and have the same M and A but quite
different shapes!

The region R could also be the entire
system.

Definition of a compartment

If a compartment is mixed then both
Eqs. [10.2] and [10.3] follow: that is
they are no longer the definition

Compartmental Analysis

10.1 Introduction

The indicator curves contain more information than that
derived by black box analysis, in which only four parameters
are used (SHAM, see Chapter 8). This can be illustrated, to
give one example, by considering the residue curve after bolus
injection. Here the black box analysis tells us to measure the
area and, in the particular case of a “'rapid” bolus, the maximum
height. Many curves of the general wash-out (steadily decreas-
ing) type can be drawn so that area and height are the same.
In this chapter we enter and survey the black box by making
compartmental models of the system’s interior. The Criterion
of Usefulness of these models must, as in any other kind of
modeling, be: does the application of compartmental analysis
to the experimental data yield useful (i.e., meaningful) physio-
logical information?

10.2 Compartment or Pool

Consider a region R inside a system. Mass balance of
indicator for this region is

dmgz(t)
dr

= Jrin(t) = Jrou(t) [10.1]

where my (1) is the amount of indicator in region R at time ¢,
and Jjrin(?) and Jrou(?) are respectively the influx rate (rate
of indicator entry at time /) and the outflux rate to and from
R. The region R is defined as a compartment if the outflux is
at any time proportional to the amount of indicator in R with
the constant of proportionality k being the flux/mass ratio
J/M respectively the flow/volume ratio F/Vd of region R:

Definition of a Compartment
Jrout = Kpmg(t) [10.2]

where
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o/
$ fp= [J"' A [10.3)

I/ Vdg

In the systemic steady state the parameter &, in Eq. [10.2]
is constant. Equations [10.2] and [10.3] are, however, suffi-
I'he single compartment is the only ciently simple and yet detailed models of the black box so
case when systemic steady state need that they can also be solved if kx(t) is a function of time, as
not be maintained. As an example, b - oy
f consider muscle blood flow at rest and it 1s under certain conditions.

EXercise. The relationships shown in Eq. [10.3] are customarily
not given as definitions, but are derived by defining the compart-
ment as a region throughout which a tracer instantaneously
becomes mixed uniformly on injection anywhere within the
system. In this “well-mixed case” the specific activity s.(¢) is
constant throughout the region at a given time [ and equal
to that at all outlets. The outflux of indicator from such a
well-mixed region is evidently given by

: J,
Jrow = Jrsp(t) == pg(t) [10.4]
Mg
|

which essentially expresses the convective outlet condition.

| “Pool” is actually a term that we Our procedure of defining a compartment directly by Egs.
| would not consider very useful,

: y_uscil [10.2] and [10.3] rather than by the instantaneous and uniform “L
because 1t stresses the mixing idea that i ; ; i [ : rapa
we do fiot need: it is better to use mixing property is motivated primarily by the focal clearance we :
“compartment.” case to be discussed in Sec. 10.4. Note that with the definition amc

we employ, a compartment need not invelve a mixing or a ‘I~I|1I[|].|l.
stirring mechanism. Thus, according to our definition all the
red cells of the blood or the entire cerebral cortex can perhaps
i more readily be accepted as compartments (in specific contexts
to be discussed) even though quite obviously no mixing device
i to distribute indicator exists inside the compartment.
The difference between the conventional definition of a
}l compartment and that given in this section is illustrated by
the operational criterion: Conventionally we require that the
specific activity i1s the same at all points (x, y, z) at any time
fl LSr(x, y, z 1) 1s assumed to be constant in space. Our definition
. does not require a spatially even specific activity. All that is d"”x'
( Definition of a nonmixed required is that the local deposition of indicator in any volume ‘\&f.}
{ compartment element of the region yields the same kinetics (monoexponential) rln, :,:
as simultaneous uniform labeling of all paris of R would have In an

vielded. In terms of the discussion in Chapter 8 a compartment
has no *‘good sites” or “bad sites”; every site is as “good” as
any other.

We might denote a system defined by the well-mixed

Note that both the well-mixed and the property a well-mixed compartment and a system defined by

“nonwell-mixed™ (the nonmixed

; . the local deposition (local clearance experiment) property al-
compartment) are homogeneous (i.e., - i
isotropic); that is they have the same luded to above a nonmixed compartment. However, the defini-

systemic properties throughout. tion by Egs. [10.2] and [10.3] makes no assumption as to

whether mixing does or does not occur; it encompasses both
types of systems.
In conclusion, we can therefore answer the question,
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We could have injected indicator
rapidly or slowly; but at time O (when
we start considering the system) the
amount my is inside and no further
influx occurs; it is a pure washout
situation.

dm/dt Zflln — Jout

We here show one of the methods of

solving Eq. [10.5]; the various steps
have been included as an exercise in
In and e functions.
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“When 1s a system a compartment?” with, “If the system is
well-mixed or if just the washout is monoexponential (this is
the meaning of Eq. [10.2], see below) with J/M or F/Vd the
exponential coefficient, this latter case encompassing the for-
mer.”

