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Flow or Flux by Bolus Injection:
Outlet Mixing (The Henriques-
Hamilton Principle)

3.1 The Experiment

A known amount (dose) m, of an indicator is injected
as a bolus into a system having one or more inlets and a single
well mixed outlet from which we can sample. The flow F of
the carrier fluid through the outlet is constant while the outlet
concentration ¢(¢) varies with time. The small quantity of indi-
cator leaving the system during the short time interval ¢ from
time £ to time ¢ + dtis thus

Amount _ Volume of carrier
leaving fluid leaving

Moy — Idr cft)

X Concentration

(3.1]

because the interval is so brief that ¢(z) can be considered con-
stant throughout it. Summing up individual amounts leaving
the system until all indicator has left yields the mass balance
equation

Total amount injected  Sum of all amounts

(the dose) L leaving ; [3.2]
My - FJ’ cft)dt
(1]
Solving Eq. [3.2] for the flow F gives
e
Flow = o
e T [3.3]
J’ cft)dt
o

In Egs. [3.2] and [3.3] the time integral is the sum of all the
products eft)dt and therefore it represents the total area under
the outflow concentration curve.

This is the well known indicator dilution method first
used by Henriques in 1913 and subsequently thoroughly ana-
lyzed by Hamilton and his collaborators in 1928 and in a series
of subsequent publications.

Remember
s(t) = e(th

Because
sft)=dm/
and

dM + Jdt

s(t)= e(t)s
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Because

s(t)= dm/dM
and

dM - Jdt

s(t) = e(t)/C
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If the indicator i1s a tracer for a mother substance whose
concentration in the carrier fluid at the outlet is C then the
flux J of the mother substance is the product of & (flow) and

C. Hence

Dose
Flux o
Area

J= FC= e mo I""”

f cft)dt J s(t)dt
o [1]

That is, the flux can also be calculated as the dose/area ratio;
in this case the area is that under the specific activity curve.

Equation [3.4] is also valid when there is no carrier fluid
flow F but when the tracer leaves the system with the mother
substance in a measurable ratio, the specific activity s(z). Con-
sider for example the intravenous injection of the albumin tracer
1317 labeled serum albumin as a bolus. By taking daily blood
samples we can measure the specific activity s(¢) in plasma.
Assuming that this is the same as the specific activity at the
breakdown site we can write an equation that is analogous to
Eq. [3.1]: In the short time interval from 7to ¢+ di the amount
of indicator leaving is

Amount  Amount of carrier 5 Specific

leaving mother substance ~ activity 4%
leaving of tracer (3:5]
dmey = Jdi s(1)
And, by integration, one gets
Amount  Sum of all
injected  amounts leaving
e [3 {1]

Mol = JJ’. s(t)dt

Hence we can obtain the result denoted in Eq. [3.4], J
mr./J- s(1)dt, without using the concept of a flow £
o

Assume that, as in the example in which albumin *“turn-
over” = flux, we measured s(7) in a fluid that contains both
tracer and mother substance in the same ratio as at the outlet.
This fluid may be considered the reference fluid. The clearance
Cl (ml/min) of mother substance may then be defined as J/
C where C is the concentration of mother substance in the
reference fluid. Inserting this into Eq. [3.4] gives

z Dose
Clearance R [3.7)
Cl— _J Mg

{" 02 o
f cft)dt

where ¢(t) is the concentration of tracer in the reference fluid.
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Mass balance in single cumulative
sample technique

If 7, 1s measured in seconds then F
is the volume per second leaving the
system; if ¢ is measured in mass per
ml of whole blood, then the unit of
volume for £ 1is ml of whole blood.

The area ¢1, equals area under
concentration curve Ac

. Dose

Area

Clin Eq. [3.7] is thus an equivalent flow that is analogous
to Fin Eq. [3.3]. By this we mean that the outflux Jcorresponds
to the complete cléaring (rinsing) of all the mother substance
in C/ ml/min of the reference fluid that has a specific activity
that at any time ¢ is the same as that at the outlet.

