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Summary: The current article presents theory for compart-
mental models used in positron emission tomography (PET).
Both plasma input models and reference tissue input models are
considered. General theory is derived and the systems are char-
acterized in terms of their impulse response functions. The
theory shows that the macro parameters of the system may be
determined simply from the coefficients of the impulse re-
sponse functions. These results are discussed in the context of
radioligand binding studies. It is shown that binding potential is

simply related to the integral of the impulse response functions
for all plasma and reference tissue input models currently used
in PET. This article also introduces a general compartmental
description for the behavior of the tracer in blood, which then
allows for the blood volume-induced bias in reference tissue
input models to be assessed. Key Words: PET—Compart-
mental models—Tracer kinetics—Plasma input models—
Reference tissue input models.

Compartmental analysis forms the basis for tracer ki-
netic modeling in positron emission tomography (PET).
Well-established compartmental models in PET include
those used for the quantification of blood flow (Kety,
1951) , cerebral metabolic rate for glucose (Sokoloff et
al., 1977; Phelps et al., 1979), and neuroreceptor ligand
binding (Mintun et al., 1984). These particular models
require an arterial blood or plasma input function, with
the number of tissue compartments dictated by the physi-
ological, biochemical and pharmacological properties of
the system under study. Other “reference tissue models”
have been developed, particularly for the study of neu-
roreceptor ligands (Blomqvist et al., 1989; Cunningham
et al., 1991; Hume et al., 1992; Lammertsma et al., 1996;
Lammertsma and Hume, 1996; Gunn et al., 1997;
Watabe et al., 2000), with a view to avoiding blood sam-
pling. These enable the target tissue time-activity curve
to be expressed as a function of that of the reference
tissue. For neuroreceptor applications, reference tissue
models assume that there exists a reference area of brain
tissue essentially devoid of specific binding sites. The
number of identifiable compartments in the reference

region and in the region of interest is dependent on the
rate of exchange of the tracer between the free, nonspe-
cifically bound and specifically bound pools of tracer.
All of these models make a series of general assump-
tions—for example, that there is instantaneous mixing
within the individual compartments, and that the concen-
tration of tracer is small enough such that it does not
perturb the system under study. Under these conditions
the systems are described by a set of first order linear
differential equations. Parameter estimates may be ob-
tained by the weighted least squares fitting of these mod-
els to measured PET data. The current article is not con-
cerned with the determination of model complexity from
measured data, but rather with the analysis of those
model configurations that have been selected a priori by
the investigator.

In PET, the measured regional radioactivity comprises
the sum of all tissue compartments and a blood volume
component. As Schmidt (1999) comments, “most of the
literature on compartmental systems has been concerned
with measurement of the content of individual compart-
ments, and little attention has been directed to the par-
ticular problem of characterizing the sum of the contents
in all compartments of the system.” The current article is
principally concerned with developing a general frame-
work for PET compartmental models. It aims to draw
attention to the parallels that exist between reference
tissue models and those models using a plasma input, and
to those properties of reference tissue models that are
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robust and common to all models independent of the
number and topology of compartments used to describe
the tissues. Both reversible and irreversible systems will
be considered and particular attention will be paid to
their interpretation in terms of neuroreceptor ligand bind-
ing studies.

The current article presents general theory for model-
ing of tissue data using either plasma input or a reference
tissue input. Theory is also presented for the behavior of
the tracer in blood that accounts for both partitioning and
metabolism (Appendix A). This enables theoretical con-
sideration of blood activity contribution to the tissue sig-
nals for reference tissue input models. General theory is
derived that gives the explicit functional form for the
impulse response functions of the systems. It will be
shown that simple relations exist between these func-
tional forms and the macro system parameters. But first,
the authors introduce some of the basic concepts used in
this article.

Linear compartmental systems
Linear compartmental systems lead to a set of first

order differential equations. Often in PET articles these
equations are written out explicitly; however, it is con-
venient and concise to represent the whole system in
terms of its state space representation. A time-invariant
linear compartmental system is defined in terms of its
state space representation as,

ẋ�t� = Ax�t� + Bu�t�,

y�t� = Cx�t� + Du�t�,

x�0� = x0. (1.1)

where x(t) is a p-vector of state variables, y(t) is a q-
vector of observations, u(t) is an r-vector of input func-
tions, A is the (p × p) state transition matrix, B is the (p
× r) input matrix, C is the (q × p) observation matrix, D
is the (q × r) feedthrough matrix, and x0 is a p-vector of
initial conditions. The state transition matrix A takes the
form of a diagonally dominant matrix with non-positive
diagonal elements and non-negative off diagonal ele-
ments. In the current article, the noncyclic subset of lin-
ear compartmental systems is considered, which implies
that A is negative semidefinite (Schmidt, 1999). The el-
ements of A, B, C, and D are assumed to be constant
during the period of the experiment, although they may
change between experiments. In PET, A is made up of
simple combinations of the rate constants denoting the
transfer of material between compartments; B is typi-
cally just the delivery of the tracer to the tissue, K1; C is
a vector of 1’s, which implies that the observation is the
sum of all the compartments; and D contains the blood
volume fraction, VB. The input, u(t), contains the plasma
parent and whole blood time courses, and the observa-

tion (or output), y(t), corresponds to the tomographic
PET signal.

Macro and micro parameters
In the current article, the terms macro and micro pa-

rameters are used to distinguish between the individual
rate constants (micro) and global system parameters that
are functions of the rate constants (macro). For instance,
the volume of distribution of the target tissue, VD, which
is equal to the step response of the system, and the irre-
versible uptake rate constant from plasma, KI, which is
equal to the steady state response of the system are both
macro parameters. The macro parameters are generally
more stable with respect to the parameter estimation
problem from dynamic PET data.

Indistinguishability and identifiability
The current article discusses the concepts of indis-

tinguishability and identifiability of the linear compart-
mental systems. Indistinguishability is concerned with
determining a set of models that give rise to identical
input–output behavior. Structural identifiability is con-
cerned with whether the parameters may be estimated
uniquely from perfect input–output data. This may be
determined from analysis of the transfer function using a
technique such as the Laplace transform approach (God-
frey, 1983).

PLASMA INPUT MODELS

Consider a general PET system, as illustrated in Fig. 1,
in which the measured radioactivity data consists of the
total tissue concentration, CT, the parent tracer concen-
tration in plasma, CP, and the whole blood concentration,
CB. The blood volume component is omitted from Fig. 1
for clarity.

Its state space formulation is given by

ĊT�t� = ACT�t� + �K1e1 0� �CP�t�

CB�t��

FIG. 1. Generalized tissue model.
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CT�t� = �1 − VB�1TCT�t� + � 0 VB� �CP�t�

CB�t��
CT�0� = 0. (2.1)

where A is the state transition matrix, K1 is the influx
constant for tracer into the tissue, and VB is the fractional
blood volume component.

