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the measurement of radioactivity may include a portion from more than one
compartment. In the remainder of this book though Cx will be taken as the
vector form of eqn (2.66).

2.5 Frequency-domain characterization of system dynamics

In this chapter, emphasis has deliberately been placed on the time-domain
characterization of system dynamics, and the corresponding expressions in
the Laplace operator s. There is also a considerable body of theory
concerning frequency-domain characterization which gives no additional
information, but which presents the same information in a different manner.
This is sometimes more appropriate, particularly when sinusoidal input
functions are feasible. Such functions are not feasible for most compart-
mental system applications, for which the inputs are more usually impulse
and/or step functions. Details of frequency-domain characterizations will
therefore not be given in this book, and the interested reader is instead
referred to a standard text, for example Richards (1979).

3 Analysis of Systems with
One and Two Compartments

In this chapter, the dynamic response of linear, time-invariant compart-
mental systems with one and two compartments will be considered.

3.1 One-compartment system

In some practical situations, the system being modelled ¢can be approximated
by a model with only one compartment. In physiological systems, for
example, the compartment would contain the systemic blood and well
perfused tissue, and the effect on the kinetics of less well perfused tissue would
be negligible.

The one-compartment system is shown in Fig. 3.1. The differential
equation for the quantity x, in the compartment is

Xi(t)= —kgyx,(t) + byu(r) (3.1)
50 that
{1(5? B b,

I . =5 - ’
Uils) s+ kg,

The observation is
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where ¢, is the observation gain. If the observation (i.e. measurement) is of
concentration, for example, and x,(¢) is a quantity,

gy TR (3.4)

Figure 3.1 One-compartment model.
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where V, is the apparent volume of distribution of the compartment. The
overall transfer function G(s) is thus

. )
Gls) = U?Li - :i’m (3.5)
3.1.1  Impulsive input
If a quantity D, is rapidly administered.
u(t)=D, d(r) (3.6)
where (1) is the unit delta function (see egn (2.18)). Thus
Uy(s)= D, (3.7)
and, by inverse Laplace transformation (assuming x,(07) = 0),
wi)y=eb,D, e *,  1>0 (3.8)
as shown in Fig. 3.2 (cf. Fig. 2.3). The zero-time intercept y,(0) is ¢,b, D,
the time constant is ﬁt- and, from eqn (2.13), the half-life is U—'_69§-
1

3.1.2 Step input (constant continuous infusion)

If, jns_(ead of being impulsive, the input is administered at a steady rate k; per
unit time, starting at t = 0, i.e. |

w1y =k, t20 (3.9)

Time

1; 2} 5‘ T
\ &,
# ko Koy i

Figure 3.2 Observed impulse response of the one-compartment model.
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then
, k;
U,(s}:-'- (3.10)
s

so that, from eqgn (3.2) and egn (3.3),

bk cibik; (1 1
Y_-=...-‘"=“‘(__ 3.1
1fs) s(s + koy) koy \s s+ kg, (311)

Inverse Laplace transformation gives

bk | _ehory, 130 (3.12)
Koy
as shown in Fig. 3.3 (cf. Fig. 2.4).

Note the general result here (for a linear system) that the unit step response
(with k; = 1) is the integral of the unit impulse response (with D, = 1): thisis
confirmed by integrating eqn (3.8) to give the unit step response

J it ¢,b, L .
ylty=1 ¢bye  tdr = . (1 —e "1l t 2 0. (3.13)
[}] 0f1

nl) =

In a number of medical applications, it is preferable to administer a dose
D, as a constant infusion over a tume 7;, so that

D .
n]ff]:?]~ 0= e< T, (314
= {, otherwise. (3.15)

Time
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Figure 3.3 Observed step response of the one-compartment model.
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i so that the washout curve, with the input stopped at t =0, is

k.
x,(t) = —e"tor,
(o1

Comparing eqns (3.8) and (3.20), we see that the form Ar | wu W

is the same as that of the washout curve; this 1s

applies only to a one-compartment system. ' ﬁ L M§/7

o

s ?
3.1.4 Repeated impulsive input ' W

In pharmacokinetics applications, doses are often repeatd &

intervals. Assume that the doses are impulsive, of magnitude D, a.. N AN
constant interval between doses is T, let the input fraction b, be unity \ ;Y\»GJ
first dose is administered at ¢ = 0 and x,(07) = O, then the quantity in
compartment between doses 1 and 218

