F, Fa

M) = = ——

3 |
>

Note that in many cases ¢ (@) is the same
at mlet and outlet {s).

A Vd has the unit of ml and F the
unit of ml/sec, then ¥d/F has the unit
of seconds (time).

s(=) =

mi :'C)/ M=

J(=2) /S

The unit of
M/J s time
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The Volume/Flow and Mass/Flux
Ratio of an Open System (Mean

Transit Time). I: Constant Infusion
Techniques

6.1 The Experiment

A continuous infusion of indicator is made into a system
with a single convective inlet. After a sufficiently long time,
the indicator steady state is reached, so that the mass of indica-
tor inside the system, the residue, is constant at its final value
n{>). The volume of distribution of the indicator inside the
system Vd is defined as in Chapter 5, Eq. [5.1]; that is, m(=)
is considered as the product Vd c() where ¢(®), generally
speaking, is the steady-state concentration in any suitable fluid.
Here we chose to let the inflowing fluid be the reference fluid.
As m(o=) = Vd ¢(0) then

mio0) Residue

c(=) Inlet concentration

Vd =

[6.1)

The steady state flux of indicator through the system is

J(0) = F e(®) where Fis the inflow of carrier fluid. Dividing

Eq. [6.1] by £ on both sides therefore yields

E __ m(=) Residue
F  j(=) Flux

[6.2]

When the indicator is a tracer for a systemic (mother)
substance, the steady state specific activity s(*°) is the same
in the system as a whole as at the single inlet. Hence, as s()
= m(=)/M
aE).  Benue (6.3]

s(=0)  Specific activity
s() also equals j(%)/J; therefore dividing on both sides of
Eq. [6.3] by J gives
M  m(>) Mass of indicator

- T 6.4
J  j(=) Flux of indicator i

This basic equation may be written directly, because 1t
follows from the identical behavior of tracer and mother sub-




“lux
in
510N

ystem
time,
ndica-
value
fe the
()
erally
fluid.
fluid.

[6.1]
em Is
1ding

[6.2]
ither)

same
s(0)

[().4}

se it

{/WW ¢

If 1 ml leaves per sec and the transit
time is 6 sec then, with plug flow, the
entire tube volume Fd has been
displaced into the collecting bucket
in 6 sec; that 1s

Vd=FX T
=] X6
6 ml

[ = lhavo 18 called furnover time.
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stance: The mass/flux ratio of mother substance equals that
of the tracer in the steady state.

If the single inlet is convective then we can combine Egs.
[6.2] and [6.4] 1o obtain

d M _ m{®) RESitl[IE
F Jd  jfo) Flux

(6.5]

But if tracer and mother substance do not enter the system
by being carried by a fluid stream (they might enter by diffu-
sion), then Eq. [6.5] has a meaning only if Fis considered as
an equivalent flow or clearance (expressed in the same volume
units as the fluid used for reference when defining Vd).

The important volume/flow or mass/flux ratio has the
dimension of fime. Although it is not strictly needed for our
present purpose we shall here mention that this ratio is the
system's mean (ransit time [ for that indicator. When, as in
all methods to be discussed in this chapter and in Chapter 7,
we determine the Vd/F = M/J ratio, we in essence deter-
mine f.

If the flow F of fluid in a tube of volume Vd is plug
flow, then there is one single transit time which is also the
system’s mean transit time 7 and where Vd = 7F This is the
equation for simple displacement of a fluid. A generalization
of this plug flow equation to any arbitrary system can be used
to prove that ¥Vd = Ffand M = J7 for a single inlet system
(see Chapter 7, Sec. 7.2 and 7.10).

Another way of understanding why the ratio Fd/F =
M/Jis the mean transit time is by considering M/J. For exam-
ple, let M be 300 g of serum albumin and J 10 g per day
(the daily production and breakdown). Then it takes an average
of 30 days for a “new’ molecule to reach the breakdown site.
This example also shows that the mean transit time is the
time it takes to renew the mass M. and 7 may consequently
also be called fyov0.