Definition 1
Let M denote the set of linear compartmental systems

with n compartments (described by Eq. 2.1), where A is
negative semidefinite1 with distinct eigenvalues,

� = ��A, K1, VB�

� A
i�j

ij � 0, Aii � 0, �i Aij � 0, �x xT Ax � 0

K1 � 0, VB ∈ �0, 1�, |Sp�A�| = n
� .

Let R denote the set of reversible models (Fig. 2),

� = �� | �j �i : Aij � 0� ⊂ �,

and I denote the set of irreversible models with a single
trap2 (Fig. 3),

I = �� | �i Ain = 0� ⊂ �.

Theorem 1
A model s ∈ M has a solution given by,

CT�t� = �1 − VB�HTP�t� � CP�t� + VBCB�t�,

where

HTP�t� = ��
i=1

n

�ie
−�it : s ∈ �

�
i=1

n−1

�ie
−�it + �n : s ∈ I

,

�i � 0 and �
i=1

n

�i = K1.

If s ∈ R,

�
i=1

n
�i

�i
= �

0

	

HTP�t�dt,

= VD.

If s ∈ I,

�n = lim
t→	

HTP�t�,

= KI.

It is straightforward to derive an indistinguishability and
indentifiability corollary directly from Theorem 1.

Corollary 1.1
Indistinguishability: any two plasma input models

within the subset R (or similarly for I) with a total of N
tissue compartments are indistinguishable.

Corollary 1.2
Identifiability: the macro parameters (K1, VD or KI) are

uniquely identifiable from perfect input–output data.

REFERENCE TISSUE INPUT MODELS

Consider a general PET reference compartmental sys-
tem, as illustrated in Fig. 4, in which the measured ra-
dioactivity data consists of the total tissue concentration,
CT, and the total reference tissue concentration, CR. The
general PET reference tissue model restricts the inter-
action of the target and reference tissues solely through
the plasma.

1This set includes all noncyclic systems and the subset of cyclic
systems in which the product of rate constants is the same regardless of
directions for every cycle (Goldberg, 1956; Godfrey, 1983).

2Without loss of generality the nth compartment is defined to be the
trap.

FIG. 2. Reversible tissue model.

FIG. 3. Irreversible tissue model with a single trap.
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Its state space formulation is given by,

�ĊT�t�

ĊR�t�
�=�A

0
0

A���CT�t�

CR�t��+�K1e1

K�1e1

0
0��CP�t�

CB�t��
�CT�t�

CR�t�� = ��1 − VB�1T

0T

0T

�1 − V�B�1T��CT�t�

CR�t��
+ �0

0

VB

V�B
��CP�t�

CB�t��
�CT�0�

CR�0�� = 0. (3.1)

where the primes (�) refer to the reference tissue param-
eters. Often when a reference tissue model is used there
is no associated measurement of the blood radioactivity
concentration and so correction for blood contribution to
the tissue signals is not possible. Here, the cases in which
the blood activity does and does not contribute to the
tissue signals are considered separately.

No blood volume
Consider the case in which there is no contribution of

blood activity to the reference and target tissue signals
(VB � V�B � 0).

Definition 2. Consider the set of linear compartmental
reference systems (described by Eq. 3.1) where the con-
nection of the reference tissue (m compartments) and the

target tissue (n compartments) is solely through the
plasma and the blood volume components are zero,

� = ��s�, s�� s� ∈ �, V�B = 0, s ∈ �, VB = 0,

|Sp�A� ∪ Sz�A�, b��| = n + m − 1�.

FIG. 4. Generalized reference tissue model. FIG. 5. Reference tissue model with reversible target and refer-
ence tissues.

FIG. 6. Reference tissue model with irreversible target tissue
and reversible reference tissue.
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The set of reversible reference, reversible target models
(Fig. 5) is defined as,

��� = ��s�, s� | s� ∈ �, s ∈ �� ∩ �.

The set of reversible reference, irreversible target models
(Fig. 6) is defined as,

��I = ��s�, s� | s� ∈ �, s ∈ I� ∩ �.

The set of irreversible references, irreversible target
models (Fig. 7) is defined as,

�II = ��s�, s� | s� ∈ I, s ∈ I� ∩ �.

Theorem 2. A model s ∈ F has a solution given by,

CT�t� = HTR�t� � CR�t�,

where

HTR�t� =

�
�0
�t� + �

i=1

m+n−1

�ie
−�it : s ∈ ���

�0
�t� + �
i=1

m+n−2

�ie
−�it + �m+n−1 : s ∈ ��I

�0
�t� + �
i=1

m+n−2

�ie
−�it : s ∈ �II

,

�i � 0 and �0 =
K1

K�1
= RI.

If s ∈ FRR,

�0 + �
i=1

m+n−1
�i

�i
= �

0

	

HTR�t�dt,

=
VD

V�D
.

If s ∈ FRI,

�m+n−1 = lim
t→	

HTR�t�,

=
KI

V�D
.

If s ∈ FII,

�0 + �
i=1

m+n−2
�i

�i
= �

0

	

HTR�t�dt,

=
KI

K�I
.

Again, it is straightforward to derive an indistinguish-
ability and identifiability corollary directly from Theo-
rem 2.

Corollary 2.1. Indistinguishability: any two reference
tissue input models within the subset FRR (or similarly
for FRI and FII) with a total of N tissue compartments
(reference + target) are indistinguishable.

Corollary 2.2. Identifiability: the macro parameters
(RI,

VD

V�D
or KI

V�D
or KI

K�I
) are uniquely identifiable from perfect

input–output data.

Blood volume
Now consider the general PET reference tissue model

(Fig. 4) with blood volume in both the reference and
target tissues (VB > 0, V�B > 0). The subsequent Theorem
requires characterization of the tracer’s behavior in blood
and uses a result derived in Appendix A (Lemma 1).

Definition 3. Consider the set of linear compartmental
reference systems (described by Eq. 3.1) where the con-
nection of the reference tissue (m compartments) and the
target tissue (n compartments) is solely through the
plasma, a whole blood volume components is present in
each tissue and the tracer behavior in blood is described
by Lemma 1 (Appendix B),

� = ��s�, s�� s� ∈ �, V�B � 0, s ∈ �, VB � 0,

|Sp�A� ∪ �| = m + n + p + q − 1�.

The set of reversible reference, reversible target models
(Fig. 5) is defined as,

��� = ��s�, s� | s� ∈ �, s ∈ �� ∩ �.