Figure 3.4  Observed response of the one-compartment model to a constant infusion over the
time range 0 £ < T,.

x,(t)=D, et 0Lt <T,. (3.21)
From eqn (3.12), the measured quantity during the infusion is The maximum value in this interval (at ¢ = 07 )is D, and the minimum value,
just before the administration of the second dose, is D, e *aTo After the
yy (1) = ""_1&,‘0_1 (1 B ol Ggre T (3.16] second dose, but before the third dose,
’ koy T
xjta)lee'*'“'-LD,c“‘w“'f“', Tl 1 P (3.22)

reaching a value at the end of the infusion of
(The model is linear, so the principle of superposition applies.) The maximum

eby Dy e, o value in this interval is D,(f + ¢ *7) and the minimum value s
(T = ——1{1 —e7 ). {3.17) % Tar kg T
i ko, T, Dy e” evio(l + € T00).
o By similar argument, in the interval between administration of doses n and
After the infusion has stopped, {n + 1). the maximum value of the compartmental quantity is
yi(t) = y(T)e =0 1> T, (3.18) Xy = Dy(1 + e koo g gm0t 4, f ¢~ 0= HoTo)
. : p . . 1l —e nkoy Ty
A plot of y,(r), as given by eqns (3.16) and (3.18), is shown in Fig. 3.4. =D, et (3.23)
3.1.3 The washout curve in the same interval, the minimum quantity is
. . : 3 i 4 : % =e-kn|1’f..t (3.24)
As noted in Section 2.4, a washout experiment is one in which a continuous X tmin X max 3.2
infusion is made for a very long time until the system is in a steady state "{”d 1S As the number of doses becomes very large, the values of the maxima rise
then stopped, the subsequent decay curves being the washout. If the input D, _ o .
rate is k; and b, = 1, then the steady-state value of x, is, from eqn (3.12), from D, towards T—e Fais while the values of the minima rise from
ki —kg T, Dy et o=
X1 = k_m (3.19) D, e otfo towards -i—_—-g‘_’;o-i-rt; (see Fig. 3.5)..
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L y(t)

Time

Figure 3.4  Observed response of the one-compartment madel ta a constant infusion over the
timerange 0 <t < T..

From eqn (3.12), the measured quantity during the infusion is

b, D
p) =170 _ehat), 0<i<T, (3.16)

koy T,

reaching a value at the end of the infusion of

¢,by D, - .
V' ?—: — A ] A ka7, 1 3
yi () km ?.: ( € l (3.17)
After the infusion has stopped,
yilt) = y(T)e tat=0 5T (3.18)

A plot of y(r), as given by egns (3.16) and (3.18), is shown in Fig. 3.4,

3.1.3 The washout curve

As noted in Section 2.4, a washout experiment is one in which a continuous
infusion is made for a very long time until the system is in a steady state and is
then stopped, the subsequent decay curves being the washout. If the input
rate is k; and b, = 1, then the steady-state value of x, is, from egn (3.12),
ki
(3.19)

Xiss =
k
01
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so that the washout curve, with the input stopped at r = 0, is

k
X, (1) = —e"tort, (3.20)
lk(]l
Comparing eqns (3.8) and (3.20), we see that the form of the impulse response
is the same as that of the washout curve; this is not a general result and
applies only to a one-compartment system.

3.1.4 Repeated impulsive input

In pharmacokinetics applications, doses are often repeated at regular
intervals. Assume that the doses are impulsive, of magnitude D, and that the
constant interval between doses is 7}, ; let the input fraction b, be unity. If the
first dose is administered at ¢t = 0 and x,(0” ) = 0, then the quantity in the
compartment between doses 1 and 2 is

x,(t)=D;e*,  O0<t< T, (3.21)

The maximum value in this interval (att =07 )is D and the minimum value.
just before the administration of the second dase, is D, e *7o, After the
second dose, but before the third dose.

prs : sl L]
xi{t)=Dye ! £ D, e kaeli=To} A (3.22

(The model 1s hinear, so the principle of superposition applies.) The maximum
value in this interval is D(l + e ") and the minimum value is
I)] C_klll ?Il{l o e_k\'l]Tl'l ]

By similar argument, in the interval between administration of doses » and
(n + 1), the maximum value of the compartmental quantity is

xlmax:Dl(l +C_k""?—“+€_“'”;“+ . 4e im Ilimi"-,l

I — e""‘lu‘fu
— S ¥
- | —e” Ko To [3‘“3]
In the same interval, the minimum quantity is
Ximin = e“"alf'ul._\-1mul (3.24)