We can summarize the bolus injection method for mea-
suring flow and flux as

Flow of Area under e(r), measured

carrier fluid F in carrier fluid

Flux of mother Dose  J Area under s(¢), measured 18
substance J|  Area in mother substance [3.8]
Clearance of Area under ¢(7), measured
reference fluid C7 in reference fluid

Although the mass balance principle expressed in Eq.
[3.8] is simple and clearcut, various complications arise in appli-
cations to experiments, some of which are discussed in the
following sections.

3.2 Single Cumulative Sample

Suppose we could collect the entire outflow of fluid at
the outlet in one single “*bucket™ from time O to such time ¢,
after which no further indicator emerges. That means

Amount Amount
injected recovered
Al 1.9
& 5 (39
Volume Concentration
mo= (Fta+ V) ¢

where Ft, + ¥ is the total amount of fluid (carrier fluid plus
injected volume) leaving the system during the sampling period
of £, sec, and ¢is the average outlet concentration of indicator
within that period. As we shall discuss in more detail in Sec.
3.7, this concentration ¢ would also be determined if only a
constant fraction, instead of the total outflow, is collected in
the bucket, Therefore ¢ may be termed the flow-averaged con-
centration of a single cumulative sample from time 0 to time
L

Because the injected volume #; is much smaller than
the cumulative outflow of blood (the small perturbation condi-
tion), Ft, + Vi= Ft, and hence Eq. [3.9] solved for flow becomes
approximately

m
F=— [3.10)
Cln

The product ¢t, equals the area under the indicator con-
centration curve A. (This area divided by #, is actually the
mathematical definition of ¢). Hence Eq. [3.1] can be expressed
in the form of flow equals dose divided by area.

The single cumulative sample approach outlined here has
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a major limitation: it is assumed that the sampling will last
until complete recovery of the bolus has occurred yet without
recirculation of indicator, in a situation where we have no ex-
perimental evidence that both of these conditions can be ful-
filled. In circulation studies recirculation generally occurs long
before complete recovery of the bolus has been achieved. As
mentioned in the case of the constant infusion method, if a
similar (bilaterally symmetrical) noninjected system is available
for simultaneous sampling, then the correct ¢ is obtained by
subtraction as

€= Qnj Caoning [7'l l]

It may be noted that the experimental correction for recir-
culation [Egs. 1.15 and 3.11] is based on outlet sampling from
an assumed bilaterally symmetrical system. This is a direct
approach, in contrast to inlet sampling methods for recircula-
tion correction that are indirect because a convolution proce-
dure is required to calculate the outlet recirculatory response
(see Chapter 9). It should be noted that in many metabolic
systems, such as the total albumin mass in the body, no recircu-
lation occurs.

3.3 Continuous Monitoring

Suppose a densitometer is mounted on the sampling cath-
eter through which blood is withdrawn at a constant rate. The
densitometer 1s cahbrated to yield the indicator concentration
cft). A smooth continuous curve of ¢f1) versus time ¢ 1s thus
obtained. This curve allows extrapolation to complete recovery
as well as elimination of the influence of recirculation. These
corrections are based on an analysis of the downslope of the
curve. It has been shown for many systems that a monoexponen-
tial function can be used to approximate the lower part of
the downslope if recirculation is absent. Recirculation is there-
fore recognized as a deviation from linearity on a semiloga-
rithmic plot of the tail part of the curve (log ¢ plotted against
0).