6.2 Constant Infusion and Inlet-Outlet Detection
During Saturation or Desaturation

In this approach the indicator residue/flux ratio in the
steady state, m(=®)/j(=) = M/J = Vd/F, is obtained from con-
centration measurements at both the inlet and the outlet of a
single-inlet, single-outlet system. The measurements are made
during an indicator transient during which the system goes
from one indicator steady state to another. Often the “first”
steady state is that of 0 concentration at inlet and outlet as
well as inside the system, and the ‘‘second’ steady state is
that obtained after a sufficient period of constant inlet concen
tration. This is the simple saturation experiment. The mirror
image is desaturation.

- During the transient the amount of indicator inside the
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Left side (and hence also right side)
becomes 0 if the two steady states are
identical.

A Saturation
c
~
e
N Desaturation
[
b
>

Saturation afler previous saturation at lower
concentralion

This area equals Vd/Fand M/J. It
1s measured in units of time and
actually equals the mean transit
time f.

system (the residue} will vary as a function of time m(t) with
the rate of change dm/dt being the difference between inflow
and outflow rates

Rate of change _ Rate of _ Rate of
of residue inflow outflow [6.6]
dm /dt Fan(t) — Feowft)
Integrating this equation between the two times indicating
the two steady states (0 and =) yields

J dm= m(t)
(

= )""J‘ Cin(t)dt — FJ. Cout (1)dt [6.7)
0 0 0
The left side of this equation is the sum of all the increments
of residue dm during the experiment; that is, it is the final
restdue minus the initial residue. If, for simplicity, the initial
residue1s taken tg be O then the left side is m(), which accord-
ing to Eq. [6.1] equals Fd c¢(=¢). Hence Eq. [6.7] becomes

Cumulative  Cumulative Cumulative
residue ; input output
, - [6.8]
Vd ¢(=) = f-‘j cinl(t)dt Ff Cout ()t
0 o
This important equation should, we hope, be immediately
acceplable: The cumulative residue is, according to the defini-
tions, equal to the volume of distribution multiplied by the
steady state inlet concentration ¢(®) where a subscript (in)
or (out) is unnecessary because in the steady state inlet and
outlet concentrations are the same; the cumulative input is
obtained by summing (integrating) all the inputs Fei, (¢)de; the
same applies for the cumulative output. ¢() is the height of

the concentration curves in the steady state and f Fe(tl—

(1]
Cout(1)]dt is the area between them. We can therefore rewrite
Eq. [6.8] as

Constant Infusion, Inlet-Outlet Detection

) _M_vd_Jyn O o g
jf®) 4 F (=) Height

[6.9]

Thus it follows that if we scale the concentrations so that all
concentrations are divided by ¢(2), that is, if we plot c¢j\(2)/
c{(®) and cou (1)/c(2) as functions of time, then the area be-
tween these normalized curves is the volume/flow and mass/
flux ratio of the system for that indicator.

Comments on inlet—outlet detection during saturation

or desaturation

We have only to measure the concentration ratios gn(7)/
() and coui (1) /(). Hence in this method one does not have
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to measure absolute concentrations and the rate of infusion
is therefore immaterial and need not be known. In this respect
the constant infusion or “saturation” method for measuring
Vd/F or M/J differs from the constant infusion method for
measurement of flow or flux, Stewart’s method, as discussed
in Chapter 1. We also note that the models used are different.
In the saturation method both inlet and outlet mixing is as-
sumed whereas in Stewart’s method only one site of cross-
stream mixing —at inlet, outlet or anywhere inside the system—
1s assumed.