Note: In Chapter 9 we discussed the impulse labeling of a
“generation"” of red cells by "N-glycine. This cohort labeling
constitutes a labeling not of the red cells in the circulating red
cells in the blood but of a certain subfraction (cells of a certain
age). Thus in this situation, despite the fact that the red cells
are constantly mixed in the blood so that the specific activity
is the same throughout, the circulating red cell mass does not
constitute a compartment. This is true because the basic tracer
condition is not fulfilled: the (average) labeled cell does not
have the same chance of destruction as the (average) nonlabeled
cell. The example shows that the dictum that “a well-mixed
system 1s a compartment” should be qualified with “for the
tracer-mother substance pair.” However, as this is generally
the case this qualification 1s not necessary.

10.3 The Washout Curve from a Compartment is
Monoexponential

Consider a situation when an amount mg of indicator
resides inside a compartment and no additional indicator enters.
In this case also no recirculation of indicator occurs. This situa-
tion is called the washout or clearance situation (here the word
“clearance” simply denotes “washing out™).

The mass balance equation for any subsequent time ¢ is
given by Eqgs. [10.1] and [10.2] as the term for influx is O.
For convenience we will here use the convective terminology
and will drop the subscript R. Hence according to our defini-
tions

dm(t) F .

LU L g,

dr Vd [10.5]
k()

The solution of this differential equation is the monoexponential
function because we can rearrange Eq. [10.5] and integrate
to obtain (with dm(t)/dt written as m):

1y {
I’—”m--—j kdt = —kt
o 0

mit) ]

o I —dm=—kt
mioy M

In mft)— In m(0) = —kt

m(t) [10.6]
| =—k
> (m (UJ) s
mi(t)
— — a— ki
g m(0) £

m(t) = m(0)e = mye ¥
" with k= F/¥Fd
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y ky

y= ppe Kt

As an exercise derive Eq. [10.7] from
one of the expressions leading to Eq.
[10.6] setting mf1) = 1/2mo and t =
fi2

log y¢

m

Linear plot

R

Successive half-times

Equation [10.6] is formally identical to Eq. [10.5]: they have
precisely the same meaning. To state that the derivative of a
curve is at all times proportional to the curve’s ordinate is
the same as saying that the curve is monoexponential.

The curve described by Eq. [10.6] has the well known
characteristic of a constant half~time t;;2. The relationship be-
tween the exponential rate constant & and £z is

_In(2) 0693

Iy2 L2

k min ! [10.7]

A practical method of obtaining the rate constant k& from
a semilog plot of a monoexponential curve is to “count half-
lives.” A convenient ordinate is chosen that can be divided
successively by two several times and still yield integer values.
For example, we choose the ordinate 8 (or 80, or 800, etc.),
at which the abscissa f5 is near the left-hand edge of the paper.
Divide 8 successively by 2, for example, 3 times, to reach the
ordinate 1 (or 10, or 100, etc.), at which the abscissa, near
the right-hand edge of the paper, is read off as . The half-
life #,;2 of the monoexponential curve is then

h—ig

i

1/2 .{

Exercise: Half-life /4 is defined as the time it takes for the value

of a monoexponential decay curve m(t)= mge *to decrease to V4 m(1).

Prove that #%2 1s independent of the starting value and hence validate
the present graphical procedure.

It is important to get “familiarity™ with 4:it follows from
Eq. [10.5] that

dm(t)/dr !
e N
m(t) (10.8]
_Rate of escape Yo,
Amount e

at time ¢

In other words & is the fractional escape rate. A k value of
0.02 min~! means, for example, that 2% of the indicator content
in the compartment disappears per minute.

The exponential function has the property that the curvi-
linear shape can be “straightened out” either by plotting log
m(t) against t (semilogarithmic plot), by plotting m(r) against
m(t) (phase plane method), or by plotting m(t)/m(t) against
¢ (fractional escape rate plot).

The semilog method is convenient when semilogarithmic
graph paper is available. But the method is somewhat insensitive
to the data in that it may tend to obscure a minor deviation
from the monoexponential curve form. By using decimal loga-
rithms, the equation of the straight line is

log m
1By

>

Pt
{Phi)
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/\ logiam(t) = logiamoe + logiee ™
- @ = logotno — ki logyee
| m
s = logomo — 0.4343 kt

That is, the loge-curve has the 0 time intercept logiemo and
the slope —D = —log(e)k = —0.4343 A Hence

Semilog plot 1

—— D=2303 D [10.9]
0.4343

. 1 :
[the constant 2.303 is actually —— = In(10)]
logee

It should be noted that the infinity value for the residue ni(>)
must be O or that it must be known and subtracted before

> m(t) is plotted on semilogarithmic paper. By this we mean
\ ¢ that if the curve form actually is

AW A e m(t)= m(®)+ (mg— m(x))e [10.10]
where then the semilogarithmic plot will not give a straight line. This
In(10) - D= & is, however, obtained with the phase plane method of plotting

m(t) = p against m(t)/dt = x because differentiation of Eq.