As the number of doses becomes very large, the values of the maxima rise

D , - .
from D, towards #ﬁ'm while the values of the minima rise from

=kgy Ty

Dy e~ towards - (see Fig. 3.5).

e km
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Dose
o L =i ™ r————— T T  rp— . T Nu—l—mbﬂl !
1 2 3 & 5 6 ? 8 9 10 1

Flguln- 3.5 Compartmental quantity for a one-compartment model with impulsive inputs of
magnitude D, repeated at regular intervals 7,

e

3.2 Two-compartment systems

3.2.1 The general two-compartment system

Tbe most general form of two-compartment system is shown in Fig. 3.6. For
this system,

d aya
1) 1
A=
iy Gy,
where ayy = —(ky, + Ko} ayy =k,
azy = Kyy, ay; = —tkgy + k).

The eigenvalues are given by egn (2.61):
Ay hy =3{(ay, + az,) + [{ay) = a3,)* + 4a,,a,,]"2)

byudt) bou,lt)

Figure 3.6 General two-compartment model.
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and, from Section 2.4, are real. Further, unless
[(3“ ™ 022]2 + 4(113&'2[ = 0‘

the eigenvalues are distinct. Thus for repeated eigenvalues, a,, and a,, must
be equal and a,,a,, must be zero; the latter implies that either a,, or a,,
must be zero (if they were both zero, the compartments would not be
connected).

In this section, the most general case will be considered first and we will
then proceed to special cases with one or more of the rate constants zero. As
before, we are assuming that each input is applied to one compartment only
so that BU(s) = [b,U,(s) b,U,(s)]". and that observations are of individual
compartments only so that y,(t) = ¢,x,(r) and y,(t) = ¢;x,(t).

From the form of A,

s—a —a
e o 1 12
—dz;  S— 4y
1 h.s' — Qi3 a,;
(s —A)y ' =—— — (3.25)
(s — Aj)s = A3) a3y 5— @y,
The transfer function matrix is
Yits)  Yi(s) -
- _G] ](,"l G|;(.\'_} 01{3) L‘rz{.ﬁ-}
Ging __G:]{-\l G::(-\'l Y3|.Sj }’1{5}
U,(s) Usts)
fl <'lh1_[,~.:—|:1:,_zj c1hya,,
(s — A s —243) (s—A)s — 4,)
= 3.2
- 6hhay, ¢2by(s —ayy) (3.26)
i.--"_f;'-l}(s_f.-gl 8= ;‘]j(.\'—"?“-:l

The Laplace transform of the observations is Y(s) = G(s)U(s) and the time
response is given by y(r) = ¥~ '[G(s)U(s)], assuming that (0~ ) = 0.

Suppose, for example, that an impulsive input D, é(t) is introduced into
compartment 1 and that there is no perturbation of compartment 2. Then
U(s)=[D, 0] and
eyby(s — az;) D,y
(s — A Ms — 45)
Y(s) = g PN

__€2b,8,D,

(s — ’.‘-1"5 = "-2}
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Taking partial fractions (see Appendix 1),

c,blpl()'__f_‘_“l_i 1 _h—0 | )

/1]‘—/1.2 ‘S_;‘;I 23_).1 S_iz

¢ybya,,D, o
Al—‘/lz S—,j;,l S—lz

Inverse Laplace transformation (see Appendix 1) gives:

Xhe) =

yilt) =¢,byD, (2_—“”— ot 21 28 eai:)' t=0 (3.27a)

Al—ri.g 2_;;\.]

¢yhyay, D :
22T ek gty 10, (3.27b)

Ly — 4,

yolt) =

_ If, ipslead, a constant continuous infusion (step function) of rate k, per unit
tume s introduced into compartment | with no (external) input 1o
compartment 2, so that

- k 7
U(s) = [—'- OJ ;
s

'—_f',blt‘\' — @35 )k;
S(s — A NS — 4,)
Yis)= I 3

(‘ﬂhl @y, k;

_‘\'I.\ - /l}[\ =_).;]

4 as; 1 i — s Yy
(('Ihrk.‘( = '_J‘. = - gt N*.‘ I 4 42 i, _l )