The sampling procedure used in the inlet—outlet detection
method must be discussed in relation to the influence of diffu-
sion processes as analyzed in detail in Chapter 3. It will be
recalled that in a convective system, where the indicator is
carried in a fluid stream, inlet and outlet concentrations can
be followed in two basically different ways—as collection of
fluid samples (bucket sampling) or as in sitw sampling at the
open boundary surface of the outlet. Because we are concerned
with assessing the amounts of indicator entering and leaving
the system Jjin(7) and jou (1) we should in principle be using
the bucket sampling procedure in situations where diffusive
fluxes in the lud stream can be quantitatively important. This
conclusion is, however, not valid because ( just as when calculat-
ing flows) the diffusion terms cancel out: The correct version
of Eq. [6.6] is namely din/dt = jin(t) — jou(t). or

dm/di—= Fein(t) — DSind€in/0x — Feau(t)+ DSyutOcout/0x [6.10]

With constant linear velocity v= 0x/dtthe two derivatives
in the direction of flow are proportional to the corresponding
time derivatives. Hence, since we wish to integrate Eq. [6.10]
from 0 1o =, the integrals become — DS Gn(*) and +
DSaurtou(=). For equal areas and infinity concentrations it fol-
lows that the diffusion terms cancel out.

6.3 Splanchnic Plasma Volume

The equilibration or saturation principle for measuring
Vd/F = area/height can be used for calculating Vd if Fcan
be measured simultaneously by an independent method. As
an example of this approach we shall describe the technique
developed by Bradley and co-workers for measuring the
splanchnic plasma volume in man.

A convenient but arbitrary amount of a plasma indicator
such as Evans Blue dye (T-1824) or 13!I-labeled human serum
albumin is injected intravenously as a bolus. The concentration
in systemic arterial plasma, as conveniently sampled from the
brachial or femoral artery, represents the concentration ¢n(t)
in the blood supplied to the splanchnic area (spleen, intestine,
liver). Thus although the splanchnic area has physically speak-
ing many arterial inlets, none of which we sample from, because
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of the mixing in the heart the system is functionally speaking
a single-inlet system, with the inlet concentration given by the
femoral arterial blood. The concentration in venous plasma
as obtained from blood sampled by a catheter placed via the
arm and the right atrium of the heart into one of the hepatic
veins represents the outlet concentration oy (7).

The rapid mixing of the indicator in the intravascular
pool (the plasma volume) ensures that ¢y, (2) becomes practically
constant after approximately 2 min. It is for this reason that
one can consider the experiment as a continuous infusion one.
At steady state [that is, when the arterial and venous curves
have reached the same constant level ¢(%0)], we can express
the amount of indicator in the system as m(®) = Vd c(=),
Vd being the splanchnic plasma volume. This equilibrium is
reached after approximately 2 to 3 min. We can also obtain

m(=°) as the difference between the cumulative input !-'j Gn(t/dt
o

F2em(i)Ar; and the corresponding cumulative output.
Hence, as expressed in Eq. [6.9]), Vd/F is calculated as the
area/height ratio.

Therefore, if the splanchnic plasma flow £ is measured
simultaneously by the bromsulphthalein (BSP) or cardiogreen
¢clearance method, Vd can readily be calculated. These clearance
methods are based on a constant infusion at a known rate
(=) of indicators removed solely by the liver.

I'he splanchnic plasma volume as determined with the
equilibration technique will include all rapidly exchangeable
albumin in the liver, spleen, and intestine. Especially in the
spleen and in the liver there are reasons to assume that albumin
exchanges quite freely across the capillary wall. Hence in these
organs Fd also includes the paracapillary albumin space. In
brain and also in lung and muscle the capillary permeability
to protein is so low that ¥d as measured by the same technique
is the intravascular volume.

Bradley and co-workers stated that the ratio Vd/F
area/height is the mean transit time of albumin 7 through the
splanchnic bed; the splanchnic mean transit time of albumin
f= Vd/Fis approximately 20 sec in man.

6.4 Cerebral Blood Flow

In the Kety-Schmidt inert gas inhalation method for the
saturation principle, the measurement of Vd/F = area/height
is used for calculating the flow per gram of tissue in the human
brain. This is possible because independent information is avail-
able for the volume of distribution per gram of tissue, A.