It is the area under the corrected c(t) curve that we must
calculate. This area A, is obtained in two sections. One inte-
grates the actual curve from time O until the time ¢ From
then on the curve is considered monoexponential. The remain-
ing area, from ¢ to infinity, is obtained as the product of the
curve height at time 4 (that is ¢(7,)) and the time constant
he- Thus

r

Ac ;J' c(t) dt+ e(t,) tyye [3.12]
o

. The integral can be obtained by planimetry of the linear

curve or simply by adding together curve heights measured

at sufficiently brief intervals (e.g., 0.5 sec), remembering to
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Log L‘A

L |

Period of sampling

When extrapolating remember to
measure ;¢ In the same units as At

Note the inconsistency: one cannot
directly compare in sitw and bucket
sampling, but in practice the error is
negligible.
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The two areas can be illustrated only on the linear
curve

multiply by 7 (1/120 min in this example). The time constant
e equals f,2/1In (2) = £,2/0.693. ;. is the time it takes for
the monoexponential curve to decrease to % of a given value;

since % = 0.37, f;/¢ can be obtained as the time until the curve

decreases to 37% of its initial value. . is the reciprocal of

the exponential coefficient & that is Kk = /4. = 0.693/45.
In terms of A the area under the tail part of the curve is
et )/ k.

Sometimes it is practical to combine the continuous moni-
toring approach with the single cumulative sample approach.
Let the densitometer yielding the outlet concentration curve
be mounted immediately in front of a collection syringe by
which we take one cumulative sample at a constant rate to
obtain ¢ by chemical analysis. In this case the densitometer
need not be calibrated in absolute units (the calibration factor
might depend on individual experimental conditions such as
the blood hematocrit). It is necessary only that the densitometer
deflection is proportional to ¢(1).

Densito-

- Densitometer
meter m Ccurve, area l“‘dcr curve
reading until £, 15 bA,
beft)
{bis an
unknown
cahbra

A

Sh!p of

collection
of sampling (7,)

Extrapolated area under
first transit of bolus

We can now obtain the ratio of the extrapolated area
bAe to the actual area bA;:

bAc _ Ae

3
bAry A Ll

In the sample collected the measurement of ¢ is uncor-
rected for recirculation and for incompleteness of recovery.
Multiplying by the known sampling time f, gives A, = ¢t,.
Inserting this into Eq. [3.13] yields the corrected and extrapo-
lated area A,

bA. bA.
= 4 = &t
Thil.. bt

Ar'

that together with Eq. [3.12] gives the flow equation

Mo

talbAc /bAy) (3.14]

Succe

cumu
sampl

A

c

Log c
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istant Successive where the ratio bA./bAr is the correction that changes the
. cumulative

zs for samples measured area A, to the correct area A..

value;

curve N

S5 of c 3.4 Successive Cumulative Samples

s 2 — & This sampling procedure is widely used because it allows

rve 18 extrapolation without the necessity of special instrumentation
_ [*“on-line’” densitometry of dye in whole blood can present prob-

OBt lems of linearity whereas conventional spectrophotometric anal-

oach. = ysis of dye in samples of blood or plasma together with a suitable

curve — standard dilution avoids (corrects for) such problems].

ge by > ¢ Usually a series of n samples is collected at the outlet

ite to At tn over successive time intervals of equal duration A7 (e.g., | sec).

meter HH Thus one obtains a succession of cumulative samples in the n

factor I = nAt time intervals from 0 to time t,. Consequently f, = nAtr The

ich as outlet concentrations in the samples numbered 1, 2, . . . . n

‘meter are denoted ¢;; &, . - . - Cy:

The curve is drawn as a “staircase” on semilogarithmic
paper and extrapolated to infinity by a line intersecting the
middle of the steps. Let the first step that fits on this monoexpo-
nential curve be step number r’ the area A. is then obtained

N\ in two parts as
Leg c
S /C' A }:rr,m b ot re [3.15]
re=]
¥ crin § This indicates that the individual areas of all the r rectan-
[ § gles that comprise the area are summed up to time 4. Then
= cfte) 1s read off the semilogarithmic plot midway between ¢
}}'_ e and ¢+,. The time constant 4. 15, as previously discussed,
the time that it takes for the curve to decrease to 0.37 of its
e o initial value ¢(#.). One can also just take the half-time f,, and
\ \ i then calculate £, = 1;,2/0.693.
f
| area
3.5 Comments on the Measurement of Flow by the
Bolus Injection Method
(3.13] It 1s important to consider extrapolation to infinity. A
practical way of assessing the validity of extrapolation consists
uncor- of checking the calculated flow with flow determined by a
0"’3{}‘- method not requiring extrapolation. Usually the initial down-
= . slope of the curve is employed in the extrapolation. But not
trapo- uncommonly a careful correction for the recirculation will show
that this initial part of the downslope is not the correct exponen-
tial to be used for the final part of the washout process. The
error involved will probably in most cases be an underestima-
tion of the true area under c¢(7) because slower outwash rates
of the tail are masked by the recirculation. In instances with
[3.14] which the authors are familiar (Evans Blue T-1824 in human

