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An Adiabatic Approximation to the Tissue Homogeneity Model 
for Water Exchange in the Brain: I. Theoretical Derivation 

Keith S. St. Lawrence and Ting-Yim Lee 

Deparfme~ of Diagnostic Radiology and rha Lrwson Rescurch Irw~ilutc, Sr. Joseph's Health C~ntre, and the Imaging Rptearch 
Laboratories. Robarts Rescarch Institute, London, O n W ,  CaMda 

Summary: Using the adiabatic approximhon, which assums 
thst the tmcm conceaaation in parenchymal lirsue changes 
aIowIy mlative to WiU in capirtarics, we derived a time-domain, 
clod-form solution of the tissue homogeneity model. This 
solution, which is called the adiabatic solution, is similar in 
fwm to horn of tw-parbncnt models. Owing to ils sim- 
plicity, the adiabatic solution can he usad in CBF experiments 
in which kinetic data with only limited time resolution or sig- 
nal-@mist ratio, ot both, arc obtained. Using computer simu- 
lations, we investigated the accurrtcy and tbt precision of he 
parameters in the adiabatic solution for values that r e k t  2fI- 
labeled water (D,O) clearance from the brain (sec Part JI). It 

waa determined that of the three m d e l  parameters, (1) the 
v m l a t  volume (Vi), (2) the product of extraction fraction and 
b l d  flow {6n. and (3) the clearance rate cmsmnt ( k d .  d y  
he last one could be d e m a i h g  a c c ~ ~ y ,  and therefore U3F 
must be determined from parameter only. From the error 
analysis of the adiabatic solution, it was concluded that for the 
D,O clearance experiments describad in Part II. the coefficient 
of variation of CBF was approximately 7% in gray matter and 
22% in white matter. Key W o n k  Cerebral blood flow- 
Tracer Wcs-Deuterium o ~ N u c l e a r  magnelic m o -  
nance-Compamnental modeling. 

Because of the reliance of the brain on blood flow to 
deliver oxygen and nutrients wntinuousLy to meet its 
metabolic demands, there has been a great deal of inter- 
est in measuring CBF in both research and clinical prac- 
tice. One popular method. wbicb was proposed more 
than 40 yean ago, is to monitor the passage of a diffus- 
ible tracer through brain tissue (Kety, 195 2 ) .  A diffusible 
tracer is any substa~lce whose exchange &tween blood 
and tissue is d a t e d  by m s i o n .  Water is one such 
substance and water labeled with radioactive oxygen 
(~~''0) has been used txtcnsively as a tmccr with pos- 
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imn emission tomography since the 1980s (Frackowiak 
et d., 1980; Huang et al., 1982; Raichle et al., 1983). 
With the development of nuclear magnetic resonance for 
in vivo studies, techniques using nuclear magnctic reso- 
nance and water labeled with either 'H, 170. or spin 
tagging have subsequently been developed (Corbett e l  
al., 1991; Dem et al., 1990; Kim and Ackerrnan, 1990; 
Pekar et al., 1991; Williams et al., 1992). 

A concern with the use of labeled water has been the 
observation tbat the CBF estimate is dependent on the 
expwimental duration (Ginsberg et al., 1 982: Raichle et 
aI., 1983). This dependency manifests itself as a decreasc 
in the CBF estimate with increasing experimental time 
and h u  been referred to as the falling flow phenomenon 
(FIT). Larson ct d. (1987) concluded that the FFP is a 
result of the inadequacies of the single-compartment 
model, as proposed by Kety (1951), in describing the 
exchange of water between blood and parenchyma1 t is-  
sue in the brain. They proposed a wo-barrier distributed- 
m e t e r  model to replace the Kety model. However, 
the two-barrier model has seen limited usage because of 
its mathematical complexity (Quarles et al., 1993). The 
objective of this investigation is to develop a model that 
is mathematically simpler than the two-barrier model, yet 
realistic enough to eliminate the FFP. 
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When choosing the apprupriate racer kinetics model, 
there is always a compromise between mathematical 
complexity, which is dictated by the nurnber of e~change 
processes modeled, and the practical limits set by the 
data (i-e., remporal resolution and signal-to-aoise ratio, 
SNR). One of the more simple among distributed param- 
eter mdels is the tissue homogeneity {TH) mdel, which 
was initially developed by Johnson and Wilson (1966) 
and subsequently proposd for tracer transport in the 
brain by Sawada el al (1989). This mdel  differs from 
the two-barrier model in that it has only oae diffusion 
barrier separating the capillary space from the parenchy- 
mal tissue space. In addition, w k a s  the tracer concen- 
tration in the capillary spacc depends: 011 spatial variables 
and time, that in the parenchymal tissue space is just 
dependent on time alone, i.e., it is assumed to be a com- 
partment. In this paper, we will demonstrate that a 
closed-form solution in the time domain to the mass 
balance equations defined by the TH model can be de- 
rived using the adiabatic approximation. This approxi- 
marion, which is discussed in the next section, is based 
on the difference in the rate of change of the tracer con- 
cenmtion in the capillary (intmvascular) space com- 
pared with that in the parenchymal tissue (extravascular) 
space. The simplified time-domain solution, whch we 
call the adiabatic solution, is the sum of two terms: one 
represents the wansit of the tracer through the inmvas- 
cular space and the other represents the cl-ce of the 
extracted fraction of tracer from the extravascular space. 

Along with he derivation of the adiabatic solution. the 
results of computer simulations demonstrating the valid- 
io ~f h e  adiabatic approximation am prcserhtcd in this 
paper. As well, the precision of the model parameters in 
the adiabadc solution was investigated using statistical 
e r m  analysis. This analysis was conducted for parameter 
values that reflect the range of values observed in CBF 
expnments. In &e accompanying paper, CBF measure- 
ments obtained using the tram D,O and the proposed 
adiabatic solutivn will be presented. 