Phase plane plot @m Vv [ 10. 10] _\."it.'l(lﬁ
!

dm(t) /dr k(mg — m(x))e * [10.11]
that inserted on the right hand side of Eq. [10.10] gives

1
mir) = m(=) — ;{dmf!.—‘,-"d-' [10.12]

y=m (00) — 1/ kx

|b . i
I'he phase plane method requires more work to calculate the
slopes numerically or to measure them by drawing tangents
T =% i to m(t)on a linear plot at various times. But it has the advantage

of being more sensitive to the data, especially at long time,
Fore st and of yielding a linear plot even when (=) is not 0.

Ap/bx=—1/k A fourth method of plotting m(t) = mgee ¥ is to plot

the fractional escape rate P (1) = —m/m against « This results
in a horizontal line

b{t)
¢ @ Pbr)=k [10.13]
Relative slope plot
Thus far we have considered the residuc curve m(). But
“‘ we can also obtain an expression for the outlet concentra-
tion ceu(t) of a single compartment simply by noting that
Jout() = —dm(t)/dt= Feou(1). This, as —dm(t)/dt= F/Vdm(t),
our basic cquation, gives
>jr Feoult) = ;(_d' mit)
b is the capital letter for F in the Greek alphabet F [10.14]
(Phi) mrm.c kit
Mo F

Cousft) ="K k=—
i
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log ¢ or log m

A

dm/F

Lo

.

Note that ¢ is parallel 10 m o, that s ondy the
case when m is monoexponential

A monoexponential washout curve is
not per se evidence of a compartment

Saline = physiological saline = 0.9%
NaCl.

Larsen, O. A. el. al. (1966): Acta Physiol.
Scand. 66:337.

IR
ARSI

Equation [10.14] shols that the outlet concentration is the
same regardless of where we deposit the indicator inside a sys-
tem with no physical mixing.

We emphasize that a monoexponential curve for residue
m(1) or for outlet concentration ¢f7) in the washout situation
is not sufficient to allow one to infer that the system 15 a com-
partment. To make this inference it is necessary to show in
addition that the O time intercept (the amplitude) can be inter-
preted as a meaningful #1o/¥d and that the rate constant K
is the F/Vd ratio of the system (this comment refers to the
points raised in Sec. 10.7.

As an illustration showing that the presence of a monoex-
ponential washout curve is not sufficient to allow one to infer
that a system is a compartment let it be recalled that biological
systems generally show a monoexponential washout function
after sufficient long time has elapsed (the “final” slope). This
holds for very complex systems that are very far from being
approximated by a single compartment. And k,, the exponential
coefficient of the final slope, bears no simple relationship to
the F/Vd of the entire system or of its slowest compartment,

10.4 The Local Clearance Method, An Example of a
System That Is a Compartment and Yet Not Well-
mixed

We have already stressed that it does not matter how
the indicator 1s distributed inside a compartment. Here the
important case that results when mixing does not occur shall
be further analyzed. Assume that a bolus of about 0.1 ml of
sterile saline containing a freely diffusible indicator such as
133Xe (a gamma emitter) is injected at time 0 into a homoge-
neous tissue such as subcutaneous adipose tissue. A homoge-
neous tissue has, by definition, the same blood flow per unit
volume in all its portions. A portion denotes a volume element
of the order of about 1 mm?, which is so large that in a washout
situation diffusion would not (except at extremely slow flow)
constitute an adequate mixing factor between portions. Likewise
all other relevant physiological parameters are constant
throughout the tissue, in particular the volume of distribution
per gram of tissue A = Fd/W is the same in all portions. A
y-detector monitors the total amount of !**Xe in the entire
volume of tissue (a monitored tissue mass of several grams
surrounding the injection site suffices). Assume that one has
experimentally found that the rate of disappearance of residue
is proportional to the residue; in other words, it has been found
experimentally that the washout curve is monoexponential

mit) = moe A [10.15]

It is experimentally shown, in addition, that

1

A
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=L _EW_[ [10.16]
Vd ViadiWw A

Here fis the blood flow per gram of tissue (it could be measured
directly by collecting venous effluent blood and by weighing
the tissue), and A is the tissue/blood steady-state concentration
ratio (it was calculated according to the rules given in Chapter
5 after measuring the fat content of the tissue). In this way,
as both fand A could be determined, f7A also could be calcu-
lated. It was found to check with 4.