A convenient but arbitrary constant concentration of an
inert gas (e.g., nitrous oxide, argon, or radioactive krypton)
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is inhaled for approximately 15 min. The concentration in sys-
temic arterial blood as conveniently sampled from the brachial
or femoral artery is the same as that going to the brain cin ().
Thus, although the brain has four main arteries, the two internal
carotid arteries and the two vertebral arteries, the system is
a single-inlet system. The concentration in cerebral venous
blood is followed by samples obtained from the superior end
of the internal jugular vein of one or both sides of the head.
These two veins constitute the main drainage from the brain
and the inert gas saturation curves are in most cases almost
superposable. However, because side-to-side differences do ex-
ist, the system is strictly speaking not a single-outlet system.
A way of expressing this point is by stating that with unilateral
internal jugular venous sampling one measures the blood flow
of that part of the brain draining to the vein from which the
sample is taken. This is mainly that half-part of the forebrain
lying to the same side (the ipsilateral hemisphere).

At equilibrium the residue of indicator gas in 100 g of
tissue is

Residue = In Out

. . 6.11
100 prain() = ('II!"J Cin(1)dt — CBFJ Cout (1)dt E ]
[

0

where, following conventional usage, we have defined CBF as
the blood flow through 100 g of brain “average” tissue.

Because equilibrium has been reached the brain concen-
tration is related to that of the blood by the equilibrium partition
coefficient A = Cprain()/ Coioaa(*). Hence

100Cheain() = 100 A () (6.12]
From Egs. [6.11] and [6.12] it follows that

Kety-Schmidt Equation for CBF

o Height
CBF=10——&) . jom 28

e Area
J Gn (1) — com()dlt

1]

(6.13]

The use of Eq. [6.12] and hence also the final equation
presupposes that the entire area is obtained until full saturation
when c¢in = cu. However, this point is not reached within
the experimental period. One may then, as originally proposed
by Kety and Schmidt (1945), employ a monoexponential ex-
trapolation just as in the Henriques-Hamilton indicator dilution
method. But in a subsequent paper Kety and Schmidt proposed
that an approximate state of diffusion equilibrium between brain
and cerebral venous blood could be assumed after 10 min of
saturation; that is, they assumed that the ratio cprain(10)/
cou(10) could be approximately taken to equal the equilibrium
value A. Hence rewriting Eqs. [6.11], [6.12], and [6.13] for a
saturation time of 10 min gives
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Residue detection by external counting converts
system 1o a single-outlet system

10
100 Cyrain(10) = (‘Ill‘f anlt) — Cou (1)t [6.14]
0
](X]('I-r.uu(ln) - IO'OJ‘\E‘.".L(IU] [()I 5]

Kety and Schmidt 10-Min Approximation for CBF

Cout 10) = .S_I—Elghl

J A Ares
ol = il R

CBF = 100A —

[6.16]

[n the literature one often sees the notation CBF() for
the value obtained by extrapolation using Eq. [6.13] and
CBF(10) when using Eq. [6.16].

It must be emphasized that Eq. [6.16] is theoretically
not correct: At no time “before™ full saturation can Eq. [6.15]
be correct. The normal value of cerebral blood flow in man
is for CBF(=) of approximately 45 ml/100 g/min whereas the
CBF(10) is about 53 ml/100 g/min. Thus there is approxi-
mately a 15% overestimation of flow resulting from the 10
min truncation. Nevertheless, the approximation is of consider-
able value because accurate extrapolation to infinity is usually
not possible.

We have in the above followed Kety and Schmidt’s origi-
nal derivation quite closely. Making more use of the concepts
developed in this text we would have recalled from Chapter
5 that A i1s not only the equilibrium concentration ratio Cyrain/
Cutopa but also (by the same definition), the volume of distribution
per gram of brain tissue. Hence, denoting the flow per gram
of tissue F/W by fwe can write
vd Vd/W A

FFE/W [

min [6.17]

As shown in Sec. 6.2 Vd/Fis the area/height ratio, and
thus the final equation is directly obtained. The Vd/F ratio
is the mean transit time Z For the normal brain fis approxi-
mately 2 min for inert gas having about the same solubility
in brain tissue as in blood, that is, with a A of approximately
1.0 ml/g. Hence it follows, as /= A/ that the blood flow
per gram of brain is approximately 0.5 ml/g/min or 50 ml/
100 g/min.