brain and in exercising human forearm) an underestimation
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In a conservative system the total
recovery through all outlets is by
definition 1009!

Recoveries apparently differing from
unity for a single outlet system could
also result from analytical errors in
measuring cft) and/or m,

of approximately 10% of the ¢(¢) area results from using the
conventional mode of extrapolation plotting the initial part
of the downslope of ¢() on semilogarithmic paper.

The recovery of the indicator bolus at the outlet that
we sample from may be incomplete for reasons other than
errors in extrapolation or in correcting for recirculation. We
may, for instance, be wrang in our assumption that the indicator
used is leaving the system solely via the well mixed outlet
where sampling is made. That is, losses through other outlets
could occur at sites designated as sinks (remember that all
systems are by definition conservative; neither breakdown nor
permanent retention sequestration occur inside the system),
through evaporation through skin, lymph drainage, and so
forth. If several indicators are injected simultanecously one indi-
cator may be completely recovered whereas others may not.
It is convenient in such cases to replace my in the dose divided
by area equation by R, where the recovery R is the fraction
of the injected amount m, that emerges via the outlet from
which recordings are taken. Eq. (3.3 thus may be written

R L

Fout = =

e w .16
J [eft)/mo)dt fwr’!)d.’ I ]

where 4y is the flow through that outlet and w(t) = c(t)/
myg is the concentration per unit dose at the same site. The
concentration per unit dose is a quantity especially useful when
comparing results for different injection doses and for different
indicators.

Nonstationarity of systemic parameters is another prob-
lem. The outflow is, of course, never exactly constant. The
act of injecting the bolus alone must disturb Fif only to elimi-
nate the amount of fluid injected. Conservation of mass still
holds and for a small time interval dt, the eliminated amount
is

dmow = F(1) c(t)de [3.17]

Integrating and defining a mean flow F according to the dose
divided by area concept

Moyt = Mo j F(t) c(t)dt= FJ’ c(t)dt [3.18]
L] ]

Therefore, when the flow situation is varied the dose/area ratio

yields a weighted mean flow defined by Eq. [3.18].

Many authors studied the influence of the nonsteadiness
of F'in the circulation. Consider, for example, the cardiac out-
put. At the aortic valves blood flows only during the systole.
The cardiac output measured as dose/area is found to yield
the correct average flow with very little error because the car-
diac cycle (approximate 1/sec) is brief relative to the mean
transit time of a bolus (10 to 15 sec).
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3.6 The Bolus

The dose my of indicator that is injected must be mea-
sured accurately. It is trivial to remark that any amount remain-
ing in the injection system (catheter, stopcock) must not be
included. Yet, the need to be certain about the amount entering
the system does pose some practical problems. In some cases
it is most practical to fill the entire injection system with the
injectate prior to injecting the bolus and then to determine
the volume injected ¥ as the weight loss of the syringe divided
by the specific gravity of the solution.

The concentration of the injectate ¢; may be determined
by diluting a known volume A ¥ (e.g., 0.100 ml) by a known
volume AV, of blank carrier fluid (e.g., 10 ml) collected from
the outlet just prior to the study. This diluted injectate is termed
the standard and its concentration ¢, is measured in the same
way as all the samples collected during the study are measured.
The use of a standard that is diluted to about the same indicator
concentration as that of the samples tends to correct for non-
linearity of the analytical procedure. The dose of indicator is
calculated by

AW+ AW

Dose=m¢=a¥V,= ¢ T ¥ [3 ]‘?]