Thus, having verified the local clearance method using
133Xe in adipose tissue, one need not go any further. This
simple result is, however, quite puzzling. How can it be that
the diffusion of !33Xe out of the local tissue, a process that
steadily enlarges the size of the depot, does not influence the
measurement? A model in which ordinary Fick diffusion as
well as washout by perfusion of blood /ocally equilibrated with
the tissue can explain this result. Consider for simplicity only
the one-dimensional case: The amount mg of 1*3Xe is deposited
at time O in an infinite plane (x = 0 in the sketch). Mass
balance in a tissue slab of thickness Ax at the distance x from
the plane of deposition gives

Time rate Convection  Net diffusion to
of concentration away from and from the
change local depot  neighbor slabs  [10.17]
defx.t) Pelx,1)
P —kefx,t) + D ( P
ot dx?

The detector monitors the total amount of indicator in the
tissue; that is

m(1) ;j' clx.t)dx [10.18]

Integrating Eq. [10.17] spatially from — to +2° and inserting
Eq. [10.18] yields

dmit) de o¢
— J+ Dl = ).19
dt Lol " [(d_x)r (().1‘). t} [10.15]

The bracketed term is the difference between the indicator gra-
dient at x = +% and at x = —%. Since the indicator never
diffuses to infinitely distant regions in appreciable quantity the
concentration gradient is O in these regions. Hence the brack-
eted term is 0 and Eq. [10.19] becomes

dm(t)

e —km(t) [10.20]

The solution of Eq. [10.20] is the observed monoexponential.
This means that the decreased local washout from the initially
deposited region due to intratissue diffusion i1s exactly counter-
balanced by the increased local washout from more distant
regions.
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The above argunient [Egs. 10.17 to 10.20] allows one
to “explain” the experimental observation of a monoexponential
behaviour despite local diffusion processes that spread out the
depot. Nevertheless, the significance of this result is the con- Remember t]
verse; that is, the experimental finding of a monoexponential ;l:::[‘(h;:gi‘pif;
washout suggests (but does not prove uniquely) that no more
than ordinary “millimeter scale” diffusion [Eq. 10.17] goes on
in addition to local clearance by blood flow.

10.5 Kety’s Local Cerebral Blood Flow Method Based

: on a Diffusible Tracer and Brain Tissue Sampling /
Landau, W. M. et al. (1955): Trans Am.
Neurol. Assoc. 80:125
In this method the cerebral concentration is often mea-

sured by a radioautographic technique and hence the method
is also called the radioautographic method. It is based on the Iin
intravenous infusion over 1 min of a freely diffusible indicator
such as CF; 3] (a gas) or ['*!l]iodoantipyrine. The arterial
inflow concentration to the brain is followed by multiple blood
samples collected from the femoral artery. Thus ¢,(¢) is known.
After 1 min the animal is decapitated and the brain tissue
concentration measured in many small tissue areas.

The assumption is made that the local brain tissue area )
(about 1 mm?) constitutes a compartment so that the unit im- B
Remember that pulse response function in terms of the local residue is
F/Vd = f/A
H*(t)= e fixt [10.21)
F
with / being the blood flow per gram of tissue and A being
the tissue/blood partition coeflicient (i.e., volume of distribution
per gram of tissue).
The influx of indicator to the tissue area in question is
. . B my
per gram of tissue fc,(7). Thus the residue per gram of tissue /
1S
clt) = ﬁ;‘ (1) Fe=fint
|
| t
| = C (“ = Fihiu ”dh‘
/j il [10.22]
I i
Il =ﬁ:-”“i[ Calt)e= 1M vdy
| '
II|
i The blood flow is calculated by computing a family of residue
| . . . Fr
i curves for possible values of /(A is known) and then interpolat- F Mo

| ing at 1= 1 min to the measured tissue concentration value.
The method depends critically on precise knowledge of
A and on the validity of assuming that the unit impulse response
function is monoexponential.
If instead of a freely diftusible indicator one uses micro-
spheres, then the unit impulse response function is H*(1) = 1;
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Remember that the area is found by
sampling femoral blood (see also Ex.
3 in Chapter 8).
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that is complete retention. Then the 1-min residue is calculated
from

eft)= feaft)* 1
i
=_/f caft)dt
0

= Jf : [A I‘Cill.‘nlvr.\'

This approach, described in Chapter 4 (the bolus fraction-
ation method of Sapirstein), is in principle better than Kety's.
However, in using microspheres the problem of equivalent label-
ing comes in: the microspheres do not quite follow the blood,
but to some degree seem to go preferentially to the best perfused
areas (they stay in the streaming blood).