Arra s alay = 2a)s =2y Alhy— A s — 4,

i -

"

cobyay k

i

(',‘_‘_ ) LI SR B
T

|/.: s /.|[/.| “‘l‘\'].\'“'/‘! /'.3[23—;(;}3—/'-.%;

Inverse Laplace transformation gives, for 1 = 0,

—a,, AL —dy; iy —a
.1';trJ=<'1h.k,(---.- ok i 8 E"'+—-'—g2—e*=') (3.28a)

Ady | Ay(hy —2,) LA~

yalt) = t‘zhuﬂzaki(-_li‘ +— ] — e 4 - : — et ).
itz A4y = 4,) Aaldy — 4y)
{3.28b)
Thc_reader is invited to confirm that the unit step responses (k; = | in egns
(3.28)) are the same as the integrals of the unit impulse responses (D, = 1 in
eqns (3.27)).
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For a third experiment with an impulsive input D, é(r) introduced to
compartment 2 and no (external) input to compartment 1, so that

Us)=[0 D,T’,

¢,bya,,D,
(s —A)s — 243)
Y(s) = : »
CabyDy(s — ayy)
(s = A)s = 43)
so that
- b 1D
yo(t) = 220272 e _ediy 130 (3.29a)
A] = .r".z
Ya(t) = €3b,D, (ﬂ et 4 227010 e*ﬂ)‘ 120 (3.29b)
Ay — A3 Ay — Ay

k7
while for a step input to compartment 2 (U[s} = [0 —'] )
s

s

] 1 iy 1 g
1'1Ul=f']b2u,2k‘(-_ e - (L S— —_——c-r'],
' vAgdy  AdAp — A7) Aaldy — 21)

* (3.30a)

a Ay —a iy — 4 )
hstey = t-zbzk‘(— 2l g 3 g = ---—'_1-—-:‘-“'). t=>0.
. £yl Aylay — 43) raldy — 2y 4
{3.30b)

'

Example 3.1. Consider a finear, time-invariant two-compartment system with
ki3 = ki = koy = kg = 1. Determine the stares x,(t) and x,(r), 1 2 0, for the
following cases:

(i) w(t)=Dydft): usit) =20

(). ut)=k,t=0;u,(t)=0

(1), w,(t) =D, o(1): uy(t) = D, (1)

(ivh w(t) =k, t20; u,(t)=D,d()

(v). wu(t)y=D,o(t); us(t)=k,t=0.

Both input fractions, by and b,, may be taken as 1.

Solution. The state equations are:

It

(1 “2I| +X2+“|(f]

.\?2 Xy _2x1+“2“}-
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Figure 3.6 General two-compartment model.
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and, from Section 2.4, are real. Further, unless
[(3“ ™ 022]2 + 4(113&'2[ = 0‘

the eigenvalues are distinct. Thus for repeated eigenvalues, a,, and a,, must
be equal and a,,a,, must be zero; the latter implies that either a,, or a,,
must be zero (if they were both zero, the compartments would not be
connected).

In this section, the most general case will be considered first and we will
then proceed to special cases with one or more of the rate constants zero. As
before, we are assuming that each input is applied to one compartment only
so that BU(s) = [b,U,(s) b,U,(s)]". and that observations are of individual
compartments only so that y,(t) = ¢,x,(r) and y,(t) = ¢;x,(t).

From the form of A,

s—a —a
e o 1 12
—dz;  S— 4y
1 h.s' — Qi3 a,;
(s —A)y ' =—— — (3.25)
(s — Aj)s = A3) a3y 5— @y,
The transfer function matrix is
Yits)  Yi(s) -
- _G] ](,"l G|;(.\'_} 01{3) L‘rz{.ﬁ-}
Ging __G:]{-\l G::(-\'l Y3|.Sj }’1{5}
U,(s) Usts)
fl <'lh1_[,~.:—|:1:,_zj c1hya,,
(s — A s —243) (s—A)s — 4,)
= 3.2
- 6hhay, ¢2by(s —ayy) (3.26)
i.--"_f;'-l}(s_f.-gl 8= ;‘]j(.\'—"?“-:l

The Laplace transform of the observations is Y(s) = G(s)U(s) and the time
response is given by y(r) = ¥~ '[G(s)U(s)], assuming that (0~ ) = 0.