Ketp madel 
For reference, we begin with a brief description of the 

Kcty model {Ketj, 195 11 which has been employed ex- 
tensively in tracer kinetics experiments to calculate CBF. 
b the Kery mdel, the influence of diffusion on tracer 
movement is a s s u d  to be negligrble. and as a result the 
tracer concentrations in the intntvwdar space (IVS) and 
in the extravascular space (EVS) are assumed to be in 
diffusion wudibrium at all times. Any tracer that satis- 
fies this description is referred to as a freely diffusible 
tracer, and using the approach Wcribed by Kety (195 1). 
tbe opmtional equation is 

where all terms in Equation 1 are defined in Table 1 
excep the mte constant k,,, which is defined as I 

Using nonlinear regmssion analysis, the Kety equation 
(Equation 1 )  with the measured arterial mncentration, 
C,(r), is fitted to the tissue clearance data, at), to obtain 
an estimate of k,,. Cerebral blood flow can then be de- 
tcrmimd kom kl, using a known value of A (Herscovitch 
and Raichle, 1985). 

DiffUsIon Imitation of water 
It has been demonstrated that water is not a freely 

diffusible aacer in the brain (Eichling et al., I974), and 
as a result, Ihe above relationship between F and k,, has 
to be modifid to include the extraction fraction {E)  of 
waer (Crone, 1963 j 

TABLE 1. Dtf i i r ion of t e r n  

SYmW Mmitirm Uuit 
--.-- 

IVS Inrn-vmxdar space 
EVS Exm-vasculaF $we 

W s & h g  factor fnr rhe ja m ~ .  l(x)gl- --I 
*sue compulnmt 

a, Ywzuh w t i w n g  factm Id 1mg-' 
X Bquilibrium partitinn c f i c i e n t  mt 100 g-' 

of- 

& Cross-&ma1 area of NS cml 100 gd' 
A, CrobS-mdmal area of ws cm2 100 g-; 
C,(x,t) Cnmmtmtion of bwcr in k mmole mL ' 

NS at time t and ai some 
pint n alw the length d 

W1ar;y 
C.(t) of in tk rnmole m~-' 

EVS 
Cmwttradon of traEer in tbc 

artexid b l d  
Cwrentration of havr in the 

w a w s  b l d  
Amount of b a a  catering single 

& h w  
hdml  blood flow 
r t a t e ~ d e ~  by K u y  

model 
Rate constant a n d  by the 

adlabalk mIution 
Raw corutant far the jm tissw 

type 
Length of capillary along the 

x-axiP 
Capillary pmdnlity-surface - p r d  
TOtal amount of -r in brmn 
AmoPnt oflmxrin b WS 
Amount of Wer in tbc EVS 
T k t  ! h e  thmugb capillaq 
Disnibution wlume of traocr in 

tbt rvs 
DiWibutiDn volume of tram in 

the EVS 
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E F  -L- 
k,, = (3) 

where E represents the fraction of tracer that is extracted 
into the EVS during a single capillary w i t .  For mod- 
eling purposes, this fraction is assumed to attain an in- FCh(') 

stantaneous diffusion equilibrium with the parenchymal 
tissue space (Kety, 195 1). E is defined as (Crone, 1963) 

E r 1 - e+P ' I F )  ''' 
FIG. 1. The ca~illawtissue unit as assumed k the tiasue ho- 

Tbe Kety equation, after having been m d e d  to in- 
cludt the extraction fraction of the tracer, becomes 

where kl, is now given by Equation 3. 
There are two consequences to the diffusion limitation 

of water. First. because CBF is coupled with E, it is 
impossible to obtain an independent measurement of 
CBF from Equation 5 without howing E. Depending on 
the magnitude of E, the underestimation of CBF can be 
sigmfmmt if Equation 1 is used (Raichle et al., 1983). 
Second, Equation 5 dms not account for the fact that the 
tracer (labeled water) requires a finite time to t r a v m  the 
IVS. During this short time interval the entire amount of 
labeled water that enters at the arkrial end of the capil- 
lary remains in the total tissue space (IVS and EVS). It 
has been demonstrated that the IVS tracer concentmtion 
can contribute to the signal and. if ignored, the CBF 
estimate may be timedependent (Koeppe et al., 1987; 
Gambhir et d., 1987; Ohta et d., 1996). 

mogeneity  el. f i e  model Is comprised of an intravascular 
spa- (IVS) surrounded by an extravascular space (EVS). 30th 
spaerne are of equal length. L, measured dong the x axis, which 
la the dlrwtlon of Raw. The two spaces are sepamted by the 
M m r a i n  barrier, which has a pnnwbility-$urface area prod 
uct denoted by PS. Both spaces have an associatad moss- 
sectional area, 4, volume V, and tracer conoentrablon G(1), 
where k = i or a. The model assumes that only the IVS tracer 
meritration ia a fundon of pltion. B M  flow Into the cap- 
illerptissue unit by means of the arterial blood at a flow rate F 
and cmcenlratlon CJI) and exits by means of the venous blood 
at the same flow fate and a concentration G(1). 

where all terms are defined in Table 1 .  These equations 
are subject to the following initial and boundary condi- 
tions 