10.6 Forward Shunt

Consider that the region R, a single compartment, is by-
passed by a forward shunt S, taking the fraction Fs/F of total
flow through a pathway of negligible volume of distribution.
Let a bolus of ideally brief duration (an impulse) be injected

Jnft)= meb(t) [IO .).‘I
At the flow branching point the indicator bolus fractionates
in proportion to flow so that
0= md)
inlll = —Z M
J5. e

F 10.24
Jrin(t)= 7R mad(t) { }

The shunt outflux i1s the same as the shunt influx js(z). The
compartment outflux is monoexponential:

Fs
."- out — 7 ”31_:5 ft)

; Fr Iy Fr [10.25]
JRot == * =, Mot

F Vd Va'

The outlet concentration curve of the combined system is thus

Cout ft)= jnl;l_/l_l [1016}
Fs my Fp mo Fy Yoy
— — . — 5+ — + — - — g Frivat
S

Equation [10.26] thus shows a “‘spike” contribution (the shunt)
followed by a monoexponential curve (the compartment). The
shunt dispersion of transit times must be small, as otherwise
the spike is smeared out and cannot be seen.

10.7 Feedback Shunting

Now consider that a shunting back from outlet to inlet
occurs so that a certain fraction of the outflow from the system
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m
7:,: Cont(0)

F Cour(f)
F=Fa—Fs

Two-compariment closed system

M, ﬁmﬂ

>y [m/M
.=
i
Influx into A from B is

Jaea = Jsufl)
same for influx from B to A.

S e |~|_

is carried back upstream. The arrangement may be considered
as “‘instant recirculation.”

Since Fs essentially functions as an internal mixing device
added to the system, which already behaves in a well-mixed
manner, it follows that the indicator washout curve following
bolus injection has the same form as if no feedback shunting
had been present. Hence

Mo .

ee—
vd [10.27)
with k= F/Vd

Cout (U oz

In contrast with the forward shunting case Eq. [10.27] shows
no spike. The amplitude of the exponential function cou(0) =
mo/Vd represents the full amplitude corresponding to the in-
jected dose.

However, the exponential coefficient k= F/Vd is not that
of the compartment proper, or kr = Fp/VD. because just as
in the feedforward case & is less by the factor F./F. This shows
that even the observation of a monoexponential curve with
no spike complications is insufficient evidence for deducing the
presence of a compartment whose local flow/volume ratio can
be measured by

Compartment throughfiow R

= —— == 10.28
i Compartment volume of distribution  VFd [ ]

The results here outlined mean that one must somehow be
certain, when nmking the experimental observations, that the
outflow from the compartment itself is being sampled from;
that is, no collateral flow is allowed.

10.8 Two Compartment Systems

Closed system

Suppose we have two well-stirred compartments A and
B that continuously exchange a given substance at the rate J
mg/sec. We could here think of the red blood cells in plasma
exchanging sodium by diffusion and by active cellular forces
(the “sodium pump’). A bolus of an amount mg of a tracer
for the substance is injected into compartment A. What is
the time course of the specific activities sa(7) and sg(?) in the
two compartments?

Let My and My be the amounts of mother substance in
the compartments and n1a(?) and mg(t) the corresponding
amounts of the tracer. Mass balance then gives

Rate of change = Influx — Outflux
dmp(t)/dt= Mydsa(t)/dt = Jsa(t) — Jsa(t)

[10.29]
dmy(t)/dt= Mydsp(t)/dt = Jsy (1) — Jsp(t}

F{

Fh‘
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Dividing by M, in the upper equation and by Mg in
the lower one and subtracting the two resulting equations gives,
with sa(t) — sa(l) = A,

dA /di=—[J/M\ + J/Mp]A [10.30]
that solved for A yields

A = A(O)e [10.31]
with k= [J/ My + J/Mg] [10.32]

Thus A, the difference in specific activity between the two com-
partments diminishes monoexponentially:

sa(t) — su (1) = [54(0) — sp(0)]e & [10.33]
where
J J
k= +— 10.34
T [ J

The total amount iy of tracer in the system is constant and
equal to

mg = my (1) + mg(t) [10.35]
- ;'1'{.\.‘«‘,—\(” 5 ,MH.\'"”J [103(}]
Equations [10.33] and [10.36] give sa(t) and sg(2) as

sa(t) = s() + [5p(0) — s()]e ¥ [10.37]
sp(t) = s(@)1 — e 1) [10.38)
where
my
5(0) = [10.39)

is the initial specific activity in the injected compartment and

Mg
§(0) =——— 10.40
o=+ s
is the final or equilibrium specific activity throughout the sys-
tem.

Two independent compartments in parallel

An amount m, of indicator is bolus injected into the
inflow F which fractionates into an inflow /; to compartment
G and an inflow /4, = F— Fginto the independent compartment
w (the gray matter and white matter of the brain approximate
this arrangement). By the bolus fractionation principle the
amount m, s /F enters compartment G giving the residue re-
sponse

Fe
Mo (1) mu-;fc kgt [10.41]

where

fo, Fo Qo [10.42)
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wg and wy are the fractional weights.

