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Purpose: To characterize human gliomas using T1-
weighted dynamic contrast-enhanced MRI (DCE-MRI), and
directly compare three pharmacokinetic analysis tech-
niques: a conventional established technique and two
novel techniques that aim to reduce erroneous overestima-
tion of the volume transfer constant between plasma and
the extravascular extracellular space (EES) (Ktrans) in areas
of high blood volume.

Materials and Methods: Eighteen patients with high-grade
gliomas underwent DCE-MRI. Three kinetic models were
applied to estimate Ktrans and fractional blood plasma vol-
ume (vp). We applied the Tofts and Kermode (TK) model
without arterial input function (AIF) estimation, the TK
model modified to include vp and AIF estimation (mTK), and
a “first pass” variant of the TK model (FP).

Results: KTK values were considerably higher than KmTK

and KFP values (P � 0.001). KmTK and KFP were more com-
parable and closely correlated (� � 0.744), with KmTK gen-
erally higher than KFP (P � 0.001). Estimates of vp(mTK) and
vp(FP) also showed a significant difference (P � 0.001); how-
ever, these values were very closely correlated (� � 0.901).
KTK parameter maps showed “pseudopermeability” effects
displaying numerous vessels. These were not visualized on
KmTK and KFP maps but appeared on the corresponding vp

maps, indicating a failure of the TK model in commonly
occurring vascular regions.

Conclusion: Both of the methods that incorporate a mea-
sured AIF and an estimate of vp provide similar pathophys-
iological information and avoid erroneous overestimation of

Ktrans in areas of significant vessel density, and thus allow
a more accurate estimation of endothelial permeability.
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TUMOR MICROVASCULATURE is characterized by a
disproportionate fraction of blood vessels in compari-
son to the tissue fraction, abnormal vessel morphology
and routing, and altered blood flow. Of particular inter-
est is the endothelial permeability of the newly devel-
oped vessels, since these characteristically show large
intercellular gaps that allow the passage of medium-
and large-sized molecules from the intravascular to the
extravascular extracellular space (EES) (1,2).

Several pharmacokinetic parameters, such as the
volume transfer constant (Ktrans) between plasma and
the EES, the fractional volumes of the EES (ve), and the
plasma (vp) can be derived from contrast agent (CA)
concentration curves obtained from T1-weighted dy-
namic contrast-enhanced MRI (DCE-MRI) after fitting a
pharmacokinetic model of CA distribution (3–7). Of the
various different approaches to analyze DCE-MRI data,
the most commonly applied is the Tofts and Kermode
(TK) model described in 1991, which is based on an
assumed arterial input function (AIF) that is derived
from a sample of the normal population (3). Its wide use
is most likely explained by its excellent stability and
simplicity of application (8,9). However, this technique
has been shown to be subject to a number of potential
errors. One problem is the assumption that the ob-
served CA concentration change in each voxel solely
reflects CA leakage into the EES. This leads to errone-
ously high Ktrans values caused by intravascular CA,
which itself contributes to the signal increase that often
affects many voxels (10–13). This artifact has therefore
been referred to as “pseudopermeability.” Another
cause of error in the conventional TK model is the ap-
plication of a standardized vascular input function
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(VIF) that ignores the first-pass effect resulting from the
CA bolus, and misses interindividual physiological dif-
ferences (14,15). The shortcomings of the TK model
reflect its original application in multiple sclerosis,
where there is little contribution from intravascular
contrast to the signal enhancement (3,8).

To overcome these problems, modifications were
made to the TK model, the most important being the
consideration of the signal contribution of the intravas-
cular tracer (4,10,16). The use of such an approach in
combination with a patient-specific VIF enables one to
separate vascular and nonvascular contributions to the
enhancement of each voxel. By analyzing a DCE T1

image series with this method, one can calculate Ktrans,
ve, and vp. This method has been applied in a range of
tumors, including breast and lung cancers, in addition
to other vascular pathologies (5,8).

Li et al (20) introduced a simplification of this ap-
proach that is based on the leakage profile during the
first passage of the CA bolus. Their method, termed the
first-pass leakage profile (FPLP) method, requires only
the first passage period of the CA concentration time
series to be measured, but does not allow an estimate of
ve to be made. Studies on simulated data, in patients
with hepatic tumors and primary brain tumors have
proven the high reproducibility of this method (17–20).
Furthermore, it has been demonstrated that this new
technique has a high resistance to noise, and is partic-
ularly useful when the signal-to-noise-ratio (SNR) is low
(17–20). Despite the advantage that data acquisition
requires only 1–2 minutes, this model also has short-
comings due to the assumption that CA backflow from
EES to plasma is negligible during the first pass of the
CA bolus, and therefore ve cannot be estimated. This
leads to a systematic underestimation of Ktrans values
where CA extraction fractions are high (18,19).