Tipsue homogeneity model C,(x = 0, r > 0) = C,S(t) (7) 
The TH model divides the brain into its two principal The formal solution to Equation 6 is provided in the 

spaces' IVS and the EVSl which nrc se~mted the subse,-tim entitled "Solution m the Tissue Homogeneity 
permeable blwd-brain barrier (Johnson and Wilson, Model,, in the appendix. 
1966: Sawada tt al.. 1989). Unlike the Kety model. the 
TH Am1 defines the &er concentration within the 
IVS as a function of both time and distance along the 
length of the capdary. Owing to the small radial dimen- 
sion of a capillary, radial concenuafion gradients can be 
neglected. Within the EVS, the tracer concentration is 
assumed to be homogeneous (LC., well mixed) in its spa- 
tial distribution, and themfore, witbin this space the TH 
model is compartmental. Thc TH model represents a 
simplified version of the one-barrier distributtd- 
parameter model descrikd by Goresky et al. (1 973) and 
Larson et al. (1 987). It has bten postulated by Saw& et 
al. (1989) that because of the high density of capillaries 
in the brain and their tortuous arrangement, it may be 
justifiable to mat the EVS as a compartment. 

The capillary4ssue unit as defined by the TH model 
is illustrated in Fig. 1 .  From conservation of the mass of 
tracer in both the TVS and the EVS, the following equa- 
tions can be derived 

Adiabatic approximation to the tissue 
homogeneity mdel 
As shown in the appendix, the closed-form solution of 

the TH model exists only in Laplace space (Equations 23 
and 24). In this section it is shown that an approximate 
closed-form soiution in the time domain can be derived 
using the adiabatic approximation (Lassen and Perl, 
1979). This approximation is motivated by the fact that 
the concentration of labeled water in the EVS (C,(r)) 
changes slowly relative to that in the WS (C,(t)). Be 
cause of the difference in the time scale of these two 
events, for a small lime interval, the slow event (i.e., the 
rate of change of C,(r)) can be considered to be at a 
steady state while the fast event (i.e., the rate of change 
of Ci(t)) is taking place. The mathematical expression of 
the adiabatic approximation is to assume that within a 
small time increment (A;), CJr) is constant. This as- 
sumption is justified in the brain since, for water, the 

J Ccnb BloDd Flow Metab, Vd. I&, Aln 12. 1998 
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ratio between its dishbution volumes in the EVS and in 
the IVS is approximately 2 0  1 (Kety, 1951). Using the 
adiabatic assumption, C,(t) becomes discrete and is - 0.6 given formally as 

0.4 

where AC,(jAt) is the discrete jump in the value of C,(r) 
at time jAt, and dt) is the unit step function. A schematic 
diagram of this stepwise definition of C,(t) is illustrated 
in Fig. 2. The adiabak sdution to the TH model is 
derived by substituting Equation 8 for C,(t) in the dif- 
ferential Equations governing mass codservation (Qua- 
tions 6a a d  6b). The colnpletc derivation of this solution 
is presented in the subsection entitled "Adiabatic Ap- 
pmxhation to the Tissue Homogeneity Mode\" in tbt 
appendix. 

For the TH model, the impulse residue function ( H ( f ) )  
(Zieler, 1%5) derived from the ahabatic approximation 
is given by 

where T, = Vi/F is the transit time through the capillary 
and E is de€tned by Equation 4. 
By comparing Equation 9 to Equation 23 and 24, we 

have demonstrated that H(t) for the TH 111orlel can be 
p e d y  simplified by jnvokmg the adiabatic approxima- 
tion. With the adiabatic solution, H(t) is dividtd into two 
phases in the t ime domain. For the vascular phase (t < 
T,), H(tj  is equal to one owing to the finite time required 
for the labeled water to traverse the vascular space. Dur- 
ing this phase, a fraction of the labeled water, denoted by 
E, is extractbd into the EVS. At t = T,, the remaining 
fradon (1 - E) exits by means of the outflowiag blood, 
and h c e  there is a discrete drop in H(t). For r > T,, 
which is the parenchymal tissue phase of H(r), the frac- 

at) w(i-ii~r a) 
m+- . : : W W I r n )  
: - . . . .  

77 
. I . . '  
. . * I  

: 
. . .  
I . * - .  . . 

~ + i ) a r  (n-iw 
FIG. 2. A schematic representation of the adiabatic approxlrna- 
th. This approdrnadm states mat C,(I) can be represenled by 
a staircase W o n  because the EVS tracer concentralion, C,(I), 
changes sbwty relative to the IVS concentrakn, C,(x,l. 

J Cettb B W  Fbw  me^, VoL 1% No. '0.2, 1998 

Time (a) 

0.0 

0 1 o Z O 3 o r I Q 6 0  

c Time (s) 

FIG. 3. The impulse residue function, 4 4 ,  for the tissue hm* 
gwWy moW as defined by (he closed-lorn sdutlon In Ihe 
Laplace domain (Equations 23 and 24) cwnpared wlth M(4 de- 
rived using the adiabatic solution (Equation 9). The comparison Is 
illustrated for thrm cases: {A) CBF s 50 mL.100 gt v r n l n - ' ,  (B) 
CBF = 100 mL.100 g-'+min-', and (C) CBF = 200 mL.100 
gl.min-'. For all three cases shown, 1/1, V*, and PS were 4.0 
rnL-1 W q', 94 rnL.100 g-'. and 150 mL.100 g-l min-l, re- 
tlvely. 

tion of Iabeled water extracted into the EVS diffuses 
back hm the WS and is removed by b l d  flow, leading 
to clearance from the parenchymal tissue c o m ~ e n t  
(EVS). 