The nert gas saturation method of Kety and Schmidt
may be used to study flow in any organ from which mixed
venous blood can be collected and for which A can be assumed
to be a constant. Myocardium and kidney are such tissues.

6.5 Constant Infusion and Residue Detection During
Saturation or Desaturation

In this method the volume/flow or mass/flux ratio is
determined from a direct observation of the indicator steady

m{=)
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(6.14] | ;’( state mass/flux ratio m(=)/j(>). The mass of indicator in the
' ' system (the residue) may in some cases be followed by the
| s el e use of gamma-emitting radioactive tracers allowing external
[6.15] | v counting over the organ. Because the residue detection must
.‘,'r take all outlets into account simultaneously, the use of a direct
/ method of measuring residue may be especially convenient with
; 1 > a multiple-outlet system; still the system can have only one
6.16) ' inlet at which the |ndw.glm' mﬁn_;ion 1s made. _((‘.omnpure tllfns
, to the inlet-outlet detection technique where a single-inlet, sin-
0 gle-outlet system must be assumed).
S ' Desaturation after full saturation The experimental situation involves a constant infusion
skid | Blowup of initial part of linear plot of indicator that is continued until complete saturation 1\
| of mft) reached, that 1s, until the steady state for the indicator is
ally . reached. Following this, the infusion is suddenly stopped and
15 . the tn.n.e at stopping is denoted time O Wl.lh I‘t!\"]‘bfl"t‘l to de.‘;amm-
o tion. The residue is followed as a function of time dunng the
the early part of the desaturation. In this situation the steady state
i residue m() is equal to the initial residue 71(0), and the steady
10 state indicator flux through the system j(=°) is the initial rate
icrl- of decrease of residue —dm(0)/dt = —n(0). This must be true
Wy because during a brief time interval after the infusion has been
stopped the outflux continues at unaltered rate (this time inter-
igi- val is the shortest transit time through the system). Hence
s
,Ilc,- Constant Infusion, Residue Detection
in/ Vad M m(=) () Imitial residue
F- 7 ) =m0  Tivialslopoofresidus Lo 10}
r
& It should be noted that the intial slope is that of a hinear
plot of the residue m(r) versus time. After a short time the
17) outlet concentration starts to decrease and then the slope dm/
dr also decreases; that is, the initial constant (steepest) slope
nd is no longer seen.
io The initial slope method may also be used in the form
‘- of a recording of the saturation curve as the initial rate of
ty Bt il ol ConsmI0 and mahtalops residue accumulation is j(=2) until the time when the indicator
ly also starts to leave the system via the exit (the shortest transit
o axt)/m(0) time).
L/ One continues infusion until full saturation has occurred
in order to record m{). But this approach is less practical
1t than the desaturation one, because it may be difficult to ensure
id a completely constant indicator infusion rate from the beginning
d and throughout the experiment. It is easier just to stop a con-
stant infusion and then to record the initial slope during desatu-
ration.
It follows from Eq. [6.18] that if we scale the residue
s I..\ 3 curve so that all amounts are divided by m(=2) = m(0); that
0 / \ is, if we plot m(t)/m(0), then the numerical value of the initial
s \ slope of this curve is the reciprocal of the volume/flow and
¢ Relative initial slope is — 1 /F= J/M. mass/Nux ratio of the system. Regardless of the scaling factor

———->
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used, the initial (steepest) tangent intersects the abscissa at
the system’s mean transit time 7.

Comments on the residue detection during saturation

or desaturation (the initial slope method)

As only the ratio of residue mq to residue decrease dm/
dt must be measured, the absolute residual amount need not
be determined. When external counting is used, we do not
need to know the counting geometry. Thus the rate of indicator
infusion is also immaterial.