Suppose, for example, that an impulsive input D, é(t) is introduced into
compartment 1 and that there is no perturbation of compartment 2. Then
U(s)=[D, 0] and
eyby(s — az;) D,y
(s — A Ms — 45)
Y(s) = g PN

__€2b,8,D,

(s — ’.‘-1"5 = "-2}
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Taking partial fractions (see Appendix 1),
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¢ybya,,D, o
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Inverse Laplace transformation (see Appendix 1) gives:

Xhe) =
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yolt) =

_ If, ipslead, a constant continuous infusion (step function) of rate k, per unit
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- k 7
U(s) = [—'- OJ ;
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S(s — A NS — 4,)
Yis)= I 3

(‘ﬂhl @y, k;

_‘\'I.\ - /l}[\ =_).;]

4 as; 1 i — s Yy
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i

(',‘_‘_ ) LI SR B
T

|/.: s /.|[/.| “‘l‘\'].\'“'/‘! /'.3[23—;(;}3—/'-.%;
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Figure 3.7 Responses of model of Example 3.1 to impulsive perturbation of compartment |

The eigenvalues are, from egn (2.61),

Ay Ar=3(—4 4 @)?) = -3, —1

s+ 2 1
izt (5T (s+30s+1) (s+3)s+1)
SO tha Sl — =
l s+ 2

(s +3s+ 11 (s+3)s+1)
Case (i). U(s)=[D, 0]

. St atd : : .
Recalling that x, (1) = lﬁ and x,t1) = yal —} we have, from eqns (3.27),
&3 CF

Xi() =3Dy(e™* +¢7")

x2(t) = 4D, (—e ™ 4 )

which are shown in Fig. 3.7.
k, T

Cuase (ii). U(s) = I:—' U} so that from eqns (3.28),
&

1) = kG~ he ¥ — Je7)
() =k(3+5e > —1e™)

which are shown in Fig. 3.8.

3. SYSTEMS WITH ONE AND TWO COMPARTMENTS 45

x(t)

kI
08k,
x (1)

06k

Q-4k
i x,it)

000 100 200 300 400 500

Figure 3.8 Responses of model of Example 3.1 to step perturbation of compartment 1.

Case (iii). U{s) = [P, D,]" so that
Dyis +2)+ D,
s+ 3)s+ 1)
x{."J — ’ '
Dy + D,is + 2)
{s+ 3)s+ 1)

[nverse Laplace transformation gives
.\'l(” = _é[“r)] - Dz}c_‘}r o o {D] % D?_}C'_[]
xa(t)=3D; — D Je™* + (D, + D,y)e ],

Note that if D, = D,, only one of the exponentials appears in the states: this
is not a general result and arises in this case from the symmelry of the model
and inputs. With other values for the rate constants, particular sizes of
perturbations can usually be found which result in only one exponential
appearing in the states,

k; 7
Case (iv). U(s) = [—‘ D2] so that
s

_ki{s + 2} + Dl
X(s) = Sts+3)s+ 1) (s +3)s+1)
k; Di(s + 2)

Ss+3)s+ 1) (s+3)(s+1)
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whence x(t) = ik.' — @k +4D;) e ¥ — Gk, — J.FD:)C-'
x,(t) = 3k + (3k; + 3D;) e > — (3k;, — 4D, )e"".

Note that if k; is numerically equal to D, the e ™" will not appear in the states.
As for case (ii1) this is not a general result but may occur with other values of
rate constants for particular sizes of perturbations.

% i
Case (v). U(s) = [Dl —':I so that
s

Di(s + 2) N k;
(s+3)s+1) ss+3)s+1)
X(s) =
D, k(s + 2)
(s+3)s+1) s(s+3)s+1)
whence xy(t) =4k, + 4D, + tk)e " + (4D, — ik, e

x3(1) = %k — (4D, + k) e * + (1D, — Jky)e ™"

Expressions for x,(t) in a two-compartment system with impulsive inputs
repeated at regular intervals to one of the compartments will be found in
Gibaldi and Perrier (1975), p. 119.