The set of reversible reference, irreversible target models
(Fig. 6) is defined as,

��I��s�, s� | s� ∈ �, s ∈ I� ∩ �.
FIG. 7. Reference tissue model with irreversible target and ref-
erence tissues (single trap in each).
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The set of irreversible reference, irreversible target mod-
els (Fig. 7) is defined as,

�II = ��s�, s� | s� ∈ I, s ∈ I� ∩ �.

Theorem 3. A model s ∈ G has a solution given by,

CT�t� = HTR�t� � CR�t�,

where

HTR�t� =

�
�0
�t� + �

i=1

m+n+p+q−1

�ie
−�it : s ∈ ���

�0
�t� + �
i=1

m+n+p+q−2

�ie
−�it + �m+n+p+q−1 : s ∈ ��I

�0
�t� + �
i=1

m+n+p+q−2

�ie
−�it : s ∈ �II

,

�i � 0 and �0 =
VB

V�B
.

If s ∈ GRR,

�0 + �
i=1

m+n+p+q−1
�i

�i
= �

0

	

HTR�t�dt

=
�1 − VB�VD + VBPB

�1 − V�B�V�D + V�BPB
.

If s ∈ GRI ,

�m+n+p+q−1 = lim
t→	

HTR�t�,

=
�1 − VB�KI

�1 − V�B�V�D + V�BPB
.

If s ∈ GII,

�0 + �
i=1

m+n+p+q−2
�i

�i
= �

0

	

HTR�t�dt,

=
�1 − VB�KI

�1 − V�B�K�I
.

DISCUSSION

The current article is concerned with generic compart-
mental modeling of dynamic PET data, where the mea-

sured signal is the sum of all the constituent tissue com-
partments. General results have been derived for plasma
input and reference tissue input models and are summa-
rized in Tables 1 and 2. In each case, the tissue impulse
response function is composed of a sum of exponentials,
with an additional delta function term for reference tissue
input models. There are three fundamental characteristics
of the tissue impulse response function that are of inter-
est: the initial value (which is equal to the value at t �
0), the step response (which is equal to the area under the
impulse response function from t � 0 to t � 	), and the
steady state response (which is equal to the final value of
the impulse response function). It can be seen that the
macro parameters of the system (VD, KI,

VD

V�D
, KI

V�D
, KI

K�I
, BP.f1,

and BP.f2) are simply related to these characteristics of
the impulse response function independent of the number
and topology of compartments. Furthermore, these
macro parameters are uniquely identifiable from perfect
input–output data.

Plasma input models
Plasma input models in PET often are treated as a gold

standard (Kety, 1951; Sokoloff et al., 1977; Phelps et al.,
1979; Mintun et al., 1984). The impulse response func-
tion is a sum of exponentials (Theorem 1), with the rate
of delivery from the plasma, K1, given by the initial value
of the impulse response function. For reversible tissue
kinetics, the total volume of distribution, VD, is given by
the integral of the impulse response function. For irre-
versible tissue kinetics, the irreversible uptake rate con-
stant from plasma, KI, is given by the final value of the
impulse response function. It may be noted that the final
value of the impulse response function is equal to the
limiting slope of a Patlak plot (Patlak et al., 1983). This
result, as with the Patlak analysis, is independent of the
number of intermediate reversible tissue compartments.

Reference tissue input models
Reference tissue models have the advantage that no

blood measurements are required and parameters are de-
rived purely from the tomographic tissue data. For ref-
erence tissue input models, the general form of the im-
pulse response function is a sum of exponentials plus a

TABLE 1. Summary of plasma input models

Target tissue Impulse response Parameter

� �
i=1

n

�ie
−�it VD = �

i=1

n
�i

�i

I �
i=1

n−1

�ie
−�it + �n KI = �n

TABLE 2. Summary of reference tissue input models

Tissue

Reference Target Impulse response Parameter

� � �0
�t� + �
i=1

m+n−1

�ie
−�it

VD

V�D
= �0 + �

i=1

m+n−1
�i

�i

� I �0
�t� + �
i=1

m+n−2

�ie
−�it + �n

KI

V�D
= �n

I I �0
�t� + �
i=1

m+n−2

�ie
−�it

KI

K�I
= �0 + �

i=1

m+n−2
�i

�i
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delta function term (Theorem 2). First, consider the re-
sults when there is no significant blood volume contri-
bution to either the target or reference tissue. The coef-
ficient of the delta function is equal to the relative de-
livery of tracer to the target versus the reference tissue,
RI. For reversible kinetics in both the reference and the
target tissues, the integral of the impulse response func-
tion is equal to VD

V�D
. The relationship of this parameter to

BP.ƒ2 is discussed later. If the target tissue is irreversible
and the reference tissue is reversible, the normalized ir-
reversible uptake rate constant from plasma, KI

V�D
, is given

by the final value of the impulse response function.
Again this is analogous to the reference tissue Patlak
approach (Patlak and Blasberg, 1985). If both the target
and reference tissues are irreversible, the ratio of the
uptake rate constants between the target and reference,
KI

K�I
, is given by the integral of the impulse response

function.
It is interesting to note the similarities and equiva-

lences between reference tissue input models and plasma
input models. In particular, for reversible kinetics the
integral of the impulse response function for plasma in-
put models is the volume of distribution, VD, and for
reference tissue input models it is the relative volume of
distribution, VD

V�D
. Other similar analogies apply for the

irreversible cases.
Model indistinguishability. As a consequence of

Theorem 2, it can be shown that the topology of the
compartments in the reference and target tissues is not
important with regards to the macro parameters; it is
merely the total number of compartments in the refer-
ence and target tissues that defines the set of indistin-
guishable reference tissue inputs models (Corollary 2.1).

Inclusion of blood volume. The current article also
considers the case in which a significant contribution to
the tissue signals is derived from the blood. If this is the
case, a bias may be introduced in the macro parameter
estimates. The magnitude of this bias is dependent on the
blood volume, VB, the volume of distribution of the ref-
erence tissue, V�D, and the steady-state parent plasma-
to-whole blood ratio, PB (Theorem 3). Similarly, a bias
in the macro parameters for plasma input models, when
blood contribution is ignored, can also be derived (results
not shown). Investigators should be aware of these fac-
tors when applying plasma and reference input compart-
mental models or graphical methods such as the Patlak
(Patlak et al., 1983) and Logan (Logan et al., 1990) plots
without correcting for blood volume.

Radioligand binding studies
Now consider these models in the context of radioli-

gand binding studies. There are several compartmental
models in common use for the analysis of radioligand
binding (Appendix C). The point of this appendix is to

illustrate the relation between these commonly used
compartmental models and the general results derived in
the current article. The models in the appendix are for-
mulated in terms of micro parameters, that is, individual
rate constants for the exchange of tracer between com-
partments. In particular, they show that for reversible
reference tissue models the integral of the impulse re-
sponse function is simply related to binding potential in
the same way in all cases.