The major difficulty of the initial slope method consists
in the possibility that the time during which the outflux contin-
ues unaltered (at maximum rate j(9°)) while the influx has
completely stopped may be gquite shorr. Consider for example
that we were to study by external counting the initial rate of
decrease of *'albumin infused at constant rate into the arterial
inlet (in well mixed fashion) of an isolated skeletal muscle.
Even if one stops the infusion pump abruptly, the influx of
indicator does not instantaneously drop to 0 because the indica-
tor concentration in the inflowing artery cannot change step-
wise. Perhaps it will take 1 or 2 sec for a, to reach a level

that 1s so low that it can be neglected. Following this, there
is probably a brief period, perhaps of 3 to 5 sec, during which
the outflux can be assumed to continue at the same (maximum)
rate as during the infusion. It is during this brief period that
the mitial slope must be recorded. Clearly, this slope cannot
generally be recorded very accurately in so short a time, espe-
cially if the slope is relatively shallow

This discussion demonstrates that although theoretically
the residue detection method is quite analogous to the inlet—
outlet detection method, in practice the two methods are quite
different. The difficulties of determining the initial /inear slope
of the residue curve is such that to our knowledge the method
has never been used. It is the initial, or. more precisely, steepest
slope of a semilogarithmic plot that one employs.

The justification for making a semilogarithmic plot of
the curve is that, initially at least, the system may behave like
a well-mixed system, a “compartment,” as will be discussed
further in Chapter 10. We shall here just mention that if a
residue curve is monoexponential between time 0 and time
f, then it means that until 4

mt) = m{Q)e™ & [6-19]

For this curve the relative slope »/m has the numerical value
of

—m)/mit)= k= /i [6.2[11

Hence it follows that if the curve decreases monoexponentially
from the starl then
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Fractional initial Initial slope on
slope on linear plot semilogarithmic plot
may be constant only may be constant for
for a very brief a considerably [6.21]
interval of a few longer interval.

seconds.
= ml0)/ m(0) = —m(t)/m(t)

The practical procedure is usually to plot the early part
of the curve on semilogarithmic paper and then measure the
halftime #,» of the tangent to the initial steepest part of the
curve. Then

: Ina 0.693
mO)/m0)=k=——=—

ek [6.22)

hiz

For further discussion of the well-mixed monoexponentially
desaturating system the reader is referred to Chapter 10. It
may seem odd that we have discussed an approach (linear slope)
that cannot be used in practice. It has been done for the reasons
of symmetry, so as to correspond to residue detection after
bolus injection mentioned in Chapter 7 and also in order to
point out that all one does by the semilogarithmic initial slope
is to find an experimentally satisfactory way of determining
the initial /inearslope, which is the kinetically correct parameter
1/f

6.6 Transcapillary Albumin Flux

The method is based on measuring the albumin mass/
flux M/J ratio by observing the initial fractional escape rate
1 — m(0)/m(0) of tracer albumin injected intravenously. Then,
by also measuring the intravascular mass of albumin M the
absolute transcapillary escape rate J can be calculated.

In order to calculate the intravascular albumin mass we
must know the dose my of tracer injected. Blood samples are
collected without stasis with 10-min intervals during the first
hour after the injection. In the plasma the concentration of
the indicator ¢fr) and that of albumin C (or total protein) is
measured and the ratio gives the specific activity as a function
of time s(1). By retrograde monoexponential extrapolation the
estimated initial value s(0) is obtained and thus the intravascu-
lar mass is obtained from

mg

s(0)

M= [6.23]

The halftime of the initial slope on the semilogarithmic curve
may be read off the curve. Then
M/J=T= ;= ;2/In 2 = 1,,,/0.693 [6.24]

For accurate determinations one may use a linear regres-
sion of the logarithm of s(z) or of ¢(t) on time and employ
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In X=In 10 log;oX
=2.303 logye X

Ingvar D. H. and Lassen N. A, (1962):
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Diagram of 1wo saturation curves in cortex

'

the slope obtained (the use of decade logarithms logo instead
of natural logarithms In = log. is due merely to convention).
For ¢(t) we use the numerical value of the decade logarithms
slope, B, that gives
M/iJ=1r
—eft)/(de(t) /dt)
=—1/(dn c(t)/dt)
—1/(In 10)(d logs c(t)/dt}
=—1/(2.303 dloge c(1)/dt)
= 1/(2.303 B)
=0.4343 (1/B) sec

By using the slope of the tracer curve after 1Q min the
transcapillary escape measured does not include the exchange
of rapidly exchangeable albumin as in spleen and liver. The
mixing of the tracer at such sites is probably essentially com-
plete when the mixing with the intravascular albumin pool
has taken place.