3.2.2 Repeated eigenvalues

As we have seen above, a;, must equal a,, and a,,a,; must be zero for

repeated eigenvalues in a two-compartment svstem. Consider a system in

which a,; = 0 and ¢, = a,,. for which a,, = —(ky, + k3;) = @3; = —Kkg3.
From eqn (2.61), the eigenvalues are

A Ay =3layy + ay) = —koy. (3.31)

a a —kga 0
For this system, A=| ' '?|= 9%
ap daz ki —koa

and

(3.32)
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If an impulsive input D, &(t) is applied to compartment 1 (with no external
input to compartment 2), then

yilt)= ¢,b;D, e %oz, t20 (3.33a)
¥a(t) = e;b,D kyyte b2, 120 (3.33b)

while the responses to an impulsive input D, 8(t) applied to compartment 2
are:

nit)=0 (3.34a)
¥alt) = e3by Dy et 120 (3.34b)

(y,(t)is obviously zero in this case because there is no link from compartment
2 to compartment 1),

If, instead, a constant continuous infusion, of rate k, per unit time, 1s
introduced into compartment 1, with no external input to compartment 2,

k T
U(s) = [—‘ U] . and
5

e e
YI [g‘} = L!_.'__
(s + Ko )
whence
bk '
pl) =220 —etaty, 130 (3.35a)
I\'uz
‘ﬂh i\. -!\'1
while Y,(s) = —221ni72t
z sis + kga )°
whence
Bl c'zh?,-_r'\‘_zl (1 — e~bast) — Cabykiks, ekt (>0
0 kﬂl
(3.35b)
(see Appendix 1),
Example 3.2. For the two-compartment system with k,, =0, k;; = kg, =1

and ko, = 2, find x,(t) and x,(t) for t = 0 for the following cases:

(i). u(t)=D,d(1); us(t) =0
(ii). u (1) =k;,t20;u,(t)=0.

The input fraction b, = 1 in both cases.
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x(t) |

0.80, 1

060,
x,{1)

xft

000 100 200 300 400 500

Figure 3.9 Responses of model of Example 3.2 to impulsive perturbation of compartment |

Solution. Case (i). From egns (3.33),

xclt)= Dy e~

1

x,(t)=Djre?
(see Fig. 3.9).
Cuase (ii]. From egns (3.35),
xle) =4ki(l — e™?Y
(1) = k[0 —e™2) = hre ]

(see Fig. 3.10].

3.2.3  Source compartments

A source compartment is one which does not receive material from any other
compartment; it may or may not excrete ma.zrial to the environment. All
source compartments respond as a one-compartment system, no matter how
many compartments there are in the rest of the system, so that only one of the
modes (single-exponential decays) appears in the response of a source
compartment to a perturbation.

In a two-compartment system, compartment | is a source compartment if
k,; = 0. Although the presence of a source compartment is the only way in
which a two-compartment system can have repeated eigenvalues (as in
Example 3.2) repeated eigenvalues can only occur if, in addition, a,, = a,,.
Let us consider an example with distinct eigenvalues.
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x(t}

0.8k, -

0.6k,
xit)

04k, -

x,(t)
025,

0 : T T T T
000 100 200 300 400 500

Figure 3.10  Responses of model of Example 3.2 to step perturbation of compartment |

Example 3.3. Letk,, =0.k,, = ko, = ko, = 1. Determine x,(t) and x,(t) for

t20ifut)=D,olt). uy(t)=0and b, = 1.
Solution. For this system,

—2 0

A=
i o ] [
which has eigenvalues 4. 4, = }(—3 £ 1) = —2, —1. Substituting in eqns
(3.27},
x,lt)=D, e~ ¥

;(t)=D,fe” " —e ¥)
(see Fig. 3.111.

In many applications, the source compartment does not excrete material to
the environment. We will now evaluate a further example with k,, = 0.

Example 3.4. For the two-compartment system with ky, = kg, =0, ky, =1
and kqoy = 2. determine x,(t) and x,(t) for t 2 0 if u,(t) = D, 8(1). uy(t) =0
and by = 1.

Solution. For this system,
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1
T e

o -
000 100 200 300 200 500

Figure 3.11  Responses of model of Example 3.3 10 impulsive perturbation of compartment |

with eigenvalues 4,, 4, = —2, — 1. Substituting in eqns (3.27),

xX,(t)=D,;e”!
Xy(t)=D(e”! — e~ ¥)
(see Fig. 3.12).

‘lf. hinsthd. ko: had been 1, there would have been repeated eigenvalues
with £, = J, = — 1. For the same input, x, (t) would still have been the same.

but from eqn (3.33b), X,(t) would have been D,1e ™",

x(t]i

000 100 200 300 400 500

Figure 3.12 Responses of model of Example 3.4 1o impulsive perturbation of compartment |,
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3.2.4 Sink compartments
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A sink (or trap) compartment is one which does not excrete material either to
the environment or to any other compartment. It results in a zero on the
principal diagonal of A and a zero eigenvalue. Physically, a sink compart-

ment acts as a pure integrator of the flows into it.