Given two different models that were designed to
overcome pseudopermeability effects, we aimed to com-
pare the modified TK model and the FPLP method sys-
tematically in a group of patients with primary brain
tumors and to compare both with the conventional TK
technique. Patients with high-grade gliomas were cho-

sen because this is the most common type of malignant
brain tumor in adults, and typically presents with a
high degree of CA leakage to the EES due to the break-
down of the blood–brain barrier (BBB).

MATERIALS AND METHODS

See Table 1 for the definition of terms and symbols; the
terminology used follows the conventions described by
Tofts et al (6).

Patients

Patients were recruited from the Neurosurgical Clinic at
the Central Manchester Healthcare Trust and the Ser-
vice de Radiologie, Hôpital Erasme, Clinique Universi-
taires de Bruxelles, from 1999 to 2002. The study was
approved by the medical ethics committees at both cen-
ters, and all patients gave written informed consent.
Eighteen patients (13 males and five females, mean
age � 55.5 years, range � 36–75 years) with histologi-
cally proven high-grade glioma were included in the
study. Of these, three patients had an anaplastic gli-
oma (WHO grade III) and 15 had a glioblastoma multi-
forme (WHO grade IV). All of the patients underwent a
complete physical and neurological examination, rou-
tine blood tests, and contrast-enhanced CT or MRI prior
to this study. All of the patients were treated with oral
dexamethasone (4 mg four times per day) from the time
of diagnosis. Table 2 summarizes the demographic and
clinical data of the patients.

Scanning Protocol

Imaging was performed on a 1.5 Tesla ACS Gyroscan
NT-PT 6000 (Philips Medical Systems, Best, The Neth-
erlands) with a maximum gradient strength of 23
mT/m and a maximum slew rate of 105 mT m–1 using a
birdcage head coil. A 16-G catheter was inserted into an
antecubital vein before scanning was conducted. Rou-
tine T1- and T2-weighted imaging preceded the dynamic
studies. Dynamic contrast-enhanced (DCE) studies

Table 1
Abbreviations of Pharmacokinetic Variables

Symbol Definition Units

EES Extracellular extravascular space None
Ktrans Volume transfer constant between plasma and EES min�1

KTK Ktrans analyzed according to Tofts and Kermode’s model min�1

KmTK Ktrans analyzed according to the modified Tofts and Kermode’s model min�1

KFP Ktrans analyzed according to the first-pass model min�1

ve Volume of EES per unit volume of tissue None
ve(TK) ve analyzed according to Tofts and Kermodes model None
ve(mTK) ve analyzed according to the modified Tofts and Kermode’s model None
vp Blood plasma volume per unit volume of tissue None
vp(FP) vp analyzed according to the first-pass model None
vp(mTK) vp analyzed according to the modified Tofts and Kermode’s model None
Ce Extravascular extracellular component of C(t), which equals tracer concentration in plasma

multiplied by ve

mmol

Cp Tracer concentration in arterial blood plasma mmol
Cv Intravascular component of C(t), which equals tracer concentration in plasma multiplied by vp mmol
C(t) Concentration of the contrast medium in the voxel at time t mmol
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were performed using a three-dimensional radiofre-
quency (RF) spoiled (T1-weighted) fast field echo (gradi-
ent echo) technique (TR/TE (msec) � 4.2/1.2, FOV �
250 mm, slice thickness � 6.0 mm, overlap � 3 mm,
effective slice thickness � 3 mm (Fourier interpolation),
slices � 25, matrix � 128 � 128). Three preliminary
acquisitions were performed at flip angles of 2°, 10°,
and 35° as precontrast data set to enable the calcula-
tion of T1 maps. The DCE series (T1dy) was carried out
at a flip angle of 35° and consisted of a series of 60
volumes, with a temporal resolution of approximately
six seconds. The CA (0.1 mmol/kg body weight of ga-
dodiamide (Gd-DTPA-BMA; Nycomed, Oslo, Norway)
was administered as a manual bolus injection over a
period of approximately four seconds following the sev-
enth dynamic scan. A flush of an equal amount of
normal saline was given immediately afterward at the
same injection speed.