6.7 Cerebral Cortex Blood Flow

This method was designed for measuring the blood flow
of the superficial half millimeter of the cerebral cortex in ani-
mals. It can also be applied to other tissues. The indicator
used is the radioactive inert gas 85Kr dissolved in physiological
saline (0.99 NaCl) and infused into a cerebral artery usually
via a small catheter placed in a side branch (the lingual artery).
85K r emits for all practical purposes only 8 radiation (electrons)
with a maximum energy of 0.7 MeV. This means that by using
a small Geiger counter placed over the exposed brain surface,
indicator may be recorded down to a depth of approximately
0.5 millimeters.

The infusion may be made in the form of a more rapid
one for the first minute followed by one-fourth that speed for
the following 4 min. This ensures more complete saturation
of all cortical tissue phases (layers) during the 5 min than
would be obtained had the same infusion speed been used
throughout. The absolute amounts being infused are unimpor-
tant. One merely infuses an amount such that a suitable plateau
counting rate m(@) of approximately 3,000 to 6,000 counts
per min is reached.

Upon sudden cessation of the infusion the washout curve
is recorded for approximately | min using either the cumulative
counts obtained in suitable short time intervals (2 sec) or a
ratemeter curve with a suitable time constant (3 sec). Transfer-
ring the clearance curve to logarithmic paper the ;s of the
initial practically monoexponential part is obtained. Then

Vd/F=Nf=1/k= F=1y,2/0.693 [6.25]

That is, we can calculate the blood flow per 100 g of brain
cortex, CBFcortey, 88
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0.693

172

CBF ortex = 100/ 100A

[6.26]

where A is the cortex:blood partition coefficient of %3Kr.

This description of the 3°Kr infusion method does not
introduce the multicompartmental model that was employed
when first developing the method. In this approach the desatu-
ration curve is considered as the sum of n exponential terms
each of the form exp. [—fi/A;}f] and with a O time value equal-
ing the amount of indicator in that tissue at time 0 W;ci(0) =
Wilei(0)/ e(0)]ep(0) = Wikicy; that is,

m(t) = Wikico(0) e /i ;! [6.27)

where ¢;(0) is the inert gas concentration in the blood at full
saturation, W; is the weight of tissue 7, £ its blood flow per
gram of tissue, and A; its tissue:blood partition coefficient. The
numerical value of the fractional slope (slope in a semiloga-
rithmic system using the natural logarithm) is at time O

L g [: rfm(!).-’d.'] x Wif v f
T mi(t) sy =P A

[6.28]

where the mean flow /and mean partition A coefficients are
defined as indicated in the equation. Hence it follows that Eq.
[6.26] is obtained by this derivation also. But the concepts
behind Eq. [6.27] are quite complex and all that is stated by
the multiexponential formulation is that initially the curve be-
comes practically monoexponential with a slope being equal
to the fractional slope in a linear system, a slope that we thus
determine i1 practice by the semilogarithmic plotting. This cal-
culation is carried out without ever using or even calculating
the flow and weight of the presumed individual components,
the number of which is neither known nor must be known in
order to calculate the cortical blood flow per unit weight of
the tissue.

EXERCISES

6.1 Kidney plasma volume: *!'I-labeled human serum albumin is
injected intravenously and with catheters of equal volume a con-
tinuous sample 1s withdrawn from an artery and from the renal
vein over | min (A, and V) followed by another sample collected
over the following 15 sec (Ay and Vy).