Binding potential (BP) is a useful measure to quantify
ligand–receptor interaction. The original definition of
binding potential was introduced by Mintun et al. (1984)
as the ratio of Bmax (the maximum concentration of avail-
able receptor sites) to the apparent KD of the free radio-
ligand. To determine this parameter the free fractions of
the radioligand in plasma (ƒ1) and tissue (ƒ2) need to be
taken into account (Koeppe et al., 1991). It is necessary
to distinguish between estimates of BP, BP.ƒ1 and BP.ƒ2.
A summary of these parameters and their relation to the
volumes of distribution is given in Table 3.

BP.ƒ2 may be determined from micro or macro pa-
rameters; either directly from the ratio of the micro pa-
rameters (typically k3 and k4), or indirectly from a vol-
ume of distribution ratio. The direct estimation is often
susceptible to noise and the BP.ƒ2 estimate may be un-
reliable. The second case requires a suitable reference
region devoid of specific binding and requires that V�DF

+
V�DNS

� VDF
+ VDNS

(this assumption may be assessed by
separate blocking studies). The determination of BP.ƒ1

requires the same two assumptions, and is derived by
subtracting the reference tissue volume of distribution
from that of the target tissue. To derive the true binding
potential, BP, the additional measure of the plasma free
fraction is required, ƒ1. The measurement of ƒ1 may be
determined from analysis of a blood sample, although
these measurements often are inaccurate (Laruelle,
2000). These results are summarized in Table 3.

TABLE 3. Summary of different binding potential measures

BP
notation

V3

notation Definition Calculation
Input

required

BP V3

Bmax

KD�1 + �i

Fi

KDi
� VD − V�D

f1
CP

BP.f1 V�3

f1Bmax

KD�1 + �i

Fi

KDi
� VD − V�D CP

BP.f2 V�3

f2Bmax

KD�1 + �i

Fi

KDi
� VD − V�D

V�D
CP or CR

Summary of different binding potential measures, their V3 notation,
expansion in terms of concentration and affinity of binding sites (the
bracketed term on the bottom allows for competition), their calculation
and the input function required.
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The estimation of these parameters for reversible ref-
erence tissue approaches with respect to radioligand
binding are summarized in Table 4.

Particular compartmental structures. The reference
tissue input model began as a 5-parameter model, the
individual deliveries being unidentifiable without a
plasma input function, leading to a reparameterization of
the original 6-parameter system. This representation in-
troduces a parameter for the ratio of influxes (or relative
delivery) as RI (or R1) �

K1

K�1
(Blomqvist et al., 1989;

Cunningham et al., 1991). With the assumption of equal
blood–brain barrier transport rate constant ratios the
model reduces to a 4-parameter system (Cunningham et
al., 1991). The simplified reference tissue model assumes
rapid exchange between the free and nonspecific com-
partments and has three parameters (Lammertsma and
Hume, 1996). Finally, the Watabe reference tissue model
returns to a 5-parameter formulation (Watabe et al.,
2000). These models are summarized in Appendix C.

Model indistinguishability. To address the issue of
the bias in the simplified reference tissue model for some
tracers, Watabe et al. (2000) proposed a model with two
tissues in the reference region. The theory presented in
this article (Corollary 2.1) proves that the ‘Watabe’ ref-
erence tissue model is indistinguishable from the original
reference tissue model (with five parameters) and will
give the same value for the BP.ƒ2. (Note: the ‘Watabe’
model may behave slightly different if the rate constants,
k5 and k6, are fitted from a range of data initially (Watabe
et al., 2000).

Reference tissue model bias. Recently, there has
been some discussion about the biases that may be in-
troduced by using the simplified reference tissue model
(Parsey et al., 2000; Alpert et al., 2000; Gunn et al.,
2000; Slifstein et al., 2000). A bias may be introduced for
reference tissue input models in two ways: either from
blood volume contribution to the tissue signals or from
the use of a reduced order model. Theorem 3 summarizes
the blood volume-induced biases for reference tissue in-
put models. An expression for the blood volume-induced
bias in reversible reference tissue input models, in the
estimated BP.f2, may be derived simply from Theorem 3
and if it is assumed that VB � V�B is given by,

BP.f2 = BP.f2� V�D

V�D +
VBPB

1 − VB

�. (4.1)

This general result shows that the bias is linear and
allows the assessment of blood volume-induced biases
for individual radioligands. Table 5 presents these results
for [11C]raclopride where the parameter values are ob-
tained from the literature (Lammertsma et al., 1996),
except for the theoretical bias which is calculated as the
bracketed term in Eq. 4.1. The reciprocal of PB was
approximated by the plasma-to-blood ratio multiplied by
the parent fraction for data at the end of the scanning
period, although PB could be obtained from a fit using a
model outlined in Appendix A. Good agreement is ob-
served between the experimentally and theoretically de-
rived biases.

Irreversible systems. Dynamic radioligand PET data
may exhibit irreversible characteristics when the time
scale of the experiment is too short to fully characterize
the (slow) reversible binding of the radioligand. Typi-
cally, longer scanning periods are impractical either be-
cause of discomfort to the subject or degradation of sig-
nal. In these situations one is restricted to parameters that
represent irreversible kinetics, usually the k3 (micro pa-
rameter) or the KI (macro parameter). Whilst the k3 is
often numerically unidentifiable, the KI does not suffer
from this problem. However, the interpretation of the KI

parameter is often confounded by blood flow (Table 6).
Ultimately, with KI there is always an unfortunate trade
off between the specificity and the magnitude of the
signal—that is, when there is a large signal the parameter
reflects blood flow and when the parameter reflects bind-
ing the signal is small.

Blood and metabolism models
The current article has presented a generic model for

metabolism and partitioning of parent tracer between
plasma and red cells. This leads to a general form for a
parent input function in terms of the whole blood curve.
This functional form would allow general fitting of this
function to discrete blood and metabolite measures. As
such this would provide a flexible kinetic model for gen-
erating plasma parent input functions rather than using

TABLE 4. Summary of binding potential measures derived
from impulse response functions

Tissue

Impulse response(s) ParameterReference Target

� � �
i=1

n

�ie
−�it, �

j=1

m

��je
−��jt BP.f1 = �

i=1

n
�i

�i
− �

j=1

m
��j
��j

� � �0
�t� + �
i=1

m+n−1

�ie
−�it BP.f2 = �0 + �

i=1

n
�i

�i
− 1

TABLE 5. Bias introduced by blood signal in BP.f2 for
reversible reference tissue input model analysis

Radioligand VB V�D PB

Bias

Theory Experimental

[11C]raclopride 0.05 0.43 1.03 0.89 0.87

The theoretical scalar bias calculated from Eq. 4.1 and the value
determined experimentally by comparing reference and plasma input
analyses.
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arbitrary functional forms. A particular example is pre-
sented in Appendix C. A general approach to modeling
tracer metabolism has been presented previously by
Huang et al. (1991), where they consider micro param-
eter formulations rather than considering the general
form for the impulse response function. Particular com-
partmental structures also have been used to describe the
metabolism of the parent tracer (Lammertsma et al,
1993; Gunn, 1996; Carson et al., 1997).