Image Analysis

All images were transferred to an independent worksta-
tion for analysis. FPLP analysis was carried out with
two in-house-written IDL applications (Interactive Data
Language�; Research Systems Inc., Boulder, CO). The
modified TK analysis was performed with the use of an
in-house-developed software package written in C un-
der the Unix operating system (21) and the medical
image viewer MRIcro� (Chris Rorden, Nottingham, UK).

Theoretical Basis of the Models

The leakage of the CA into the EES is described by the
following equation:

ve

dCe�t�
dt

� Ktrans�Cp�t� � Ce�t��. (1)

where ve is the EES (as a fraction of voxel volume; vP �
blood plasma space, vi � intracellular space, and ve � vp

� vi � 1), Ce is the concentration of contrast in the EES,

Cp is the concentration of contrast in the blood plasma
space, and Ktrans is the volume transfer constant. Ktrans

depends on the permeability and surface area of the
endothelium, as well as blood volume and flow in the
measured voxel (22). In contrast to other tissues,
healthy brain parenchyma Ktrans should be 	0, be-
cause of the intactness of the BBB.

Method 1

The TK model (TK) was introduced in 1991 and has
become a popular method for the assessment of Ktrans.
The VIF used in the current study is based on a previ-
ous work, in which blood samples were taken to enable
assessment of the CA concentration time course in
blood (23). The following equation was used to describe
the observed biexponential decay:

Cp�t� � D
a1exp� � m1t� � a2exp� � m2t�� (2)

where D is the concentration of the administered CA, a1

and m1 are respectively the amplitude and rate con-
stants of the fast exponential decay (contrast leakage
into the interstitium), and a2 and m2 are respectively
the amplitude and rate constants of the slow exponen-
tial decay (contrast excretion through the kidneys). We
applied this biexponential VIF via the following general
equation describing CA diffusion across a semiperme-
able barrier (16):

Ct�t� � KTK �
0

t

Cp�t��exp� � KTK�t � t��
ve

�dt�. (3)

where KTK is Ktrans as estimated by the TK model.

Method 2

We also analyzed the data with a modification of the TK
technique (mTK) that aims to separate contrast en-

Table 2
Demographic Data, Tumor Histology, and Tumor Localization of 18 Patients

No. Age Sex Tumor histology Location

1 58 M Glioblastoma multiforme Left temporal
2 46 F Anaplastic astrocytoma Left basal ganglia
3 75 M Anaplastic astrocytoma Left temporo-parietal
4 55 M Glioblastoma multiforme Right temporal
5 52 M Glioblastoma multiforme Left frontal
6 53 M Anaplastic astrocytoma Right temporal
7 53 M Glioblastoma multiforme Left parieto-occipital
8 63 F Glioblastoma multiforme Right parieto-occipital
9 45 M Glioblastoma multiforme Right frontal

10 54 M Glioblastoma multiforme Right temporal
11 71 F Glioblastoma multiforme Left temporal
12 64 M Glioblastoma multiforme Left temporal
13 69 M Glioblastoma multiforme Left parieto-occipital
14 50 M Glioblastoma multiforme Right parietal
15 65 M Glioblastoma multiforme Left temporo-occipital
16 56 F Glioblastoma multiforme Left occipital
17 36 M Glioblastoma multiforme Right fronto-parietal
18 38 F Glioblastoma multiforme Left parietal
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hancement effects within individual voxels due to con-
trast leakage into the EES from those due to intravas-
cular contrast. This method applies an individually
measured Cp(t) from an automatically calculated AIF,
and allows the fractional volume occupied by the blood
plasma, vp, to be estimated (5,16,21,22):

Ct�t� � vpCp�t� � KmTK �
0

t

Cp�t��exp� � KmTK�t � t��
ve

�dt�

(4)

where KmTK is Ktrans as estimated by the mTK model.
The automated AIF definition was applied to extract
Cp(t) from a slice including the middle cerebral artery,
since this was the only major artery within the imaging
volume.