Consider a two-compartment system in which compartment 2 is a sink, i.e.

ky, = ko; = 0 so that a,, = 0. For this system,

i a, 0
a, 0

is singular. From |4l — A| = 0, the eigenvalues are

Ay, Ay = ayy,0

and
1 s 0
(I—A) = :
s(s —ayy) | a;y, s—ay,
If U(s) = [D, 0],
by D
¥yls) = L2200
s —dy
whence yifty=c,bD; e~ o1tk t=0
and fley = TP
sis —ayy )
e3b, Dk, Ziher ik o
whence Jia () = -~ = {1 — e Un Ty =1
' Koy + Kz
If, on the other hand, U(s) = [0 D,]", then
4 bwD‘:
Y;(5) = THeeR
]
whence yalt) = c30,D,, 120

as expected since the dose remains in compartment 2.

(3.36)

(3.37a)

(3.37b)

Example 3.5. For the two-compartment system with k,, = ko, =0, ky, =
ko, = 1, determine x (1) and x,(1) for t 2 0 if u,(t) = D, (t), u,(t) = 0 and

h]=1.
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x(t)
DP
080, 4
060, -
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Figure 3.13  Responses of model of Example 3.5 to impulsive perturbation of compartment 1.

Solution. For this system,

and 4;, A, = =2, 0.
Thus, from egns (3.37),

%, =, =4
x5(t)=41D,(1 = e~ )

(which are shown in Fig. 3.13}.

32,5 Closed systems

A closed system is one in which no compartment excretes material to the

environment; it may or may not contain sink comparlmenls. All closed
systems have a zero eigenvalue.

A two-compartment closed system has k;, = ky, =0, so thdt ay=—ky;
and a;; = —k,,. For this system,

—k k
& 21 12 |
kay  —kyy
From |41 — A| = 0, the eigenvalues are

Al‘il = —(ky2 + "‘21]1 0
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1 s+kia ki
R e (T S 1 3.38
and (s1 ) s(s + ks + ku][ ks, S+ kyy : ;

If u,(t)=D,5(t) and wu,(r)=0

{‘,lel(s + klz)

Fils) = s(s + kyz + k3y)
whence yift) = L (kyy + kyy €™ Urz*knity t=0 (3.39a)
kia + Ky,
; - CiPiBiks
and 1ls) s(s + kys + kay)
b, Dyky, Sy adens
Thene y Wi : 2o 127 kg = 0. 3.39%
whence yalt) = " o (1—e % t ( )

Note that in the steady state, the quantity administered to the system is

: g K
shared between the compartments in the ratio —1—2
21
If, in addition, compartment 2 is a sink compartment, with k,, = 0, then
the responses to the same form of perturbation are

=

(3.40a)
{3.40b)

yi(t) = ¢ by Dy et
yalt) = ¢3b, Dy (1 — e~ *20'), t =

=

Example 3.6. For the two-compartment system with k,, = kg, =0, k,, =
kyy =1, determine x,(t) and x,(t) for t 20 if u,{t) =D d(t), uy(t)=0,
by =1
Solution. From egns (3.39),

x, () =4D,(1 + e %)

x,(1) = $Dy(1 —e™?)

which are shown in Fig. 3.14.

3.2.6 The washout curves

Consider the general two-compartment system with distinct eigenvalues and
suppose that a constant continuous infusion of rate k; per unit time has been
made into compartment 1 (no external input to compartment 2}, until the
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xlt)

080,
x,(t)

060,

04D,

Y~

0 A T T T P—

000 100 200 300 £o0 500

Figure 3.14  Responses of model of Example 3.6 to impulsive perturbation aof compartment |

system is in a steady state. From egns (3.28), the steady-state compartmental
quantities are

i ki (3.41a]
/‘ ZJ
) o h’k.lf.'fj_]
Xage = s+ [341b}
Ay ha

The washout curves are the compartmental quantities after the infusion has
stopped (at 1 = 0), and from eqn (2.63) are given by

xft) = e"Vx(07)
where
eM= 1] < A

and x(07 ) is the vector consisting of x,,, and x,,,. given by eqns (3.41).
From eqn (3.25),