Summary
The current article has presented general theory for

PET compartmental models, which shows that the re-
quired macro system parameters can be determined sim-
ply from the associated impulse response functions. The
form of the relations between the macro parameters and
the impulse response function are common to all models
independent of the number and topology of compart-
ments. Choosing a particular compartmental structure
with a predefined number of compartments is equivalent
to choosing the number of terms in the impulse response
function. Ultimately, the number of numerically identi-
fiable components in the impulse response function that
can be determined from measured PET data will depend
on both the statistical noise and the experimental design.
The selection of a particular compartmental structure can
meet with problems either if the number of identifiable
components is less than the chosen model (for example,
high noise) or more than the chosen model (for example,
heterogeneity). The current article shows that a more
general approach is possible where the macro parameters
could be estimated by determination of the systems im-
pulse response function without the need for a priori
model selection. Approaches to the fitting of PET data to
these generic models are being developed.
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APPENDIX A

Generic blood and metabolism model
Consider a general PET system, as illustrated in Fig. 8,

where the measured radioactivity data consists of the
parent tracer concentration in plasma, CP, and the whole
blood concentration, CB.

Its state space formulation is given by,

�ĊB�t�

ĊT�t�
� = A�CB�t�

CT�t�� + l1e1U�t�

�CB�t�

CP�t�� = � 1T

e1
T

0T

0T��CB�t�

CT�t��
�CB�0�

CT�0�� = 0. (A.1)

where U(t) is the time course for the intravenous injec-
tion of tracer. Here CTi

represents tissue compartments
that allow for the metabolism of the parent tracer.

Lemma 1. The blood model defined by Eq. A.1 is
characterized by,

CB�t� = HBP�t� � CP�t�,

where the impulse response function is,

HBP�t� = 
�t� + �
i=1

p+q−1

�ie
−
it


i � 0. The steady state ratio of whole blood to parent in
plasma activity is,

PB = �
0

	

HBP�t�dt,

= 1 + �
i=1

p+q−1
�i


i
.

Alternatively, the parent tracer concentration in plasma
can be expressed as a function of the whole blood
concentration,

CP�t� = HPB�t� � CB�t�,

where

HPB�t� = 
�t� + �
i=1

p+q−1

��ie
−
�it,

which follows from the general form of the transfer func-
tion,

H̃BP�s� =
	
i=1

p+q−1

�s − �i�

	
j=1

p+q−1

�s − �j�

.

Note: It is assumed that no multiplicity terms occur,
that is, |Sp(A)| � p + q.

APPENDIX B

Proofs
Proof of Theorem 1. The state space formulation for

a general plasma input model, s ∈ M, is given by,

ĊT�t� = ACT�t� + �b 0� �CP�t�

CB�t��
CT�t� = �1 − VB�1TCT�t� + �0 VB� �CP�t�

CB�t��
CT�0� = 0.

Taking Laplace transforms yields,

C̃T�s� = �1 − VB�1T�sI − A�−1 bCP̃�s� + VBCB̃�s�,

and the plasma to tissue transfer function is given by,

H̃TP�s� = 1T�sI − A�−1 b,
FIG. 8. Generalized parent metabolism and blood partitioning
model.
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= 1Tb
	
i=1

n−1

�s − �i�

	
j=1

n

�s − �j�

,

where � � Sp(A) and � � Sz(A, b) are defined by the
solutions to the following equations,

|�I − A + b1T| − |�I − A| = 0,

|�I − A| = 0.

The general form of the transfer function is,

H̃TP�s� = 1Tb �
i=1

n
�i

�s − �i�
,

and the impulse response function is given by,

HTP�t� = 1Tb �
i=1

n

�ie
�it,

where �i=1
n �i = 1. If s ∈ R, VD is equal to the step

response,

VD = �
0

	

HTP�t�dt,

= H̃TP�0�,

= 1Tb �
i=1

n
�i

−�i
,

and if s ∈ I, (vn � 0), the irreversible uptake rate con-
stant from plasma is equal to the steady-state response,

KI = lim
t→	

HTP�t�,

= lim
s→0

sH̃TP�s�,

= 1Tb�n.
�

Note: If the eigenvalues of A are not distinct (that is,
|Sp(A)| < n), the general solution for the transfer func-
tion is,

H̃TP�s� = 1Tb �
i=1

n

�
j=1

qi �ij

�s − �i�
j
,

where qi is the multiplicity of vi, and the impulse re-
sponse function will take the form,

HTP�t� = 1Tb �
i=1

n

�
j=1

qi

�ijt
j−1e�it.

Proof of Theorem 2. The state space formulation for
a general reference tissue input model with no blood
volume, s ∈ F, is given by,

�ĊT�t�

ĊR�t�
�=�A

0
0

A���CT�t�

CR�t��+�b
b��CP�t�

�CT�t�

CR�t�� = �1T

0T

0T

1T��CT�t�

CR�t��
�CT�0�

CR�0�� = 0.

Taking Laplace transforms and using Theorem 1 yields,

H̃TR�s� =
H̃TP�s�

H̃RP�s�
,

=

1Tb 	
i=1

m

�s − ��i� 	
j=1

n−1

�s − �j�

1Tb� 	
i=1

n

�s − �i� 	
j=1

m−1

�s − ��j�

,

where v � Sp(A), �� � Sz(A�, b�), v� � Sp(A�) and �
� Sz(A, b).

The general form of the transfer function is,

H̃TR�s� =
1Tb

1Tb�
�1 + �

i=1

n
�i

�s − �i�
+ �

j=1

m−1
�j

�s − ��j�
�,

and the impulse response function is given by,

HTR�t� =
1Tb

1Tb�
�
�t� + �

i=1

n

�ie
�it + �

j=1

m−1

�je
��jt�.

If s ∈ FRR, the step response is given by,

�
0

	

HTR�t�dt = H̃TR�0�,

=
1Tb

1Tb�
�1 + �

i=1

n
�i

−�i
+ �

j=1

m−1
�j

−��j
�,

=
H̃TP�0�

H̃RP�0�
,

=
VD

V�D
,

if s ∈ FRI, (vn � 0), the steady-state response is given
by,

lim
t→	

HTR�t� = lim
s→0

sH̃TR�s�,

=
1Tb

1Tb�
�n ,

= lim
s→0

s
H̃TP�s�

H̃RP�s�
,

=
KI

V�D
,
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and if s ∈ FII, (vn � 0), the step response is given by,

�
0

	

HTR�t�dt = H̃TR�0�,

=
1Tb

1Tb�
�1 + �

i=1

n−1
�i

−�i
+ �

j=1

m−1
�j

−��j
�,

=
H̃TP(0)

H̃RP(0)
,

=
KI

K�I
.