Method 3

The FPLP model was designed to separate the signal
increase due to intravascular CA from the signal in-
crease due to increased capillary permeability. It allows
independent calculation of maps of regional blood vol-
ume and the volume transfer constant, but not of EES.
In contrast to methods 1 and 2, it is based on the first
pass of the CA bolus. Therefore, for the purposes of this
work, Ktrans is designated as Ktrans-first pass or KFP. As
in the mTK technique (method 2), patient-specific VIFs
are derived from purely vascular voxels to obtain Cp(t),
but are defined manually from the signal enhancement
in the superior sagittal sinus rather than the middle
cerebral artery. Toward that end, a region of interest
(ROI) is drawn around the superior sagittal sinus in a
dynamic image slice, preferably in the middle of the
imaged volume to exclude inflow effects. The resulting
first-pass portion of the vascular CA concentration
curve is fitted to a gamma variate function:

CP�t� � CPmax�t � t0�
bexp� � �t � t0�

c � (5)

where b and c are arbitrary constants used for fitting.
Assuming that the backflow of the CA from the EES

back to the intravascular compartment is negligible
during the first pass of the CA bolus (by assuming that
the ratio of Ktrans to ve is low, which is equivalent to
assuming Cp(t) 
 Ce(t)), the concentration in the EES, as
modeled in Eq. [3], can be reduced to

Ce�t� �
KFP

Ve
�

0

t

Cp�t��dt� (6)

This approximation of the EES concentration time
course during the first pass is termed the “leakage pro-
file.” The CA concentration time course curve, Ct(t), is
then given by

Ct�t� � veCe�t� � vpCp�t� � KFP �
0

t

Cp�t��dt� � vpCp�t�

(7)

Hence, by measuring the area under the curve of the CA
concentration time course in the EES and the intravas-
cular space (i.e., a purely vascular voxel), one can cal-
culate KFP (20). The assumption in the FPLP method
that the ratio of Ktrans to ve is small has been shown to
be the source of a systematic error that leads to under-
estimation when “true” Ktrans values are high. However,
the method has demonstrated high accuracy when
tested against KTK, especially when “true” Ktrans values
are low (19).

Patient Studies

All three methods were applied to calculate Ktrans and
(whenever possible) vp and ve, in two ROIs for each
tumor studied (the whole tumor volume, and the en-
hancing part of the tumor volume after contrast admin-
istration). The whole-tumor ROIs were manually drawn
by J.U.H., whereas the “enhancing ROIs” were calcu-
lated by an in-house-written IDL application with a
threshold for “true” enhancement of one standard de-
viation above the mean enhancement of normal brain
parenchyma. The enhancing regions were contained
entirely within the tumor regions.

Analysis yielded calculations of the parameter maps
and median values for all three models: KTK and veTK

from the TK model; KmTK, vemTK, and vpmTK from the mTK
model; and KFP and vpFP from the first-pass technique.

The two software packages used had inherent differ-
ences in the definition of the VIF: the mTK technique
used the middle cerebral artery, while the first-pass
technique used the superior sagittal sinus. One conse-
quence of this was that partial volume averaging errors
in the arterial ROI resulted in underestimation of the
AIF. We accounted for this by rescaling the AIF using
the ratio of the maximum values of contrast concentra-
tion of the two VIFs. Subsequently, all parameter esti-
mates of the FPLP technique were corrected using the
individual scaling factor under the assumption that
this would approximately correct for magnitude differ-
ences between the venous and arterial VIFs.

Statistics

Friedman’s test and Wilcoxon’s signed-rank tests were
applied to compare the median values of Ktrans, vp, and
ve of the three models, and Spearman’s correlation test
was used to correlate those values. A P-value � 0.05
was considered statistically significant.

RESULTS

A comparison of median Ktrans values obtained from the
three different models showed no correlation between
either KFP and KTK or KmTK and KTK. The application of a
threshold that excluded voxels with KTK estimates
above 1.2 min–1 (an arbitrary threshold meant to filter
out voxels suffering from pseudopermeability effects)
(24) resulted in a correlation of median KTK and KmTK of
� � 0.57 (P � 0.05), whereas medians of thresholded
KTK still did not show a significant correlation with me-
dian KFP. Qualitative analyses of individual patient
voxel-by-voxel scatter plots yielded the same results.
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Figures 1 and 2 show scatter plots comparing KFP and
KTK (Fig. 1) and KmTK and KTK (Fig. 2), including thresh-
olded and unthresholded KTK estimates for all investi-
gated patients. These plots also show that the median
values of KTK were considerably higher than the median
KmTK and KFP estimates (P � 0.001), with differences
between the models of up to two orders of magnitude.

