variance parameters calculated do

not depend on the type of thresholding used, care must be taken in

choosing appropriate thresholding to ensure that they do indeed

lead to better MSE estimates of the parameters. Further inves-

tigation would also be of interest if random effect models were to

be used in subsequent analysis, as the distribution of coefficients

would no longer be from the standard linear model, and use of the

variance estimates possibly more complex.
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Hopefully the advantages of wavelet methods will continue to

be recognized as more and more studies see the potential benefits

of MSE estimates as opposed to traditional least squares estimates.
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