(1-A) = | P
(s — A4 )s— 4;) a,, 5 —ay,

EL'!E_S["' [—322(5 — dy3) + Ay, a3,
1 A (s = A )s = 23)

so that

xy(t) =

} 120 (3.42a)

Ayta
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and

21_!‘_;3,4 [_“nazz + (s —a;,)ay,

\‘2(”=;-|£2 ':5—;-1}[-5'—22]'

], t=20. (3.42b)

Taking partial fractions and inverse Laplace transforming,

" blkf A Ayt
X (t) = ———+—[(—az,(4, — a2) + a,,a5,) ¢
Alhztﬁl - Az)
— (—ay,(A; — ay;) + ajpa3,)e*], 120 (3.43a)
bk .
Xp(t) = —————————[(—aya32 + (4; — ay,)ay, ) e*"

Ji.]/..z[/‘.] - 43 i

—(—ay,ay, + (Ay — a;,)ay,)e*?], t = 0. (3.43b)

Example 3.7. Find the washout curves for the compartmental system of
Example 3.1 (withk,, = ky, = ko = kg = 1), assuming that, prior tot =0, a
constant continuous infusion of 1 wnit per unit time had been made to
compartment 1, with b, =

Solution, For thissystem,a,, = —2,4,, = —2,4, = —3and i, =+ 1.The
initial conditions are, from eqns (3.41), x,(07) = %, x,(07) = 4. Substituting
in eqns (3.43),
l 13 =¥
x )= B=2) [(7[—li+ Lye ™ — (2(1)+ 1)e "]
:,"c""+§c'r‘ t=0

— 24+ ()(1ne™]

which are shown in Fig. 3.15.

3.2.7  Summary of relationships for two-compartment systems

For a two-compartment system with

ay, ap |’
A{
dyy dp;
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Figure 3.15  Washout curves for the two-compartment model of Example 3.7.

w_rherc ayy = —(koy +Kay), ayy = kyy, a4y = kyy, ay, = —(koz + ky3), the
eigenvalues must be real. They are also distinct unless ay, = da,, and
apyazy = 0. For the system,

(1-A) ' =T
(s =20 =4 | a,, Sty g

where the eigenvalues are given by
Avsdy = 3ilay, + ay,) + [(ay, — ax; P + 4ay,a5,]' ).
The responses of the states to u, (1) = (1), ty(t) =0, h, =1 are

s ey 422 @i A2~ G2

xy (1) =— + e, t=0
by — A Ay — A4
. Xyt LAgt
X,(t) == — (e e =0
/.l — Az

‘ If a,; (=k,,)=0 and (koy + k2y) = ko,, the repeated eigenvalue is
4 = —ko, and the corresponding state impulse responses are

xi{t) =e* t=0

X,(r) = ay 1 e®, 130
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Responses to a unit step input applied to compartment 1 may be found by
integration of the unit impulse responses, so that for distinct eigenvalues,

sz Ay — @y, e 'tz"'azz Aql
R . < LS Sl - S N t>0
LN SR Ve TR Y

1 1 2 1
L s it AI' s ; .
xa(t) “2‘(2,12+2,t).1—ﬁ.2)e *A;uzwll)’") a

while for repeated eigenvalues,
1
x]“):I“—e“), 120

1 1 1
= At A
xZ(;)—az,(P-+Ire —Aze ) t=20.
If compartment 1 is a source compartment, i.e. k,, =0, then 4,, 2, = a,,,
a;, and the unit impulse responses are

X,() = e, t=20
a
X;3(t) = — 2L (e — e22"), t=0.
) — 4z
Ifcompartment 2 is a sink compartment, i.e. ko, = k,; = 0, then pne of the
eigenvalues is zero and the unit impulse responses are
x(t) = e*n', t=20

.\'z(rl=u-“ (e?1s' — 1), =1

iy,
For a closed system (ky, and kg, both zero), one of the eigenvalues is zero

and the other is — (k; + k;, ). Since ay; = —k, ,, the unit impulse responses
are
_1;1{{}= ) k]2 + kz] _c—|k|:+t“"‘ 120
iz +kyy o Ky +ky,
xs(t) = ka, kay e kutkak >0

kya +k_21 - kys + ky,

Results which carry over to compartmental systems with any number of
compartments are:

(i). a source compartment behaves as a first-order system;
(ii). a sink compartment results in a zero eigénvalue;
(iii). a closed system has a zero eigenvalue.