The median KFP estimated without scaling for soft-
ware-dependent VIF differences, and KmTK were corre-
lated with a correlation coefficient of � � 0.62 (P � 0.01).
Scaling of KFP according to the patient’s individual dif-
ference in VIFs improved the correlation to � � 0.74 (P �
0.01). A comparison of median KFP and KmTK estimates
showed KmTK values to be generally higher, with KFP

estimates ranging from 0.007 to 0.065 min–1, and
scaled KFP estimates ranging from 0.007 to 0.094 min–1.
KmTK had values of 0.028–0.142 min–1. Figure 3a dis-
plays a scatter plot of median KFP and KmTK estimates for
all patients with and without scaling of KFP. Figure 3b–d
shows pixel-by-pixel scatter plots of KFP vs. KmTK in
three individual patients. Figure 4a shows a post-injec-
tion DCE T1-weighted image of a high-grade glioma
taken during the first passage of the CA bolus. Figure
4b–d show the corresponding KFP, KmTK, and KTK maps
obtained from the respective models. A comparison of
the maps clearly demonstrates the diversity in the dis-
tribution of values within the tumor and the normal
brain. On KFP maps, the normal brain shows minimal
values consistent with noise, while the tumor shows
high values, especially in the enhancing rim. The only
other intracranial structures showing significant high
values of KFP are the choroid plexus and the meninges.
In contrast to this, the KTK maps clearly show the effect
of pseudopermeability, with high values seen in pixels
that represent blood vessels (e.g., the distal branches of
the middle cerebral artery and around the great cere-
bral veins). The KmTK map shows a pattern of distribu-
tion similar to that in the KFP map, with no evidence of
residual pseudopermeability effects in vascular struc-
tures. The corresponding vp(FP) and vp(mTK) maps (Fig. 4e
and f) obtained from the first-pass and mTK models
show similarities with the KTK map due to the latter’s
contamination with erroneously identified vessels. The

superior sagittal sinus, as well as other structures, can
be detected on both images but is not seen on the
corresponding KFP and KmTK map. Figure 5a–d shows
typical VIFs acquired with the two techniques.

A comparison of median estimates of vp also showed a
significant difference of vp(mTK) and scaled vp(FP) (P �
0.001); however, these values showed a very high cor-
relation (� � 0.901; P � 0.01). Before vp(FP) was scaled to
account for VIF differences, there were no significant
differences in vp values, but there was also no signifi-
cant correlation of the models. This indicates the vital
impact the correct definition of the vascular input has
on the data. Figure 6a shows a scatter plot of median
estimates of unscaled and scaled vp(FP) vs. vp(mTK) for all
patients, demonstrating their high correlation between
scaled values of vp(FP) and vp(mTK). Figure 6b–d displays
scatter plots of patient-specific pixel-by-pixel analyses
of unscaled vp estimates. Each example shows a close
pixelwise correlation of estimates of vp(FP) and vp(mTK), but
varies between the patients in scaling (the slope of the
scatter plots).

In contrast to the above results, in parts of the ana-
lyzed tumor volume of two patients, the mTK model and
the first-pass model did not agree. In these areas, KmTK

estimates were very high, while KFP estimates were par-
ticularly low. Although the corresponding vpFP maps
identified these areas as vessels, they were not depicted
on the vpmTK maps, and were shown to be areas of high
contrast leakage on the KmTK maps.

DISCUSSION

T1-weighted DCE-MRI is widely used in research
(15,17–22,25) and drug trial studies (26,27) to evaluate
malignancies such as lung and breast cancers, prostate
tumors, and brain neoplasms (25,28–30). Since cancer
therapy has moved on toward antiangiogenic treat-
ment, precise methods to evaluate and differentiate
changes in vascularity and vascular permeability are
needed (25,31). Blood volume and endothelial perme-
ability are both possible surrogate markers of angio-
genic activity in tumors (32). Evaluation of these pa-
rameters therefore represents an important monitoring
tool during any antiangiogenic therapy, and can also be
confidently expected to provide valuable clinical infor-

Figure 1. Scatter plot of KFP vs. KTK estimates for all patients.
Crosses and squares represent unthresholded and thresh-
olded estimates of KTK, respectively. No correlation is seen
between the unthresholded or thresholded estimates of KTK

and KFP.

Figure 2. Scatter plot of estimates of KmTK vs. KTK for all pa-
tients, including unthresholded (crosses) and thresholded
(squares) KTK estimates. After thresholding, KmTK and KTK cor-
relate (� � 0.57, P � 0.05).
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mation for diagnosis, classification, and treatment
planning (33).