As a corollary to the adiabatic approximation, bccawe 
the time rate of change of the concen&atiori of labeled 
water in tbe NS owing to blood flow is much faster tban 
thai owing lo diffusion, the capillary acts as a sink for the 
labeled water leaving the EVS (by diffusion) during the 
parenchymal t issue phase. The rate of change of the 
tracer concenmtion in the EVS, which for the TH model 
is considered a well-stirred compartment. a n  then be 
expressed as 

This equation has h e  same solution as derived for the 
TH model using the adiabatic approximation muation 
9b). The product EF, as discussed by Renkin (1959) and 
Crone (1963), is the unidirectional flux of kacer hmthe  
EVS into the IVS. 

F i w  3 plots the exact solution md h c  adiabatic 
solution for the impulse residut fundon of the TH 
model at three different values of C B F  (1) 50 mL. 100 
gL'~min-', (2) 100 mL. 100 g-'*min-', and (3) 200 
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mL. 100 g-'-min-'. The vdues of Vi, V,, and PS were 4.0 
mL.100 g-', 94.0 mL.100 g-', and 150 rnL.100 
g-'.min", ~spectively (Herscovitch and Raichle, 1985; 
Herscovitch et al.. 1987). In all three cases, the agree- 
ment between the exact m d e l  solution and the adiabatic 
approximation was excellent. 

Tissue residue curve 
In CBF experiments. the tracer is often introduced at a 

peripheral site to avoid injection directly into a carotid 
anery . Under these conditions, the measured tissue resi- 
due w e  MI) is the convolution of H(r) with an input 
curve CJt) (Zierler, 1965) 

Inserting Equation 9 into Equation i 1, at) becomes 

By introducing the change of variable u' = v - T, in 
the second integral and by invoking the man value theo- 
rem, Equation 12 can be written as 

where Vi = I T c ,  f' = t - T,, and 0 =S 8 =S 1. Since T, 
is in the order of a few seconds -son el al.. 1987), for 
t > T, h t h  C,(t) and the convolution term k Equation 13 
should change minimally in [(t - OTAt]; therefore, it is 
reasonable to approximate Equation 13 as 

where the rate constant for the clearance of the tracer, 
bb, IS defined as 

in the adiabatic solution involves V,, whereas in the Kety 
equation, V, is replaced by A (Equation 3). In fact, V, is 
equal to X minus the distribution volume of water in the 
IVS, and therefore, these two parameters are similar in 
value in the brain. For example, in gray matter h and V, 
are equal to 98 and 94 mL- 100 g-', respectively (Hers- 
covitch and Raichb, 1985). Second and more important, 
the adiabatic solution includes a vascular phase term, 
ViC,(t), which accounts for the fact that during the transit 
time through the IVS (i.e., the vascular phase), the entire 
amount of tracer that enters by menas of the amrial input 
remains in the tissue (both N S  and EVS). At the end of 
the vascular phase, at t = T,, a fraction of it, (1 - E). is 
removed by blood flow. It is the addition of the vascular 
phase term, ViC,(t), that we believe will elmmate the 
FFP that has been reported in the past (Ginsberg et a].. 
1982; RaichIe et al., 1983). 
Solutions to two-compartment models, which are 

similar to the adiabatic solution of the TH modtl, have 
previously been propod to account for the vascular 
signal conmibution (Gambhir et al., 1987; Ohta et d., 
1996; Takagi et al., 1984). A limitation to rnodeling the 
IVS as a compamnent is that the concentration is as- 
sumed to be uniform throughout the capillary. If the 
mcer exhibits any finite extraction, then it will continu- 
ously d f i s e  into the EVS during its passage from the 
arterial to the venous end of the capillary. As a result, 
there will be a concentration gradient from the arterial 
end to the venous end, and the assumption of a uniform 
capillary concentration is violated. It is interesting to 
note that atthough the TH mdel  begins with a more 
realistic description of the exchange of water between 
the capillary and extravascuIar tissue, under the adiabatic 
approximation it reduces to a solution s~rnilar to that 
derived from compartmental analysis (Ohta et al.. 19%). 
Therefore our derivation has shown the similarity be 
tween two-compartment models and the TH model in 
modeling transcapillary exchange in the brain. 

The assumption that T, is equal to 0 is necessary if the METHODS 
tissue residue curve is sampled with a temporal resolu- 
tion equal to ox greater than T,. In the next section, 
computer simulations were performed to determine the 
consequences of using this assumption. To determine 
CBF from Equation 14, both the concentration of labeled 
water in arterial blood and the concentration in brain 
tissue must be determined for a given time duration. A 
aonlinear regression algorithm is used to fit Equation 14 
to the brain tissue data with thrce fitting parveten: (I)  
Vi, (2) the product EF, and (3) the rate constant k,,. 
In summary, using the adiabatic approximation, we 

derived a closed-form solution to the TH mdel  in the 
time domain. This solution is sir& to the Kety equa- 
tion for a diffusion-limited tracer (Equation 5) except for 
two differences. First, the definition of the rate constant 

Accuracy of the adiabatic solution 
The I - E S U ~ ~  presented in Fig. 3 demonstrated the excellent 