S as a weighted (average flow), the
fractional weights being the weighting
factors

()=
mah(t) J

mft)
M,

S\ft)

my (1)
Ml‘

Sut) v

which defines fc = F/Wg. Similarly the amount m & /Fenters
compartment W giving the residue response

5
My (1) = mnTc kwt [10.43)

where

Fu F v
J'I(ju ;’\“ “"w )\w [} )441

k\\' =

which defines £ = FWw/W,. The observed residue m(t) is the
sum
mit) = mg(t) + my(t) [10.45]

The exponential amplitudes in Eqs. [10.41] and [10.43] are
expressed respectively as

e Fo Weg W W

4 = = faWn — 10.4¢
F We W F cWag E [ o]
Fo Fo Wo W W
—_——— = — = W — 47
aw R [10.47)

in which are defined wg We/W and wy = W/W. The
sum of these equations is

“.?
| =(fc we+ fo Wu) s [10.48)
which gives

f= = fowa + fuWe [10.49]

Substituting Egs. [10.46], [10.47], and [10.49] into [10.41] and
[10.43] and thence into Eq. [10.45] gives

mit)
—==geere!+ ggeThw! [10.50]
Mo
where
WG
P —Ja¥e [10.51)

-fi':WL; i fw“f'w

As each compartment has a monoexponential residue the
observed total residue is a sum of two exponentials.

Two compartments in series, one-way flow

This case is of interest primarily in connection with chemi-
cal processes and in describing mother-daughter relationships
in radioactive transformations. Tracer-mother substance termi-
nology is used. In the systemic steady state the influx of mother
substance into compartment A equals that into B and out of
B, it is the throughflux J. A rapid (impulse) injection of the
amount my 1S made into compartment A at 1= 0.

Mass balance of tracer gives for the two compartments
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Out In
} .
M2 = — Jo )+ mod(t) [10.52]
dt
dsp
1'4"7 = Jsm(t) + JTsp(t) [1(].5]]
[¢

The solution of Eq. [10.52] for the specific activity per unit

dose wa(t)= sa(1)/mis obtained as in the single compartmental
case already discussed [see Eq. 10.6]; thus
SA {g'} % |

— e ~JIMpL 10.54
o ;'W_.\ 5 [ }

walt)

Substitution of Eq. [10.54] into [10.53] and solving for sB(z)
gives
.\'u(f}: - 1

— (e Mt — o ~JIMAL 10.55
L [.'M" . W\) 2 } [ ]

wa(l) =

This solution can be obtained by using the convolution integral
(Chapter 9).

This system exhibits the precursor-product rule; namely,
the maximum of the wg(7) curve occurs at the point of intersec-
tion of wa (1) and wg(t). This result is evident from Eq. [10.53],
which gives dsy(t)/dt = 0 for s5(1) = su(1). This rule is necessary
but not sufficient to identify the present model.

If a third compartment with one-way flow is added to
the preceding two, then the precursor-product rule for compart-
ments B and C states that the maximum for the C curve is
reached at the intersection of we(#) and wg(t). The intersection
of we(t) with wu(t), on the other hand, would occur at a time
when we(r) was still rising. These statements are proven from
the mass balance Eqgs. [10.52] and [10.53] and the similar equa-
tion for compartment C. Thus the observation of a “specific
activity in tissue’’ curve that continues to rise to its maximum
point past the point at which the curve intersects that of the
plasma strongly suggests that the tissue measured receives
tracer (and hence also systemic substance) not directly from
the plasma but from a tissue that in its turn may communicate
with the blood.

10.9 Curve-Fitting by Sums of Exponentials

An experimental indicator curve can usually be repre-
sented within experimental error by the sum of a small number
of exponentials. Thus

) = aw + e ¥+ ape k2t . | . L+ aqe Eat [10.56]
All of the k’s are positive, corresponding to the fact that the
curve approaches a= as 1 — @, If all the «’s are positive then
»(t) “'decays™ from beginning to end. If some of the a's are
negative then y(r) may have an upslope portion. There are
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y—ae hit

Weighted least squares criterion

2 wil Yexo — ¥il®
=l

must be minimum.

v

several reasons for the frequent use of Eq. [10.56] to fit experi-
mental data. First, Eq. [10.56] makes it easy to perform various
calculations with the data. Second, if a compartmental model
is applicable then the a’s and k’s yield all the physiological
information contained in the indicator curve.

How is this curve-fitting accomplished? The oldest, sim-
plest, and still much used method is curve peeling. The tail-
end portion of the semilog plotted p(r) curve is extrapolated
back to ¢ = 0 to give a;. The half-time (4,,) of this straight
line gives ky = 0.693/(f2) (if the tail-end portion is curvilinear
so as to suggest the presence of a@. # 0 the phase-plane method
can be used to find = and k; simultaneously; see Sec. 10.3).
The calculated values of a,e *if are subtracted from y(t) and
semilog plotted. The tail-end portion of this plot is extrapolated
back to r = 0 and the preceding measurements repeated to
yield @, and k,. This process is repeated until there are no
more points left. The semilog straight line at each stage is
drawn by eye to best represent the experimental values that
seem to belong to the tail-end portion of that stage.