�

Note: If multiplicity occurs (that is, |Sp(A) ∪ Sz(A�, b�)|
< n + m − 1), the general solution for the transfer func-
tion is,

H̃TR�s� =
1Tb

1Tb�
�1 + �

i=1

n

�
j=1

qi �ij

�s − �i�
j
+ �

i=1

m−1

�
j=1

ri �ij

�s − ��i�
j�,

where qi and ri are the multiplicity of vi and ��i ,
respectively. The impulse response function will take
the form,

HTR�t� =
1Tb

1Tb�
�
�t� + �

i=1

n

�
j=1

qi

�ijt
j−1e�it + �

i=1

m−1

�
j=1

ri

�ijt
j−1e��it�.

Proof of Theorem 3. The state space formulation for
a general reference tissue input model with blood volume
contribution and blood kinetics defined by Lemma 1, s ∈
G, is given by,

�ĊT�t�

ĊR�t�
�=�A

0
0

A���CT�t�

CR�t��+�K1e1

K�1e1

0
0��CP�t�

CB�t��
�CT�t�

CR�t�� = ��1 − VB�1T

0T

0T

�1 − V�B�1T��CT�t�

CR�t��
+ �0

0

VB

V�B
��CP�t�

CB�t��
�CT�0�

CR�0�� = 0.

The transfer function is given by,

H̃TR�s� =
�1 − VB�H̃TP�s� + VBH̃BP�s�

�1 − V�B�H̃RP�s� + V�BH̃BP�s�
.

Using Theorem 1 and Lemma 1 yields,

H̃TR�s� =

�1 − VB�1Tb
	
i=1

n−1

�s − �i�

	
j=1

n

�s − �j�

+ VB

	
i=1

p+q−1

�s − �i�

	
j=1

p+q−1

�s − �j�

�1 − V�B�1Tb�

	
i=1

m−1

�s − ��i�

	
j=1

m

�s − ��j�

+ V�B

	
i=1

p+q−1

�s − �i�

	
j=1

p+q−1

�s − �j�

,

=
	
i=1

m

�s − ��i���1 − VB�1Tb 	
j=1

p+q−1

�s − �j� 	
k=1

n−1

�s − �k� + VB 	
j=1

p+q−1

�s − �j� 	
k=1

n

�s − �k��
	
i=1

n

�s − �i� ��1 − V�B�1Tb� 	
j=1

p+q−1

�s − �j� 	
k=1

m−1

�s − ��k� + V�B 	
j=1

p+q−1

�s − �j� 	
k=1

m

�s − ��k�� ,

=

VB 	
i=1

m

�s − ��i� 	
j=1

n+p+q−1

�s − �j�

V�B 	
i=1

n

�s − �i� 	
j=1

m+p+q−1

�s − �j�

.
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where v � Sp(A), v� � Sp(A�) and the set, �, is defined
as � � ∪i�i. The general form of the transfer function
is,

H̃TR�s� =
VB

V�B
�1 + �

i=1

n
�i

�s − �i�
+ �

j=1

m+p+q−1
�j

�s − �j�
�,

and the impulse response function is given by,

HTR�t� =
VB

V�B
�
�t� + �

i=1

n

�ie
�it + �

j=1

m+p+q−1

�je
�jt�.

If s ∈ GRR, the step response is given by,

�
0

	

HTR�t�dt = H̃TR�0�,

=
VB

V�B
�1 + �

i=1

n
�i

−�i
+ �

j=1

m+p+q−1
�j

−�i
�,

=
�1 − VB�H̃TP�0� + VBH̃BP�0�

�1 − V�B�H̃RP�0� + V�BH̃BP�0�
,

=
�1 − VB�VD + VBPB

�1 − V�B�V�D + V�BPB
,

if s ∈ GRI, (vn � 0), the steady-state response is giv-
en by,

lim
t→	

HTR�t� = lim
s→0

sH̃TR�s�,

=
VB

V�B
�n ,

= lim
s→0

s
�1 − VB�H̃TP�s� + VBH̃BP�s�

�1 − V�B�H̃RP�s� + V�BH̃BP�s�
,

=
�1 − VB�KI

�1 − V�B�V�D + V�BPB
,

and if s ∈ GII, (vn � 0), the step response is given by,

�
0

	

HTR�t�dt = H̃TR�0�,

=
VB

V�B
�1 + �

i=1

n−1
�i

−�i
+ �

j=1

m+p+q−1
�j

−�j
�,

=
�1 − VB�H̃TP�0� + VBH̃BP�0�

�1 − V�B�H̃RP�0� + V�BH̃BP�0�
,

=
�1 − VB�KI

�1 − V�B�K�I
.

�

Note: If multiplicity occurs (that is, |Sp(A) ∪ �| < m
+ n + p + q − 1), the general solution for the transfer
function is,

H̃TR�s� =
VB

V�B
�1 + �

i=1

m+n+p+q−1

�
j=1

qi �ij

�s − �i�
j�,

where qi is the multiplicity of �i and the impulse response
function will take the form,

HTR�t� =
VB

V�B
�
�t� + �

i=1

m+n+p+q−1

�
j=1

qi

�ijt
j−1e�it�.

APPENDIX C

Examples
Plasma input models. This section contains explicit

compartmental models and their functional forms for the
commonly used PET plasma input models. Blood vol-
ume components have been omitted for simplicity.

One-tissue compartmental model. The compartmental
structure for the one-tissue compartment model is shown
in Fig. 9.

Its state space representation is defined by,

A = �−k2�, b = �K1�. (C.1)

The impulse response function and transfer function of
the system are given by,

HTP�t� = �1e−�1t,

H̃TP�s� =
�1

s + �1
, (C.2)

where,

�1 = K1,

�1 = k2. (C.3)

From Theorem 1 the VD is given by,

VD =
�1

�1
,

=
K1

k2
. (C.4)

FIG. 9. One-tissue model.
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Two-tissue compartmental model. The compartmental
structure for the two-tissue compartmental model is
shown in Fig. 10.