agreement betwm the closed-form solution in Laplace domain 
of the TH model (Equations 23 and 24) and the closed-fm 
solution in the time domain derived using the adisbatic ap- 
proximation muation 9). The final step taken to arrive at 
Equation 14 was to assume that for !he case of a !issue residue 
curve sampled with time intervals greater than T,. the mean 
bansit time wap m. Computtr sirnulalions were usul to de- 
termine whethtr this assumprion was permissible over a wide 
range of CBF values. Simulated tissue residue data were gen- 
erated using Equation 12 rind a m d e l  arterial blood curve mg. 
4). This arttrial blood curve was detumincd by fitting a s u m  of 
three gamma variatt funclions Lo a repseflrativt s e ~  of merial 
M d  data from a D,O washout experiment (see P a  It). For all 
simulations, PS was 150 rnL. 100 g-I qmin-' (Herscovitch et ul., 
19871, and the volumes of the btood spa- and parenchymal 
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from the race constant since only i$ value was mpmnt for the 
error analysis and not its definition. The vasEular phase tams 
for both tissue trpes had been lumped togetbtr as one (a,C,(t)). 
The parameter cl, depended on the vascular volume. the rela- 
tive fr;lnion, and the spatial sensitivib d the surf= mil for 
each tissue type, similar to the case with aj. In the 'H clearance 
experimeh, it was not possible to cross-calibrate the two data 
sets (at) and C,(t)) owing to tht nonuniformity of the spatial 
sensitivity of the surface coil. Therefore. in thcse e x p e m t s  
it was only the rate constant k, that was related to CBF in the 
jth tissue c o m p m n t  and not the weighting factor aj. For this 
w o n  we fwd our a n t i o n  primarily on the mk constants 
in these simulations. 

I t I t I I I I In the analysis of the 2fI clearance data, a time shift (At) 
2 4 6 8 10 12 14 16 between the two data sets was included in the fitting routine to 

account for the difference betwten the arrival time of the la- 
Time (mh) beled water in the brain and at the l d o n  at which the arterial . , 

Fla. 4. The model curve of arterial b tcd  D,O mncentration ver- 
sus time, which was used for all statisncal error analvsls. This 
curve wes obtalned by mng a sum of three gamma vaiiata fune- 
tlons to the set of experimental data from an experiment in Part li. 

tissue space were 4 and 94 mL- 1 0 0  g- ' , respectively (Hersco- 
vitch and Raichle, 1985). Each sirnuIated dah set for at) m- 
sisted of 900 data points with a sampling inltrvaI of 0.75 sec- 
onds for a total duration of 11.25 minutes. The sirnulaced tissue 
data w m  generated over a range of flow vaIues from 25 to 300 
mt. 100 g-' min-', and Equation 14 was fiW to the data using 
a quasi-Newton algorithm (Gill and Murray, 1974). Three fit- 
ting parameters were used in the analysis: (1) Vi, (2) the product 
EF, and (3) km, as &fined by Equation I5 because ~ l l y  one 
tissue typt was simulated in these simulahns. 

E m r  analysis 
N o h ,  present in both the data for the concentration of D20 

in arterial blmd and for the concentration of D20 in tissue, will 
&cct the precision of the estimated parameta. The influence 
of noise in the two data sets was investigated using both the 
wvariaoce ma& (COV) method ( H w g  et al., 1986) and 
Monte Carlo computer simulations. The COV method was used 
for the noist analysis with the cissue data since the COV 
&cd was far leas timsconsuming than Monte Carlo com- 
puter eimulations. However, the lattch approach had ta & usad 
far the analysis of noise in the arterial blood data kwae the 
COV method could not *Count for noist in the input data. 
Since the two noise sources were uncorrelated in the exptri- 
m a t s  outlined in Pm If, the total standard derivation associ- 
ated witb a parameter was qua1 to the standard deviations from 
both analyses added in quadrature. 

The error analysis was dcsigned to reflect h e  'H clearance 
experiments that are descrilwd in Pan LI. For these experiments, 
the adiabatic solution muation 14) was summed over two 
tissue typcs because the gurface mil d-wd the 2~ signal 
from both g ~ y  and white matter. The operarjod equation used 
in the simulations was as follows 

blmd was sampled. From a preliminary sudy we determined 
that including Ai as a fitting pammcter had negligible effects on 
the precision and =curacy of the two rate constants. Since it 
was h c  rate constmtB that we were inwmsfed in, tbe parameter 
Ar was excluded from the error analysis. In summary, tfierc 
w e n  five repe~sion parametem in the m r  analysis: two sels 
of u, and kj for gray and white matter, respectively, and for 
the combined vascular phase terms of both gray md white 
matter, Thc SNR for each data set was defined as the maKimurn 
signal in a data set divided by the standard deviation of the 
background signal obtained from the spectra collected bcforr 
D,O injection (see Part TZ). The error analysis was performed 
using typical hypwapaia and nomocapia pmmew values 
determind fmm the experiments describtd in Part ll. These 
values are lifted in Table 2, and the model arterial blood curve 
used in the analysis is illushated in Fig. 4. 

Using h e  COV metbad, the coeftitient of variation (CV) of 
each of the parameters listed in Table 2, was determined over 
a range of SNR (50 to 150) in the tissue dam. Vcry briefly, the 
COV is  defined as mumg et a]., 1986) 

COV = G' (17) 

where G is tbt information matrix, and the (03th ekment of this 
matrix is given by 

where p, refers to the itb parameter, and v q  is  the noise vari- 
ance of Q(r& If the number of data points, atk), is large, then 
the diagonal ttrras of the COV approximate the variance8 of the 
pammter estimates. For this error analysis, at) mdsiskd of 
300 samples with a sampling interval of 3 seconds, which was 
the data WWMI protazol used in the 2H clemmoe ex*- 
ments. 