Various kinetic models have been applied for the
analysis of T1-weighted DCE-MR images, the best-es-
tablished model being the one described by Tofts and
Kermode (3) in 1991. The main disadvantage of this
model is that it overestimates Ktrans in highly vascular-
ized regions, since the contribution of intravascular CA
to the signal enhancement is mistaken as tracer that
enters the EES and thus appears to reflect permeabil-
ity. Hence, failure of this model (i.e., the pseudoperme-
ability effect) is to be expected in tissues with dense
vascularity, as commonly found in malignant tumors. A
further weak point of the TK model is that it uses a
standardized VIF. Originally derived from a study pub-
lished by Weinmann et al (23), the model assumes biex-
ponential decay for the plasma contrast concentration
curve after bolus administration of a CA (3). Weinmann
et al (23) collected serial blood samples over 120 min-
utes to measure Gd-DTPA plasma levels, sampling the
first three of a total of 10 blood tests at one, three, and
eight minutes after administration of the CA. Although
this approximation is convenient for DCE-MRI studies,
since it is more challenging to obtain accurate mea-
surements of CA in major blood vessels than in static
tissue, it is in fact likely to be inaccurate. The true
configuration of the intravascular contrast concentra-
tion time course is ignored, since the contribution of the
first pass of the CA bolus is not sampled. Hence, im-
portant information is lost—particularly in tumor stud-
ies (22). Currently, the high temporal resolution of dy-
namic MRI and the availability of methods that are
largely insensitive to inflow effects allow measurement
of the first-pass peak, which should therefore be taken
into account when perfusion and endothelial perme-
ability are evaluated (34).

Together with the technical advances in MRI, an
enormous variety of analysis approaches have been de-
scribed in the last decade. For research and clinical

purposes, it is crucial to understand the advantages
and disadvantages of the applied model or analysis
method, especially when comparing data that have
been acquired with different techniques. All three mod-
els considered in this work can be described as com-
partmental models that differ mainly in assumptions
regarding VIFs (4,5,10,20). Distributed parameter mod-
els. such as that proposed by St. Lawrence and Lee (35)
(a modification of the tissue homogeneity model intro-
duced by Johnson and Wilson (36)) and also used by
Henderson et al (13), Buckley (10), and others, are more
sophisticated and, given a suitable data acquisition,
allow estimation of tissue blood flow, capillary perme-
ability-surface area product, ve, and vp (22). In the com-
partmental models we used for this work, the parame-
ter Ktrans is the product of the CA extraction fraction (E)
and blood flow (F) (6,22). Therefore, in a situation where
permeability is high, Ktrans is limited by the tissue blood
flow, whereas if there is no flow limitation, Ktrans de-
pends principally on the vascular permeability (via the
relationship E � 1 – exp(–PS/(F(1 – Hct)), where PS is
the permeability capillary wall surface area product,
and Hct is the hematocrit). A distributed parameter
model enables the measurement of both PS and F, and
is therefore likely to produce information that is more
easily interpreted at the physiological level (35). On the
other hand, estimating an increasing number of param-
eters leads to increasing instability of a model and dif-
ficulty in model fitting, especially when the SNR is low
(10).

In this study, we aimed to compare three compart-
mental-model approaches: the conventional TK model,
a first-pass technique, and the mTK model. The latter
two models were designed to avoid the above-described
pseudopermeability effect. Both techniques include the
measurement of a patient-specific VIF, and allow esti-
mation of both Ktrans and vp. Since it is assumed that
the backflow of the CA from the EES to the intravascu-
lar compartment during the first pass of the CA bolus is

Figure 3. a: Scatter plot of
median KFP and KmTK esti-
mates of all patients before
(crosses) and after (squares)
scaling for differences be-
tween the maximum values
of the input functions ob-
tained with the first-pass and
mTK models. The correlation
improves after scaling (� �
0.62 before and � � 0.74 after
scaling; P � 0.01 for both
correlations). KFP estimates
are consistently lower than
KmTK estimates. b–d: Scatter
plots of a pixel-by-pixel anal-
ysis of KFP and KmTK for three
patients, demonstrating the
high correlation of the pa-
rameter estimates, which dif-
fer only in dimension.
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Figure 4. a: DCE T1-weighted image of a high-grade glioma acquired during the first passage of the CA bolus (10 seconds
post-injection). Enhancement is seen in the superior and inferior sagittal sinuses, and the choroid plexus of the posterior horns
of the lateral and third ventricles. The tumor is located in the right temporo-parietal region and shows glioma-typical rim
enhancement. b: The corresponding KFP map generated with the first-pass model. c and d: The corresponding KmTK and KTK

maps. The KFP and KmTK maps show hardly any enhancement; vessels are seen on the corresponding dynamic image, and
enhancement is shown mainly in the tumor, the highly-leaky choroid plexus, and the meninges. In contrast, the KTK map
displays both vessel enhancement and leakage, demonstrating the pseudopermeability effect. e and f: vpFP and vpmTK maps of the
same patient. Both maps display the vessels that are seen in the dynamic image correctly, as well as the choroid plexus; however,
the vpmTK map is noisier than the vpFP map. Window settings are the same for all parametric maps, except for the KTK maps, where
scaling by a factor of 3 was needed to display the whole range of values.