Its state space representation is defined by,

A = �−k2 − k3

k3

k4

−k4
�, b = �K1

0 �. (C.5)

The impulse response function and transfer function of
the system are given by,

HTP�t� = �1e−�1t + �2e−�2t,

H̃TP�s� =
�1

s + �1
+

�2

s + �2
, (C.6)

where,

�1 =
K1��1 − k3 − k4�

�
,

�2 =
K1��2 − k3 − k4�

−�
,

�1 =
k2 + k3 + k4 + �

2
,

�2 =
k2 + k3 + k4 − �

2
,

� = 
+
�k2 + k3 + k4�2 − 4 k2 k4. (C.7)

From Theorem 1 the VD is given by,

VD =
�1

�1
+

�2

�2
,

=
K1

k2
�1 +

k3

k4
�. (C.8)

Three-tissue compartmental model. The compartmen-
tal structure for the three-tissue compartmental model
(Mintun et al., 1984) is shown in Fig. 11.

Its state space representation is defined by,

A =�−k2 − k3 − k5

k3

k5

k4

−k4

0

k6

0

−k6

�, b =�K1

0

0
�. (C.9)

The impulse response function and transfer function of
the system are given by,

HTP�t� = �1e−�1t + �2e−�2t + �3e−�3t,

H̃TP�s� =
�1

s + �1
+

�2

s + �2
+

�3

s + �3
, (C.10)

where,

�1 =
K1�k3 �k6 − �1� + �k4 − �1� �k5 + k6 − �1��

��1 − �2� ��1 − �3�
,

�2 =
K1 �k3 �k6 − �2� + �k4 − �2� �k5 + k6 − �2��

��2 − �1� ��2 − �3�
,

�3 =
K1 �k3 �k6 − �3� + �k4 − �3� �k5 + k6 − �3��

��3 − �1� ��3 − �2�
,

�1 =
�1

3
− 2
�1 cos ��

3 �,

�2 =
�1

3
− 2
�1 cos �� + 2�

3 �,

�3 =
�1

3
− 2
�1 cos �� + 4�

3 �,

� = � cos−1�	+ �2
2

�1
3� : �2 � 0

cos−1�	− �2
2

�1
3� : �2 � 0

,

�1 = −
1

9
�3�2 − �1

2�,

�2 =
1

54
�2�1

3 − 9�1�2 + 27�3�,

�1 = k2 + k3 + k4 + k5 + k6,

�2 = k2k4 + k2k6 + k3k6 + k4k5 + k4k6,

�3 = k2k4k6. (C.11)

From Theorem 1 the VD is given by,FIG. 10. Two-tissue model.

FIG. 11. Three-tissue model.
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VD =
�1

�1
+

�2

�2
+

�3

�3
,

=
K1

k2
�1 +

k3

k4
+

k5

k6
�. (C.12)

Irreversible tissue compartmental model. The com-
partmental structure for the irreversible tissue compart-
ment model (Sokoloff et al., 1977) is shown in Fig. 12.

Its state space representation is defined by,

A = �−k2 − k3

k3

0

0�, b = �K1

0 �. (C.13)

The impulse response function and transfer function of
the system are given by,

HTP�t� = �1e−�1t + �2,

H̃TP�s� =
�1

s + �1
+

�2

s
, (C.14)

where,

�1 =
K1k2

k2 + k3
,

�2 =
K1k3

k2 + k3
,

�1 = k2 + k3. (C.15)

From Theorem 1 the KI is given by,

KI = �2,

=
K1k3

k2 + k3
. (C.16)

Reference tissue input models. This section contains
explicit compartmental models and their function forms
for a range of commonly used PET reference tissue in-
put models.

Simplified reference tissue model. The compartmental
structure for the simplified reference tissue model (Lam-
mertsma and Hume, 1996) is shown in Fig. 13.

Its state space representation is defined by,

� = �−k2�, A� = �−k�2�, b = �K1�, b� = �K�1�. (C.17)

The impulse response function and transfer function of
the system are given by,

HTR�t� = RI �
�t� + �1e−�1t�,

H̃TR�s� = RI �1 +
�1

s + �1
�, (C.18)

where,

RI =
K1

K�1
,

�1 = k�2 − k2.

�1 = k2. (C.19)

From Theorem 2 the BP is given by,

BP.f2 = RI�1 +
�1

�1
� − 1,

=

K1

k2

K�1
k�2

− 1. (C.20)

Full reference tissue model. The compartmental struc-
ture for the full reference tissue model (Blomqvist et al.,
1989; Cunningham et al., 1991; Lammertsma et al.,
1996) is shown in Fig. 14.

Its state space representation is defined by,

FIG. 12. Irreversible two-tissue model.

FIG. 13. Simplified reference tissue model.

FIG. 14. Full reference tissue model.
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A = �−k2 − k3

k3

k4

−k4
�, A� = �−k�2�, b = �K1

0 �, b� = �K�1�.

(C.21)

The impulse response function and transfer function of
the system are given by,

HTR�t� = RI �
�t� + �1e−�1t + �2e−�2t�,

H̃TR�s� = RI �1 +
�1

s + �1
+

�2

s + �2
�, (C.22)

where,

RI =
K1

K�1
,

�1 =
�k2 − �2��k�2 − �1�

�
,

�2 =
�k2 − �1��k�2 − �2�

−�
,

�1 =
k2 + k3 + k4 + �

2
,

�2 =
k2 + k3 + k4 − �

2
,

� = 
+
�k2 + k3 + k4�2 − 4 k2 k4. (C.23)

From Theorem 2 the BP is given by,

BP.f2 = RI �1 +
�1

�1
+

�2

�2
� − 1,

=

K1

k2
�1 +

k3

k4
�

K�1
k�2

− 1. (C.24)

‘Watabe’ reference tissue model. The compartmental
structure for the ‘Watabe’ reference tissue model
(Watabe et al., 2000) is shown in Fig. 15.

Its state space representation is defined by,

A = �−k2�, A� = �−k�2 − k�5
k�5

k�6
−k�6

�, b = �K1�, b� = �K�1
0 �.

(C.25)

The impulse response function and transfer function of
the system are given by,

HTR�t� = RI �
�t� + �1e−�1t + �2e−�2t�,

H̃TR�s� = RI �1 +
�1

s + �1
+

�2

s + �2
�, (C.26)

where,

RI =
K1

K�1
,

�1 =
k�2k�5

k�5 + k�6 − k2
,

�2 =
k2

2 − k2�k�2 + k�5 + k�6� + k�2k�6
k�5 + k�6 − k2

,

�1 = k2,

�2 = k�5 + k�6. (C.27)

From Theorem 2 the BP is given by,

BP.f2 = RI �1 +
�1

�1
+

�2

�2
� − 1,

=

K1

k2

K�1
k�2
�1 +

k�5
k�6
� − 1. (C.28)

Irreversible reference tissue model. The compartmen-
tal structure for the irreversible reference tissue model
(Vontobel et al., 1996; Gunn et al., 1998; Houle et al.,
1998) is shown in Fig. 16.