In the *B clearance experiments described in Pan 11, the data 
were also analyzed w i h  the Kety equation summed over two 
tissue types to account for signals from both gray and white 

2 

= 2 4 si CeO - u ) r d p ~  + o.C.(t) ( 16) TABLE 2. Hypocapnia and mmwopnia ponaui+?r valur 
il 

FammcW Nwmocapnia 
where mi and kj represented the weighting factor and the rate 

Hypocapnia 

constant, respectively, for the jth tissue type (gray or white 100g-L) 0.10 0.03 
matter). The weighting factor was dependent on the product EF a, (mL . L O O  g-I . miin-') 0.75 0.81 

k, of the tissue type, as in quation 14, the relative f d o n ,  and a, (d A IDD g-, . 0.80 0.30 
0.15 

the spatial sensitivily of the surface coil for the tissuc type. as kl (min-l) 

0.16 
0.20 0.10 

discussed in Part II. Notc that the subscript adb was dropped 
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matter in the brain (Equarion 16 without the a,C,(t) tern). The 
purpose them was to invtstigatc the FlT by comparing the 
rmults h the Kety equation ta those from the adiabatic * 
lution. In the present study, to compare the precision of the two 

nr for the 
w t m  
cyaC.(t)). 
the rela- 
: coil for 
:lcarance 
two data 

I • A Rate constant, kadb rate constap& -4 from the Kety equation with those 
h m  tbe adiabatic solution, the above error analysis was re- 
ptattd by excluding the term in Equation 16. These 
simulatiaas wcre only performed for the normwapnia values 
listed in Table 2. From this comparison, the effwt of intduc- 
ing the variable u, on the precision of the two rate constants 
was detcrmincd. 

For the sirnulalions with noise included in the &d b l d  
data, a theoretical tissue residue curve was generated using 
Equation 16 with the parameter values listed in Table 2 and the 
model arttrial blood curve (Pig. 4) at a temporal rtsolutim of 
3 sac&. For tacb simulation, an arkrial data set was p e r -  
d from the model arterial curve using the sampling pror~col 
followad in the %I clearance experiments &scribed in Part II, 
which coasiskd of acquiring a sample every 6 seconds for the 
first 3.5 minutes, then every 12 seconds for the next 3 minutes, 
and fmally every 30 seconds for the k t  8.5 minutes. Noise was 
added to the arterial b l d  data. and before fitting Quation 16 
to the heodca l  tissue curve, tbe noisy atterial b l d  data set 
war inteaplated to III~ same sampling intuval as the tissue 
data. The Monte Carlo technique involved repeated simulations 
of the regression analysis with pseudorandom Gaussian noise 
addd to the arttrial data eacb time. The CV of tach of the five 
parameters was dew A from the distribution of estimated 

e spatial 
uiments 
IF in Ihe 
For this 

mstanls 

hift 
>utinc to 
f the la- 
: arterial 
ermined 
Ffecwon 
Since it 
m t e r  
Y, lhem 
two QCtS 
d ub for 
d white 
b u m  
a of the 
f before 
rfomed 

CBF (ml 100 g1 min-l) 

Correct Vi 
Estimated 

;dues generated from 500 siniu1atious. The entire p d u r e  
was rtptattd for the same SNR range as was studied in the 
error analysis for noise in the tissue data. 

r values 
[. These 
d curve 

Bias in the estimated parameters 
Computer simulations were used lo determine whether the 

correlation between tbe parameters could introduce a bias in the 
(cv) of 
led over 
:fly, the estimate of a paramedr. Thc procedure for this study was 

analogous to the proEedure for the simulations of noise in the 
arterial blood data except (1) the noise was added to the t iwe 
data instead of the artetial b l d  data, (2) the SNR was main- 
tained at 100,  (3)  simulations using the adiabatic solution 
w o n  16) wcre generatd only for the n m p n i a  param- 
etws listed in Table 2, and (4) the simulations wcre performed 
for experimental durations of 4, 9, and 14 minutes. The same 

(17) 

t of this B CBF (rnl 100 g-l mid1) 
FIG. 6. The etfffecl on estimates of parameters in the adiabak 
solution of the tissue homogeneity model by assuming that the 
mean transil time is equal to zero. (A) The percsnt error in the 
estimateti ol the model parameters, EF and &. as a fumtlon of 
CBF. (8) Estimates of the parameter 4 as a fundm of CBF. AH 
simulated tissue residue cuwes were genewed using the artehl 
b W  curve illustrated in Flg. 4 and the following values for the 
parameters V,, V,, and PS: 1.0 mL.100 g-l, 44 mL.100 g-', and 
150 mL-100 g-'+min-', respectively. 

simuhtions were also conducted for the Kecy cquatim summed 
over two tissue types. The only difference between the simu- 
lations for the Kcty equation and t h m  for the adiabatic solu- 
tion was that the vascular phase term, %, in Equation 16 was 
set to zero for the fonmr case. By comparing the results of the 
simulations for the adiabatic solution with the results for the 
Kcty model, any bias i n d u d  by a correlation between a, 
nnd the rale constants will bt evident since the simulations for 
the Kety model did not include a,. 

se vari- 
F, then 
:s of the 
i s k d  of 
ich was 
expcri- 

which were attribured to setting T, equal to 0 in Equation 
13. To understand these results, it should be noted that 
the vascular phase term for the adiabatic solution origi- 
nates from the integration of the arterial concentration of 
the tracer from time 0 to T,. As well, the integration 
limits of the second term of Equation 12, which repre- 
sents the fraction of labeled water extracted into paren- 
chymal tissue, are from T, to t. By forcing T, to be 0, the 
fitting parameter V ,  in Equation 14 could not account for 
the total area of the vascular phase term in Equation 12. 
Likewise, because the integration for the second tern in 
Equation 14 k from 0 to t, EF therefore includes a p r -  

he data 
m two 
j whitt Accuracy of the adiabatic solutlon 

'Ihe percent difference of the true values of the model 
parameters. EF and &, from the estimated values, de- 
termined from regression analysis, is illustrated in Fig. 
5A. For each parameter, the percent difference was plot- 
ted as a function of CBF. The estimated values of Vi from 
the regression analysis are presented in Fig. 5B. At all 
flow values investigated, the product EF was overesti- 
mafed and Vi was consistently underestimated, both of 
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tion of the vascular phase term in Equation 12. The ac- 
curacy of kk,, is not affected by this assumption because 
T, doas not contribute to the rate of tracer clearance from 
the EVS. 