When the carrier fluid is a multiphase fluid such as blood
it may be convenient to consider the dilution factor 8= (A V)
+ AV )/AV as a conversion factor for the injected volume
Fi. In this way the experiment can be considered to consist
of the injection of ¥, milliliters of carrier fluid containing indica-
tor at concentration ¢, with ¥, = [(A W, + AW)/A V] V. This
mode of viewing the experiment may help to clarify that the
flow F determined as dose/area is the flow of carrier fluid
(blood) used to make up the standard regardless of how the
concentrations are actually measured. The point discussed in
detail in Chapter |, Sec. 1.8 has been repeated here because
of the confusion often resulting when, for example, ¢(f) and
¢ are actually measured in plasma while Fis obtained in millili-
ters of whole blood per unit of time.

The bolus can be injected rapidly or slowly and at con-
stant or variable speed. The time and the site of injection are
not important. All we must know is that the amount m, has
entered. However, in practice it is important to deliver the
bolus rapidly and close to the mixing site in order to minimize
recirculation problems.

3.7 Convection and Diffusion

In Sec. 3.1 we derived the dose divided by area equation
on the basis of the equations
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Membrane “pumps” and pinocytosis
are also bulk transport processes in
that carrier and indicator (or tracer
and mother substance) move together.

Fick’s diffusion equation
Fick, A. (1855): Poge. Ann. Physik., 94:59.

Bucket sampling

Bucket

Fef(t)dt

d out —
e {J,m)d:

(3.20]

These equations state that the amount of tracer crossing the
outlet boundary surface during d? is given by the amount of
carrier substance multiplied by the amount of indicator per
unit amount of carrier. Both equations may be termed bulk
transport equations in that carrier and indicator move together.
A typical form of bulk transport is convective flux, that is,
bulk transport by fluid flow.

In addition to the bulk transport, diffusion may transport
indicator out of the system without a corresponding (net) trans-
port of carrier substance. This means that the correct equation
for the amount leaving in dt is

Fe(t)dt — DS(de/dx)dt
Js(t)dt — D*S(s/dx)dt

Ao =

[3.21]

where D (cm?/sec) is the diffusion coefficient in the fluid and
Dt is the corresponding coefficient for interdiffusion of tracer
in the mother substance, and 5 1s the cross sectional area of
the outlet.

Thus it is apparent that dm.. depends not only on the
concentration of indicator at the outlet but also on the concen-
tration gradient at the outlet in the direction of the flow or
flux. In deriving the dose divided by area equation the diffusion
transport term was neglected. This 1s permissible as the effects
of diffusion cancel out, as will become apparent from the analy-
sis given below.

Bucket sampling

In the vsual sampling procedure we collect fluid (respec-
tively, mother substance) as it leaves the outlet. Each sample
is collected in a “*bucket™ (test tube, syringe, etc.). This assures
that if we collected the total amount dm .. of indicator leaving
the system in intervals of df sec then

Fe bucket (t)dt

d ou =
e {Js bucket (1)dt

[3.22)

In other words, because the buckets accumulate @/l the effluent
carrier fluid (respectively, carrier mother substance) in sequen-
tial samples we can use the simple bulk transport equation
for obtaining dnig,. The same is true if our bucket collects a
constant fraction of the effluent carrier fluid.

Two important conclusions are reached. First, because
of diffusive flux at the outlet the concentration in the bucket
is not identical to the outlet concentration in the same df inter-
val. Precisely expressed, from Egs. [3.21] and [3.22] it can be
seen that
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Spalding, D. B. (1958): Engng. Sci., 26:549.

Flow calculation from in situ
measurement of outlet concentration
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Outlet
Concentration in = concen-  Diffusive
sample collected tration term
Couaiat (u] lc (1)— DS/ F(dc/dx) [3.23]
Shucket ”) Ay (-') )') 'S/J(a\‘/a,‘()

Second, we see that by integrating Eq. [3.22] we obtain the
dose divided by area equation for flow or flux. Hence it is
apparent that the bucket sampling procedure used converted
a convective—diffusive indicator transport [Eq. 3.21] into a con-
vective transport [Eq. 3.22]. Diffusion is thus automatically
taken into account for flow or flux determination by the bolus
technique because the bucket sampling procedure includes this
transport and converts it into what we might term an equivalent
convective transport.