The modern digital computer has made it possible to
conveniently fit sums of exponentials to experimental data by
weighted least squares procedures. Manual curve peeling is
often used as an initial approximation in such procedures. It
has been found that least squares curve fits produced by ma-
chine do not produce appreciably better physiological informa-
tion than manual peeling curve fits. The machine methods are
useful, however, as labor-saving devices if a large number of
indicator curves are to be processed. The machine methods
can also claim a somewhat greater objectivity in the curve-
fitting procedure.

Suppose the standard deviation of Eq. [10.56] from the
experimental data is satisfactorily small, say 2%. Does this
mean that the a; and k; of Eq. [10.56] are determined with
equal precision? Unfortunately the answer is no, especially if
successive k; are not “well-separated”; that is, if A,/ < 2
or 3. It becomes quickly evident to anyone using curve peeling
that very slight changes in “goodness of fit” (alternative possi-
bilities for drawing semilog straight lines through data points)
that are well within experimental error produce very apprecia-
ble changes in the a; and k;. If a compartmental model is
applicable it is essentially the standard deviations of the a;
and k; that yield the accuracy of the physiological information
that can be deduced from the indicator curve. If it is felt that
only black box physiological information is obtainable from
the indicator curve then it is the standard deviations of the
SHAM parameters (see Chapter 8) which tells us the accuracy
of the black-box information contained in the indicator curve.

Unfortunately, decay type indicator curves “‘exhibit’ the
interesting physiological information (flows, volumes, exchange
rates) in a smeared out form, because of the various uninterest-
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ing or irrelevant dispersions undergone by the indicator in pass-
ing through the system. It is basically for this reason that multi-
ple indicators are used. If two indicators differ in some property
of interest but experience similar dispersions in passing through
the system, then the “‘difference” indicator curve will exhibit
the property of interest with the dispersion cancelled out.

10.10 Multicompartmental Systems

The indicator mass balance relationships in n-compart-
mental systems can with matrix notation be written in symmet-
rical and compart form. The #-compartmental model with »
being an arbitrarily large number cannot be solved to yield
explicit analytical expressions for the masses and fluxes of the
individual compartment. But, by using the matrix notation one
can as first explicitly noted by Nosslin (1964) and by Bergner
(1964) reveal the general properties of the system that were
expressed in Chapters 1 through 8 by integral equations.

We want to stress this point by deriving the black-box
equations from the multicompartmental model. Consider that
all # compartments can exchange with all other compartments
as well as with the “outside.” Mass balance for the rate of
change of tracer in all n compartments yields » simultaneous
first-order differential equations

M % Jusitdpst. .. .+ a4
& [10.57]
d.

My === Jyy5, + Joasa + ki
dt

elc.

where the flux of mother substance to compartment 1 from
compartment j is Jy;, where —Jy;, —J, . . are the sums
of all outfluxes from the respective compartments (including
. are the influxes
of tracer from the outside to the respective compartments.

flux to the outside), and where i, f, .

First we derive the stimulus-response theorem for specific
activity. Consider a bolus experiment in which a finite amount

J L (1)dt = mg, of tracer 1s injected into compartment 1 with
0

no tracer injected into the other compartments. Integration
of Eq. [10.57] from = 0 to ¢ = % yields, assuming that the
system is open so that s;(0) = 0 and that the system is empty
prior to the injection so that 5;(0) = 0, left hand sides that
all are 0. Rearranging the result thus gives

o o Ed
A |J- sdt+ JJ-_;J- Sdt+. . .. —J' hdt=—meg
o L] (1]

¥ - [10.58)
J;.J sidt+Jus| sdt+. ... =0
il

L 1]

etc.
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Consider next a constant infusion experiment where tracer is
infused at the rate (%°) into compartment 1, and no infusion
is made into any other compartment. After long time all the
transients have died out. Then all the ds/dt values on the left
hand sides of Eq. [10.57] become 0, giving after rearrangement

Jusi() + Jigsa(@) +. . . .= —§H(:)
Jsi(@) + Jas(>e)+. .. .=0 [1[].5‘}]

etc.

Now divide both sides of Eg. [10.58] by my. Divide
likewise both sides of Eq. [10.59] by #(22). Since the [J] matrix
is the same in both sets of equations, Eq. [10.58] is exactly
the same set of simultaneous equations for the "“unknowns”
j 5 dt/moy, J .sgdr/mm, . . . .as Eq. [10.59] is for its “un-

L]

]
knowns™ s1(%)/#(%), s2(0)/i(>) . . . . Hence corresponding
“unknowns” must be equal, or

I” .\'{”){!f ¥ s‘;( )

Moy (=)’ :

' [10.60]

Since compartment 1 can be any compartment, it follows that
Eq. [10.60] is the stimulus-response theorem, where the stimu-
lus is an indicator input rate into any one compartment and
the response the specific activity measured in any compartment.
Multiplying both sides of equations [10.60] by the amount of
mother substance M; for any subset R of the total number of
compartments and adding them together we get the regional
residue stimulus-response theorem

J mgft)de 3
0 mp(>)

¥ = ) [10.61]

where
mu(t)= SaMs;(t) [10.62]
mp(%) = Zp M;s;() [10.63]

If the subset R is the total number of compartments then the
result is the systemic residue theorem.