Its state space representation is defined by,

FIG. 15. ‘Watabe’ reference tissue model. FIG. 16. Irreversible reference tissue model.
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A = �−k2 − k3

k3

0

0�, A� = �−k�2�, b = �K1

0 �, b� = �K�1�.

(C.29)

The impulse response function and transfer function of
the system are given by,

HTR�t� = RI �
�t� + �1e−�1t + �2�,

H̃TR�s� = RI �1 +
�1

s + �1
+

�2

s �, (C.30)

where,

RI =
K1

K�1
,

�1 = k�2 − k2 −
k�2k3

k2 + k3
,

�2 =
k�2k3

k2 + k3
,

�1 = k2 + k3. (C.31)

From Theorem 2 the KI

V�D
is given by,

KI

V�D
= �2,

=

K1k3

k2 + k3

K�1
k�2

. (C.32)

Blood and metabolism models.
Tracer metabolism and partitioning in blood. A

simple compartmental structure which accounts for
tracer metabolism and partitioning between plasma and
red cells is shown in Fig. 17.

APPENDIX D. Glossary

Symbol Description Units

CT Target tissue concentration kBq � mL−1

CR Reference tissue concentration kBq � mL−1

CP Plasma concentration kBq � mL−1

CB Whole blood concentration kBq � mL−1

HTP Target tissue IRF with respect to plasma (mL plasma) � min−1 � (mL tissue)−1

HRP Reference tissue IRF with respect to plasma (mL plasma) � min−1 � (mL tissue)−1

HTR Target tissue IRF with respect to the reference tissue min−1

HBP Whole blood IRF with respect to parent in plasma (mL plasma) � min−1 � (mL blood)−1

HPB Parent in plasma IRF with respect to whole blood (mL blood) � min−1 � (mL plasma)−1

VD Total volume of distribution of the target tissue (mL plasma) � (mL tissue)−1

VDF
Volume of distribution of the free compartment (mL plasma) � (mL tissue)−1

VDNS
Volume of distribution of the non-specific compartment (mL plasma) � (mL tissue)−1

VDSP
Volume of distribution of the specific compartment (mL plasma) � (mL tissue)−1

VB Fractional blood volume Unitless
K1 Plasma to brain transport constant (mL plasma) � min−1 � (mL tissue)−1

RI Relative delivery to the target versus the reference tissue Unitless
BP Binding potential (mL plasma) � (mL tissue)−1

BP.f1 Product of binding potential and the plasma ‘free fraction’ (mL plasma) � (mL tissue)−1

BP.f2 Product of binding potential and the tissue ‘free fraction’ Unitless
Bmax Maximum concentration of binding sites nmol/L
KD Equilibrium disassociation rate constant nmol/L
KI Irreversible uptake rate constant from plasma for the target tissue (mL plasma) � min−1 � (mL tissue)−1

k2 Brain to plasma transport constant min−1

k3 First order association rate constant for specific binding min−1

k4 Disassociation rate constant for specific binding min−1

k5 Association rate constant for non-specific binding min−1

k6 Disassociation rate constant for non-specific binding min−1

li Rate constants for blood/plasma and parent/metabolite model min−1

� Convolution operator NA
Sp(A) Spectrum of A, or poles of the transfer function derived from A NA
Sz(A, b) Set of zeroes of the transfer function derived from A and b NA
|S| Cardinality of a set S NA

FIG. 17. Model for tracer metabolism and partitioning in blood.
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Its state space representation is defined by,

A = 

−l2 − l3 − l5

l3
l5
0

l4
−l4
0

0

0

0

−l6 − l7
l7

0

0

l8
−l8
� , b = �l1e1�

(C.33)

The impulse response function and transfer function of
the system are given by,

HBP�t� = 
�t� + �1e−�1t + �2e−�2t + �3e−�3t,

H̃BP�s� = 1 +
�1

s + �1
+

�2

s + �2
+

�3

s + �3
, (C.34)

where,

�1 = l3,

�2 =
l5�l7 + l8 − �1�

�
,

�3 =
l5�l7 + l8 − �2�

−�
,

�1 = l4,

�2 =
�l6 + l7 + l8� + �

2
,

�3 =
�l6 + l7 + l8� − �

2
,

� = 
+
�l6 + l7 + l8�2 − 4 l6 l8. (C.35)

The steady-state ratio of whole blood-to-parent in plasma
activity is,

PB = 1 +
l3
l4

+
l5 �l7 + l8�

l6l8
. (C.36)

REFERENCES

Blomqvist G, Pauli S, Farde L, Eriksson L, Persson A, Halldin C
(1989) Dynamic models of reversible ligand binding. In: Clinical
research and clinical diagnosis (Beckers C, Goffinet A, Bol A,
eds), Dardrecht, The Netherlands: Kluwer Academic Publishers,
pp 35–44

Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones AK
(1991) Compartmental analysis of diprenorphine binding to opiate
receptors in the rat in vivo and its comparison with equilibrium
data in vitro. J Cereb Blood Flow Metab 11:1–9

Gunn RN, Houle S, Lammertsma AA (1998) Investigation of irrevers-
ible reference tissue models for parametric imaging. Neuroimage
7:A24

Houle S, Gunn RN, Lammertsma AA (1998) Quantification of receptor
binding for irreversible radioligands with a reference tissue
method. J Nucl Med 39:65P

Kety SS (1951) The theory and application of the exchange of inert gas
at the lungs and tissues. Pharmacol Rev 3:1–41

Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ,
Frackowiak RS (1996) Comparison of methods for analysis of
clinical [11C]raclopride studies. J Cereb Blood Flow Metab
16:42–52

Lammertsma AA, Hume SP (1996) Simplified reference tissue model
for PET receptor studies. Neuroimage 4:153–158

Mintun MA, Raichle ME, Kilbourn MR, Wooten G, Welch MJ
(1984) A quantitative model for the in vivo assessment of drug
binding sites with positron emission tomography. Ann Neurol
15:217–227

Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pet-
tigrew KD, Sakurada O, Shinohara M (1977) The 14C-
deoxyglucose method for the measurement of local cerebral glu-
cose utilisation: theory, procedure and normal values in the con-
scious and anesthetized albino rat. J Neurochem 28:897–916

Vontobel P, Antonini A, Psylla M, Gunther I, Leenders KL (1996)
Evaluation of three assumptions regarding blood-brain transport of
6-[18F]fluoro-L-dopa and O-methyl-dopa in healthy volunteers.
In: Quantification of brain function in PET (Myers R, Cunningham
V, Bailey D, Jones T, eds), San Diego, CA: Academic Press, pp
224–226

Watabe H, Carson RE, Iida H (2000) The reference tissue model: three
compartments for the reference region. Neuroimage 11:S12

R. N. GUNN ET AL.652

J Cereb Blood Flow Metab, Vol. 21, No. 6, 2001