In situ monitoring

Suppose a continuously monitoring device such as a densi-
tometer is mounted on the outlet. The device might “look™
across the stream or consist of a catheter tip sensitive to the
indicator. Thus the outlet concentration ¢(t) can be recorded.
This concentration does not allow us to deduce the amount
of indicator leaving the system in dt¢. To obtain dnigu a correc-
tion term for diffusion must be applied.

The magnitude of this correction, that is the relative role
of diffusion, may be assessed as follows. Let Eq. [3.23] for
the indicator—carrier fluid case be written

Concker (1) = c(t)[1 — DS/FI0/c(1))de/x]) [3.24)

The diffusion coefficient D of an indicator molecule of order
mol. wt. 100 in blood 1s approximately 1075 em?/sec. For an
outflow velocity /5 of order |1 em/sec and a fractional indicator
concentration gradient ['/.(t)] d¢/0x of order 1 em™! the correc-
tion term in Eq. [3.24] is of order 10°% which is completely
negligible. For heat (or cold) as indicator the “diffusion coefTi-
cient” [thermal conductivity/(specific heat X density)] is ap-
proximately 107% em?/sec and the correction term might be-
come appreciable. Of course if the outflow velocity becomes
sufficiently low then the diffusive term can predominate over
the convective term for any indicator.

As already mentioned, in situ monitoring of ¢(t) does
not, after multiplication by Fdi, yield dnm o, Nevertheless, the
correct flow is obtained by using the area under the ¢(1) curve
regardless of the relative magnitude of the diffusive component.
This may seem surprising. It is derived from the equal area
rule presented in Chapter 4. We can here comment on this
result by stating that the flow equation is obtained from the
integral of Eq. [3.21]; that is, for m, we have

Dose = my = Fj cit)dt — f).S'J (de/0x)dr [3.25]
(1) (1]
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True outflux
Flruesat(t)

/ Convective

outfiux

Fert)

In the single inlet-multiple outlet
system described in Chapter 4 the
catheter tip must not move.

4

\/——/Q/‘/

‘L “Subsystem’

)

0 c Qutlet orifice
7 L s

Catheter

ﬁ outlet

In general the sampling catheter gives a different
curve shape, bul 4, = A; The curve shape is
maintained only in instances of plug Aow in the
catheter.

where the net effect of diffusion, the integral of the diffusive
flux (second term on the right side) is 0. This may perhaps
be intuitively accepted; the net forward diffusive flux on the
upsiope part of the c(t) curve is precisely counterbalanced by
the net retrograde flux on the downslope. The two curves
Coueket () and ¢ft) thus have the same area.

The treatment given in this section has demonstrated that
diffusion can be disregarded. For this reason the suffix in
Coneket (1) may be dropped and the measured outlet concentra-
tion may be denoted by eft) regardless of whether “in bucket™
or “In situ” measurement is used.

3.8 The Sampling Catheter

The system analyzed in this chapter has only a single
outlet. Hence we may sample from any site in the outlet aperture
and this sampling site (e.g., the location of the tip of the sam-
pling catheter) need not be the same throughout the experiment.

The entire conduit connecting the outlet orifice to the
“bucket” of collection will be termed the sampling catheter:
needle + catheter + stopecock + nozzle of collecting syringe
(or whatever else is used in a particular experiment).

The influence of the sampling catheter is simple to de-
scribe in the case where we collect a constant fraction a of
the outflow # and where the linear velocity in the catheter
equals that of the outlet stream (plug flow at velocity F/S)
In this case the catheter sampling is precisely equivalent to
the “bucket” sampling procedure outlined in Sec. 3.7. Hence
mass balance relative to the catheter gives

Total Total Total

amount amount ol amount
passing  entering = leaving
catheter catheter catheter

&g = o FJ- Ciinta cathy (D)dl = a Ff Clanttismeann (Hidl [3.26]
(1] 0

Thus it is apparent that the area that should have been meas-
ured, that is, that under the outlet’s concentration curve, equals
that at the sampling end of the catheter regardless of how
long it is.