Error analysts 
F i  6A illustrates the CV of the rate constant, k, , of 

the higher flow tissue compartment (gray matter) as a 
function of S N R  for four conditions: ( 1 )  hypocapnia with 
noise added to the tissue data, (2) hypwapnia with noise 
added to the arterial data, (3) norrnocapnis with noise 
added to the tissue data, and (4) normocapnia with noise 
added to the arterial data. The parameters for the hypo- 
capnia and wrrnocapnia simulations are given in Table 
2. In Fig. BB, the CV of the rate constant, b, of the lower 
flow tissue compartment (white matter) is plotted as a 
function of SNR for the same four wndttions as for k, .  
Because CBF was determined only from the rate con- 
stants, the CV of h e  other fining parameters were not 
presented. The results in Fig. 6 indicated that the effect of 
noise in the arterial data was greater than that of the noise 
in the tissue data for the same SNR value. This difference 
cuuld.be attributed to the fact that fewer data points were 
acquired for the arterial data compared with the tissue 
data (70 vmus 300, respectively). 

For all  of the 2~ clearance experiments, the SNR of 
the arkrial Mood data ranged from 70 to f 00 and that of 
the tissue data was always greater than 120. For these 
SNR values, the CV of k, would be approximately 6% 
owing to noise in the arterial data and 3% owing to noise 
in the tissue data. If the standard deviations were a- 
sumed to add in quadrature, then the total CV of k, was 
6.7%. The precision of was considerably worse than 
that of k,. For the same SNR values, the CV of R, was 
mughly 20% for the arteriaI blood data and 10% for the 
tissue data, for a total CV of 22%. Thii reduction in the 
precision of was attributed to the smaller weighting 
factor for tht second compamnent. The impomce of 
these precision estimates to the CBP measurements ob- 
tained with the 'H clearance tschnique will be addressed 
in the accompanying paptr. 

Besides the adiabatic solution simulations above, 
simulations involving the Kety equation were conducted 
to determine the decrease in precision that couId be ex- 
pected by including the additional term a, in the regres- 
sion analysis. En Fig. 7, the CV far kl and k, are pre- 
sented for both the adiabatic solution and the Kety equa- 
tion summed over two tissue types. These simulations 
included only noise in the tissue data. As shown in these 
figures, including a, resulted in an inwase of no greater 
than 3% for the CV of either rate constant over the en* 
range of SNR values studied. 

Bias in the estimated parameters 
In Table 3, the mean k, and k, values from 500 simu- 

lations with noise added to the tissue data are listed. The 
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results of the simulations of both the Kety equation aud 
the adiabatic solution for three different experimental 
d~mtions, 4,9, and I4 minutes, were presented. The true 
values of k, and k, were the nonnwapoia values listed ia 
Table 2. These results indicated that when only the first 
4 minutes bf the data wert included in tbe regrrssioo 
analysis, both rate constants were overestimated with ei- 
ther the Kety model or the adiabatic solution. Further- 
m m ,  t b  bias was more pronounced with the higher rate 
constant, k I ,  than with the lower rate constant, &. The 
bias was significantly larger for the a d i W c  solution, 
which was attributed to the correlation between a, and 

4 - Noise in Q(t) (hypxpnia) 
- .A- - Noise in C,(t) 

. + Noise in at) (nommapnia) 

60 80 100 120 140 

A SNR 
4 - Noise in Q(t) (bypocapaia) 
. . A- . Noise in C,{t) ( h m p a i a )  
-8- Noise in at) (normocapnin) 

B SNR 
FIG. 6. (A) The coetAcient of variation fork, plotted as a function 
of SNR. me parameter values used In the emr analysis are 
llsted in Table 2. Four different conditions are illustrated: (1) hy- 
poeapnla with no!= added to the tlssue data (dashed llne w4th 
open twgles), (2) hypmapnia with ndse a8dd to the arterial 
data (dotted Itw with filled triangles), (3) ~ r d a  with nohe 
added to the Urrsue data (9olM line with open cidati), and (4) 
nonnocapnla with noise added to the arterial data (dashedaottsd 
line with filled ~lrcles)~ (B) The CV for 16 plotted as a fundion of 
SNR for ttw same four oond'itlons as Wtad fork,. 
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h 10 - + Adb. solution 
A - Kety model 

. % 2 6  - -A -A*. -A - A  . 

B SNR 
FtG. 7. (A) The CV for k, plotted as a function of tlssue data 
SNR. The CV is presented for both the adiabatic solution of the 
E-l model and the Keiy model solution. These results were gen- 
erated using the parameteif values llsted In Table 2 far the nor- 
moeapn(a -. (B) The mrrespondiq CV for p l o w  as a 
fundim of the ? h e  data SNR. 

k, . By increasing the experimtntaI duration to 9 minutes, 
this correlation was suficicntly reduced such that the 
bias in 8, was eliminated. With the Kety equation, the 
bias was not ncarly as large simply because of the ab 
s e m  of a,. The small bias associated with the Kety 
model was attributed to the constmints imposed on the 
fitting parametm in the regression analysis. 