Figure 5. Vascular input
functions of two patients: (a
and b) patient 1, and (c and d)
patient 2. a and c: Unfitted
VIFs derived from the middle
cerebral artery (mTK tech-
nique). b and d: Fitted VIFs de-
rived from the superior sagittal
sinus (FPLP technique).
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negligible, the FPLP does not allow measurement of ve.
High-grade gliomas were chosen as the tissue of inter-
est because these tumors are among the most vascu-
larized tumors known in humans, and they commonly
exhibit a great degree of vascular permeability. High-
grade gliomas have therefore been intensively studied
with perfusion and permeability mapping techniques,
including PET, SPECT, ultrasound, CT, and MRI
(18,25,37–39).

The results of the present study show that the mTK
model and the first-pass technique provide similar re-
sults for estimating blood plasma volume and Ktrans,
and at the same time avoid pseudopermeability effects.
As shown in previous modeling and clinical studies, the
conventional TK model yielded KTK values that were
spuriously high, reaching two orders of magnitude of
KFP values, while the corresponding KTK maps clearly
demonstrated numerous vessels (10,11,19). It is there-
fore not surprising that there was no correlation be-
tween KTK and KFP and/or KTK and KmTK. The application
of a threshold excluding KTK values of 
1.2 min–1 led to
a weak correlation of KTK and KmTK (� � 0.571, P � 0.05),
whereas no significant correlation was observed be-
tween KTK and KFP. Nonetheless, the application of a
threshold is unsatisfactory because many pixels below
the threshold will still suffer from pseudopermeability
and thus yield inaccurate permeability maps, since the
model itself does not account for signal enhancement
due to intravascular CA. These considerations indicate
a general lack of specificity in the information provided
by the TK model.

Although estimates of KFP and KmTK showed a good
correlation (� � 0.744), KmTK still had consistently
higher values than KFP (KFP 	 0.6 * KmTK), even after
patient-specific scaling for differences in the VIF of ei-
ther model was performed. Input functions that were
acquired from superior sagittal sinus for the first-pass
model had higher maximum values in 14 of 18 patients
than the corresponding input function obtained from
the middle cerebral artery for the extended TK model.

However, the shape of the curves was always very sim-
ilar. This difference is most likely due to partial volume
effects that affect the input function obtained from the
middle cerebral artery, since this vessel is significantly
smaller than the superior sagittal sinus. However, dif-
ferences in inflow effects between the two sites could
also cause a significant difference in the measured am-
plitude of the VIF. Furthermore, due to the design of the
analysis software, the input functions from the middle
cerebral artery were acquired automatically (which has
been shown to be reproducible in this setting (21)),
whereas the input functions from the superior sagittal
sinus were collected after an ROI was manually posi-
tioned in that vessel. As part of the FPLP software, the
latter were also fitted to a Gamma variate (which effec-
tively regularizes the AIF), which also explains the re-
duced noise on the corresponding KFP maps. It seemed
reasonable to account for the difference between the
input functions, since the vascular contribution repre-
sents a fundamental part of both models with a high
impact on the resulting Ktrans and vp values. Since we
aimed to compare kinetic models, and not dissimilari-
ties resulting from the differences between the VIFs, the
scaling should have minimized these differences. Obvi-
ously, the influence of the different input functions
could only have been ruled out if the same input func-
tions had been used for each model, which was not
possible given the available software.

The remaining, non-input-function-dependent differ-
ences between KFP and KmTK must be explained by a
mixture of genuine modeling differences and differ-
ences in the software implementation of the models.
Although both models have a compartmental basis, the
analysis approach of each one is different. While FPLP
is based on a shape analysis that decomposes intra-
voxel signal into intra- and extravascular contribu-
tions, our implementation of the mTK model derives its
parameter values by a best fit of Eq. [4] to the contrast
concentration time course within each voxel. Further-
more, the mTK model allows estimation of the fractional