The radioactivity measured was

A; = 10,000 cps sampled 0 — 60 sec
Vi = 9,400 cps sampled 0 — 60 sec
Az = 12,000 cps sampled 60 — 75 sec
V2 = 12,000 cps sampled 60 — 75 sec

Calculate Vd/F = [; i.e,, the mean transit time of albumin
molecules through the kidney is f = min = sec,

By para-aminohippurate (PAH) clearance and extraction
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= Vd/F

6.2

6.3

the renal plasma flow has been measured to be 900 ml/min.
Assume that the kidneys weigh 300 g and thus calculate the
plasma column Vd per 100 g: ~ml/100 g.

Can one, yes or two, calculate the % renal blood volume accu-
rately if the hematocrit of the arterial blood is 0.407

With renal hematocrit assumed to be 0.9 X large vessel
calculate the red cell volume of the kidney, Fdgpc:
Vdpuc
—————— =036
"'(I'RBC + I/:'{['l_
I/(-!I'Hll (
—TRICCIL ) 3¢
Vdgpe/Vedp, + 1 o
_ : 0.36
Vdpec/ Vdpr = 0.64

Note the impracticality of the procedure because fis so short
that C, is almost the same as C, during the first one minute.

Myocardial blood flow: '*3Xe is inhaled at constant concentra-
tion and during the 5 min of inhalation one samples 5 pairs of
I-min samples that are taken continuously and in immediate
succession from a peripheral artery and the coronary sinus (the
main venous drainage) from the left ventricle. Counting equal
volumes in a well counter shows the

CA 0-— 1 min 12,000 cpm
CY¥ 00— 1 min 8,000 cpm
CA | —2min 50,000 cpm
CV 1 —2min 45,000 cpm
CA 2—3min 58,000 cpm
CV 2—3min 56,000 cpm
CA 31—4mm 60,000 cpm
CV 3—4min 59,000 cpm
CA 4—5min 60,000 cpm
CY 4—5min 60,000 cpm

Calculate the mean transit time 7of '*3Xe through the myocar-
dium 7+ = ____ min. Assume that the myocardial/blood parti-
tion coefficient for 133Xe is 0.70 ml/g. Calculate f= A/f and
myocardial blood flow (MBF) = 100 f= ml/100 g/min,
Note that in this case with § = 30 sec the errors inherent in
calculating the A-V differences are not nearly as critical as in
Ex. 6.1.

Assume that the mean transit time of an albumin tracer
is 6 sec = 0.1 min. Calculate the myocardial plasma volume.
__ ml/100g.

Escape of labeled albumin from the plasma space. During the
first 60 min after intravenous injection of a bolus of 3!I-labeled
albumin (injected dose me = 3.0 X 10°% cpm) the following con-
centrations were measured:

lime log (cpm/ml)
10 2.997

15 2.995

20 2.994

30 2.991
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40 2.988
50 2.985
55 2.983
60 2.982

Calculate by retrograde extrapolation ¢{0) and Vd = mo/c(0).
With an albumin concentration of 4 g/dl calculate intravascular
mass of albumin M = g. Then calculate I/T = k= —d In
e/dt = —2.30 - d logec/dl. k = hr. The mean transite

time of an albumin molecule in the plasma space fis _ hr.
The outflux (net loss) of albumin from plasma space Jis
g/hror ____ g/24 hr.

Brain cortex blood flow by B-counting of 8°Kr after saturation
using Geiger—Miillers counter over exposed cortex.

Use the table in Ex. 6.3 but assume time 15 measured in
units of 1/10 sec, 1.e. over a total of 6 sec.

Calculate cortical blood flow assuming Acortex 15 0.8.

k= min~!

cortex blood flow 100 - f= 100 - A/f= 100- A - k ml/
100 g/min i

Note that in practice one usually records the curve for approxi-
mately 30 sec (for as long as it is linear in a semilogarithmic
plot) and then measures #;;2 = 0.693/k or tije = tog = '/x 10
calculate k and hence £