In order to relate the right side of Egs. [10.60] and [10.61]
to systemic properties the systemic steady state is expressed
by the systemic substance (i.e., mother substance) mass balance
in each compartment. After proper rearrangement, the result
is

J“ S J'|-_r + J;_w el = _J\n
Syt hyt It . ==y [“)'M]
elc.

Although Egs. [10.60] and [10.61] do not require any of the
systemic input rates Jig, Ja0, . . . . to vanish, a simple relation-

And, at
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ship to these rates holds only in two cases: (a) single systemic
input rate and (b) equivalent labeling of multisystemic input
rates.

Consider the first case (a) where all systemic input rates
but one vanish. For convenience take the nonvanishing input
rate as Jio. Then Joo, Jao, . . - . = 0 in Eq. [10.64]. Dividing
through by Jio in Eq. [10.64] and comparing with Eq. [10.59]
shows, by the same argument that leads to Eq. [10.60], that

5i(92) _ .Fz('f-_) = - i
BEEY- fileo). Fne 7l i

[10.65]

This expresses the tracer condition of equal specific activity
throughout the system at long time if both tracer and mother
substance enter solely via one compartment. Comparing Eq.
[10.65] with Eq. [10.60] yields the influx theorem (see Chapter
4) for a bolus injection

Moy Dose
g e _ATIJ
si(t)dt ;
L ) [10.66]
=12,

This theorem also shows the equal area of specific activity prop-
erty.

Similarly, substituting Eq. [10.65] into [10.63] yields
6) _ ()

o0 SaMi— M
mg() L) To R s

[10.67]

This combined with Eq. [10.61] yields the regional mass theo-
rem
(t)dt
j o My

Moy Jio

[10.68)

which becomes the systemic mass theorem (mean transit time
theorem) for R = sum of all compartments.

Consider the next case (b), equivalent labeling of multisys-
temic input systems. All compartments can now have input
from the outside. In the bolus injection experiment, inject an
amount of indicator into each compartment proportional to
the systemic input from outside, or

Moy = j 'hd{ = AJo
o [10.69]

Mo = J hadt = AJay

By summing all the equations [10.69] it is seen that the constant
A is given by
Mgy + mea+. . .. mg

A=—"—""2 =2 10.70
i J;U + Jm J [ ]
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where m1, s the total dose of indicator and Jis the total systemic
input from the outside.

Using Eq. [10.69] then the bolus injection equation, in-
stead of Eq. [10.58], becomes

J“J’..\‘ldr-i J',-ZJ’ SBdr+. ... oy = —Adp

2 [10.71]
J:n .\'1df t J—ggJ- .\'—3:‘!1’ | Moz = '_AJ_go

0 0
etc.

Dividing Eq. [10.71] by A and deriving the corresponding
steps for continuous infusion [cf. Egs. 10.59 and 10.60] leads

1o
J sdt J’ saclt
i MNNCNE SAR

== 10.72
A A ' i

Substituting A from Eq. [10.70] into [10.72] gives

mo ) Mo

I, 5 (1)drt J' ..5'2 (1)dr

which is the influx theorem for a multi-inlet equivalently labeled
system. Note that the equivalent labeling equation [10.69] is
global (total amount of indicator proportional to systemic input
rate), not local (indicator input rate proportional to systemic
input rate).

The regional mass theorem for equivalent labeling is ob-
tained by expressing Eq. [10.73] as

J

[10.73]

M’;I si(t)de =f m(tldt = M, f-_;_u
: - (10.74)
Mg

sz Sa(t)dt = J’ nmz (tdt= M, —
(1] (1] J

Adding the right-hand parts of Eq. [10.74] for any subset R
of the total number of compartments gives

f .m-rudr—-.mfji [10.75]
or
J mg(t)dt
o - _3.
o [10.76]

which is the regional mass theorem. Summing over the total
number of compartments yields the systemic mass theorem
[drop subscript R in Eq. (10.76)].

The matrix or compartmental method of proving the stim-
ulus-response, influx, and mass theorems is actually equivalent
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to the convolution method we used to prove the black-box
theorems by. Indeed, the convolution integral can be regarded
as the limiting form of expression of the n-compartment system
as n — /o,

The matrix approach for deriving the general black-box
theorems was first used by Nosslin (1964). Although the present
approach is somewhat simplified, the simplification is possible
because one knows which theorems are to be proved. Without
such prior knowledge it is quite difficult to apply the matrix
approach!