Figure 6. a: Scatter plot of me-
dian estimates of unscaled and
scaled vp(FP) and vp(mTK) for all
patients. A high correlation
(� � 0.90; P � 0.01) is demon-
strated between the two esti-
mates after scaling (squares),
whereas before scaling
(crosses) no correlation is seen
at all. b–d: Scatter plots of a
patient-specific pixel-by-pixel
analysis of vp estimates of the
same patients as in Fig. 3b–d,
demonstrating the high intra-
individual correlation for this
parameter between the two
techniques. Differences are
found only in the slope of the
plot. Axes are not labeled, since
vp represents a fraction (blood
plasma volume per unit vol-
ume of tissue).
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volume of the EES (ve), which is unobtainable with the
first-pass method. This is because of the assumption
that the backflow of the CA from the EES back to the
intravascular compartment is insignificant during the
first pass of the CA bolus (in practice, the assumption is
that the ratio Ktrans/ve is small, implying CP 
 Ce during
the first passage, and leading to Eq. [4] reducing to Eq.
[6]). Besides resulting in the non-estimableness of ve,
this leads to a systematic underestimation of KFP, which
can become severe at high values of KFP (19). A voxel-
by-voxel comparison of KFP and KmTK showed that in
most patients both parameters correlated well, and the
difference was just a question of scaling. However, in
some tumors, areas of disagreement were found: KmTK

estimates were relatively high, whereas the correspond-
ing KFP estimates were particularly low. Corresponding
vpFP maps showed vessels in these areas. These discrep-
ancies highlight an interesting difference in interpreta-
tion of the time courses between the methods: while the
first-pass model interprets the signal mainly as vp, the
mTK model has the freedom to assign such a time
course to a high-Ktrans, low-ve region (in other words,
leaky vessels but negligible distribution volume), a sce-
nario that would produce a similar pixel time course.
Nevertheless, such discrepancies were observed in only
two patients, and in general the degree of agreement
between the models far outweighed the differences.

In contrast to the correlation between Ktrans esti-
mates, the correlation of median estimates of vp de-
pended very much on the scaling for VIF differences.
Before scaling, a comparison of the median vp(FP) and
median vp(mTK) estimates showed no correlation,
whereas the intrapatient voxel-by-voxel analysis dem-
onstrated a very high correlation. Interindividual differ-
ences were found between the scaling relation of vp(FP)

and vp(mTK), such that in seven of 18 patients vp(FP) was
higher than vp(mTK), while in the remaining 11 patients
the scaling relation was the other way around. This
explains the missing interindividual correlation be-
tween the median estimates when no scaling factor that
corrects for differences in the size of the VIF is used.
After the difference of the VIFs was corrected for, the
correlation of median vp(FP) and median vp(mTK) became
high (� � 0.90), although first-pass estimates of vp were
consistently higher than the estimates obtained with
the mTK technique (vp(FP) 	 1.6 * vpmTK). Buckley (10)
demonstrated in a study on simulated data that the
mTK model consistently underestimated true values of
vp by 2–96% (10), which could partially explain the
differences we observed between vp(FP) and vp(mTK). On
the other hand, estimates of vp(FP) may be erroneously
high in cases in which the basic assumption of the
first-pass model—that ve is negligible during the first-
pass of the CA bolus—is incorrect. However, the voxel-
by-voxel analysis of vp(FP) estimates did not show a sig-
nificant correlation with ve(mTK), which suggests that
there was no major influence of ve on vp(FP), assuming
that the mTK model gave correct values for ve. In some
patients there was a correlation of ve(mTK) and KFP; how-
ever, since the same correlation was found for ve(mTK)

and KmTK, a coincidence of genuine high ve and high
Ktrans in some areas of the tumor has to be assumed.

These results clearly emphasize the impact of the
individual VIF, and the importance of determining this
function to account for the vascular signal contribu-
tion. The use of a standardized VIF, as in the TK model,
therefore jeopardizes any data analysis that is used to
obtain accurate estimates of microvascular variables.
The lack of correlation of the standard TK parameters
with those defined with the use of more sophisticated
models implies that this approach should perhaps be
regarded as somewhat heuristic in its description of CA
kinetics in tumors.

In summary, we have shown that two available mod-
els that are intended to allow explicit modeling of vp

effectively remove pseudopermeability effects. The ex-
cellent correlation between the two models of estimates
of Ktrans and vp, together with the results of previous
simulation studies (19), allow us to conclude that both
models are valid for evaluating perfusion and perme-
ability in tumors. The reduced time needed to acquire
data when the first-pass model is applied is potentially
useful, especially in abdominal studies, because it
makes breath-hold image acquisitions more feasible.
This may also be a benefit for head studies conducted in
patients with low tolerability for the MRI environment.
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