In this study it was demonstrated that a time-domain, 
closed-form solution t the TH mdel  can be derived 
using the adiabatic approximation. The consequences of 
this derivation arc twofold. Rrst, thc adiabatic solution 
can be easily implemented in the analysis of clearance 
data because the solution is in tbe time domain. Further- 
mom, considering that there art only three fitting param- 
eters (V,, EF, and km) in the model for each tissue type, 
it can be used to analyze clearance data of limited time 
resolution or SNR, or both. Examples of such applica- 
tions include dynamic positron emission tomography 
studies with the tracer ~ ~ ~ ' 0  (Alpert et al., 1984) and 
magnetic resonance spectroscopy using the tracer D20 

(Kun and Ackennan, 1990). Sfxond, the similarity be 
tween the adiabatic solution and the solutions derived 
from two-compartment models indicates that the use of 
twecompartment models is reasonable provided that the 
vascular phase d the signai is properly accounted for in 
the models. 

Using computer simulations, the accuracy of the adia- 
batic solution (Equation 14) was investigated over a wide 
range of CBF values (25 to 300 mL.100 g-lmin'l). It 
was determined that the assumptiun T, = 0 results in a 
consistent underestimation of Vi and an overestimation of 
EF; however k, remains unaffected. These results are 
significant for two reasons. First, the accuracy of the 
CBF measurements presented in Part Il was not compro- 
mised by this approximation since CBF was determined 
from kpdb only. Semnd, these findings suggest that the 
measured product EF could not be considered to repre- 
sent only water clearance from the EVS (Ohta et al., 
19%), since thii parameter might be overestimatbd for 
reasons discussed in the Results section. However, Uus 
overestimation would not be as large as when the vas- 
cular phase tern is ignored completely (Ohta et al., 
19%). Finaf ly, the assumption that T, is equal to zero is 
only necessay to acwmmodate clearauae data collected 
with limited temporal resolution. If the data are acquired 
with sufficient tempwal resolution (i.e., sampling inter- 
val less than TJ, then T, can be included as a fitting 
variable in the regression analysis, which will avoid 
these m. 

Althougb the results illustrated in Fig. 3 clearly dem- 
onstrated the validity of the adiabatic solution to the TH 
model, they were only generated for parameter values 
that reflect water transport in the brain. If another tracer 
is used or a different tissue studied, then it may be nec- 
essary to reevaluate the adiabatic solution under those 
specific conditions. Furthermore, the abihty of the &a- 
batic solution to properly characterize mew transport 
through the micmvasculature depends on the validity of 
the TH model in representing the tissue studed. The 
variability of the microvascular architecture from one 
tissue type to another is considerable, and for some tis- 
sues, the representation of h e  EVS as a well-stud com- 
partment, as in the TH model, may not be valid. For 
instance, the highly ordered arrangement of the capillar- 
ies in the liver would mean that the EVS can not be 
representwl by a compartment. It has been suggested that 
the TH model may not even be appropriate for charac- 
terizing water exchange in the brain (Kassissia et al., 
1995). which in turn would cast doubt on the validity of 
he adiabatic solution. We have tested the validity of the 
adiabatic solution try measuring CBF in rabbit brain 
using magnetic resonance spectroscopy with the tracer 
D20 and demonstrated that the TH model is valid for 
brain tissue. The results of this study will be presented in 
Part II. 
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TABLE 3. Mean k, and k, values from 500 simulations with wise a&d ro the tissue data 

Adiabatic solution Kety madtl 
-- 

Eapcrimental mean K, [min-') mean k, {min-I) mean k, (min-') mean k, (rnin- ') 
dura*ion (mid [true kt = 0.81 [true k, = 0.2) [tnat k, = 0.81 [true k, = 0.21 

As well as determining the accuracy of the adiabatic 
solution. the precision of the estimated mdel parameters 
was also investigated for the specific conditions of the 
experiments outlined in Part Lt. The error analysis in- 
volved summing the adiabatic solution over two tissue 
types because in h e  CBF experiments, the 'H signal 
originated from both gray and white matter in the brain. 
Accounting for both tissue types greatly increased the 
demands on the SNR and the temporal resolution of the 
data. The results plotted in Fig. 6 demonstraM that the 
precision of the higher rate constant of the gray matter 
was acceptable, However, the precision of the lower rate 
constant of the white mauer was poor because of its 
smaller weighting factor. By including the vascular 
phase term, a ,  in the regression analysis, a maximum of 
only 3% increase in the CV for either ratc constant was 
determined. Therefore, the limiting factor for precision 
in the experimentaI protocol was summing the opera- 
tional equation over two tissue trpes and not including 
ab. Although cl, did not greatly increase the CSV of either 
rate constant, it did intrduce a bias in their estimated 
values, which was especially prominent for k, . However, 
the correlation between these parameters a u l d  be elimi- 
nated by increasing chc experimental duration to greater 
than 9 minutes. As a result, for the CBF experiments 
discussed in Part II the time duration was chosen to be 15 
minutes. 

APPENDIX 

Solution to the tissue homogeneity model 
The formal solution to Equation 6 i s  obtained by using 

the Laplace transform. The transformed functions are 
denoted by a bar. 

The solutions of these equations are (Johnson and Wil- 
son, 1966) 

where UIs), a cubic polynomial in seconds. and the three 
variables, a, f3, and X ,  are defined as 

Adiabatic approximation to the tissue 
homogeneity model 
To solve the mass conservation equations (Equations 

6a and 6b) using the adiabatic approximation, we begin 
with the differential equation for the IVS. First, by 
Laplace transform with respect to time, Equation 6a can 
be written as follows 

where the discrete version of C,(t), Equation 8, has ken 
used. Next, Laplace transform with respect to position is 
performed by using the definition 

(27) 
? 

In terns of the transformed functions, Equations 6a 
,and 6b can be rewritten as 

where the double bar notation refers to the two Laplace 
transforms with respect to the variables x and t. The 

sG(xs) + - - Laplace transform of Equation 26 with respect to psi-  

I ' (21) tion is i 
I 
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