But in most cases we do not collect at the same linear
velocity as that of the fluid leaving the outlet orifice. Thus
the local concentration pattern in the outlet [cfz) as well as
dc/dx] is deranged. In this situation it is convenient to consider
the catheter as part of the system. Then, provided the cross-
stream mixing at the original outlet also holds immediately
upstream thereof, we can take this upstream site as a well-
mixed inlet to a multi-outlet subsystem where the catheter’s
frec end (that in the bucket) is one outlet. According to the
analysis given in Chapter 4 the equal area rule states that the
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area under this outlet curve is the same as that at any point
in the outlet orifice.

In conclusion, the sampling catheter poses no problem.
The only fairly obvious point to make is to be sure to start
the sampling before the indicator reaches the systemic outlet
and to continue sampling until all indicator has passed this
location and until all indicator in the catheter has reached
the collection bucket (respectively, until the time from which
a valid extrapolation can be made).

3.9 Flux and Clearance

The preceding sections have been concerned mainly with
flow determination by the bolus technique. But, as derived in
Sec. 3.1, the same principles apply to determination of flux
and clearance.

Thus, if the flux J of a systemic substance occurs via a
convective flow F of carrier fluid, then in a bolus indicator
experiment

mg me

e R (3.27]
1/C| cft)dt s(t)dt

1 (1]

where s(7) is the ratio of the concentration of indicator ¢(z)
and of the systemic substance of interest C at the outlet.

If the indicator is a tracer for a systemic substance, Eq.
[3.27] is obtained directly by the “transformation™ explained
in Chapter 1: £ — Jand ¢ — 5 which changes F = mo/A.
into J = mo/A;. We can also derive Eq. [3.27] on the basis
of the bulk-transport equation for mass balance, that is from
dmon = Js(t)dt where Jdt is the amount of mother substance
leaving the system in the interval from ¢ to ¢ + drand s(1) is
the specific activity of tracer of that time interval. Integration
yields Eq. [3.27]). As discussed in Sec. 3.7, we are allowed to
derive the flux equation as is done here, that is, by considering
only bulk transport (tracer and mother substance going to-
gether). The independent flux of tracer due to interdiffusion
in the carrier mother substance does not contribute to the total
area under the specific activity curve.

As an example of a nonconvective flux consider the meas-
urement of tatal body albumin flux Jy, by the use of 1311-
labeled albumin injected intravenously. The plasma specific
activity curve s(t) is followed for 14 days by daily sampling

andj s(t)dtis determined using conventional monoexponential
O

extrapolation. Assuming that the specific activity of tracer albu-
min at the true outlet equals that in the plasma at the same

time permits the use of the dose/area Eq. [3.27] for calculating
AT

The clearance C/(ml/sec) has been defined for a systemic




36 Bolus Injection, Outlet Mixing

Sout{t) = Cour(TV Gour

dose/area

We derived this equation in Sec 3.1
[Eq. 3.7]. It is derived again here to
show another mode of explaining this
important relationship.

Inulin and *'Cr-labeled EDTA do not
cross the tubular epithelium distal of
the glomerulus; there is no tubular

reabsorption and no tubular secretion

ac = 15 writlen as a exp.(—at)

substance as the ratio of the efflux J,,, (g/sec) to the concentra-
tion of the substance in a suitable reference fluid G (g/ml)

JDLI
Cl==2 (ml/sec) (3.28]
( Tef

This clearance could be determined by direct measure-
ment of the amount of systemic substance leaving the system
per unit time (e.g., the urinary creatinine excretion rate) and
of the appropriate reference fluid concentration (the serum cre:
atinine). We could also employ an indicator constant infusion
technique (such as inulin) and measure the same parameters
in the indicator steady state.

Can the clearance of a systemic substance defined in Eq.
[3.28] be determined from a bolus injection experiment? Yes,
it can if the system has a single outlet because substitution of
Eq. [3.27] into [3.28] gives

Cout Mo
r! e
Gt = [3.29]
('nnl(l')df
Thus, by using the outlet fluid as reference fluid
= Mg
Ci=——"
SR [3.30]
Cout (1)dt

As an example we may take the urinary clearance of
inulin or *'Cr-labeled EDTA (ethylenediaminetetraacetate,
EDTA) as determined with plasma as the reference fluid. The
arca is the area under the plasma disappearance curve extrapo-
lated to infinity. Because these substances arc excreted solely
in the kidney and because glomerular filtration is the mode
of excretion, the dose-over-plasma-curve area is the glomerular
filtration rate.

Just as in the case of the flux of plasma proteins it is
advantageous to employ a bi or a tri exponential representation
of the plasma curve. This has the sole purpose of facilitating
calculation of the area. In Chapter 10, where the exponential
function is presented in detail, it can be seen that if

cft) =a exp.(—at) + b exp.(—f£1)

then

J’ cft)de= A. =a/a + b/83

L}
and hence

" a/’Tr”:o_bfﬂ ml/min [3.31]

{(For urinary clcarance the time unit is usually minutes and
this unit must also be employed when obtaining « and 3.)
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EXERCISES

Background has been subtracted. 3.1 Radioactively labeled microspheres are injected in the left atrium
as a bolus and continuous sampling of blood is made from the
femoral artery at the constant rate of 0.5 ml/sec for 30 sec (i.e.,
until bolus has passed sampling site). In a fixed counting geometry
the injected amount was 3 X 107 cpm and the whole blood
concentration 10* cpm/ml.

Bolus fractionation principle of L. A Calculate cardiac output using Eq. [3.10]. Now think of
Sapirstein (1958): Am. J. Physiol., 193:161. the experiment in terms of the bolus fractionation principle:
Cardiac output I'otal dose

Flow rate through needle  Counts through needle

That 1s, the fraction of the cardiac output sampled through the
needle equals the fraction of the microspheres collected.

In the kidneys the microspheres (10 to 15 pm in diameter)
are totally retained. If lg of homogenized kidney tissue has a
counting rate of 6 X 10 cpm, use the bolus fractionation principle

Lo calculate renal blood flow.

3.2 Dll.Jabeled human serum albumin in sterile saline containing
carrier albumin is injected via the femoral vein using nonlabeled
saline to flush the catheter. The injected amount is determined
by weighing 0.8483 g, specific gravity 1.030. A series of blood

All samples are counted for 200 sec samples is taken from the femoral artery starting c. 5 sec before
and continuing after the injection with an interval of 1.20 sec.
Whole blood (0.5 ml per sample) is counted as well as 0.5 ml
of a mixture of 50 pl injectate and 5 ml of whole blank blood.
The observed counts as accumulated over 200 sec were (standards
in the first two holes): 563472, 558687, 739, 738, 730, 728, 735,
813, 1043, 2451, 9719, 23754, 40131, 46914, 43978, 35107, 24784,
16917, 11262, 7558, 5159, 3907, 3241, 2974, 3389, 4059.

Plot a graph of the curve both on linear and on semiloga-
rithmic graph paper. Calculate cardiac output of whole blood
and of plasma (the hematocnt is 0.40).

3.3 A bolus of mulin is injected intravenously (i.v.) and a plasma
curve is observed over 5 hr that can be well approximated by

wit) = 0.0005 e7 0481+ 0,0001 e-001 ¢

where wi(r) is the concentration as measured in fractions of in-
jected dose per ml of plasma, and ¢ 15 measured in minutes.

Calculate C/in in ml/min and calculate the initial volume
of dilution that should equal the plasma volume. Also calculate
the total volume of dilution that is a measure of the interstitial
space (for this calculation see Chapter 7).




