
2. LINEAR, w-INVARIAHT SY- 

The Dynamics of Linear, Time- 
invariant Systems 

&fore conSfdcring the dynamics of compartmental systems in particular in 
Section 2.4, we will review the iqux-outpuf relationships Cor systcms with 
linear, time-invariant d y n d c s  in general ia Sections 2,l to 2.3. 

2.1 Sinde-input, single-output (SISO) systems 

-.*! Consider a dynamic system with input u(r) and response to that input x(r), as 
shown in Fig. 2.1. Assume the following: 

(ii). 

(iii). 

The system is lumped, rather than distributed; that is, its behrtviour can 
be described ovcr a finite number of points in space. The differential 
equations describing the khntviour are ordinary rat her than partia t, 
The system is linear so that the principle of superpasition applies; that 
is, the response to an input u, ( r )  f u,(r ) is the sum or responses to u ,  (0 
and u,(t) applied separately. 
The system is in steady state prior lo th t  application of the input at time 
t = 0. The quantiries referred to in the remainder oC this chapter are 
deviations from the (steady) values u(0- ) and x(O- ) immediately prior 
to the input periurbation, Hightt-order derivatives are zero a1 r = O', 

The input and output are then related by the cnrtvolurion inregtat: 

where I is a time variable ranging over the interval up to t hc present time r 
during which the input has b n  applied and g(t ) is the weightingfunctian of 
the system, whicb weights p s t  values of the input to give the prescnr value or 
tbt output. 

22 Dynamic s ~ r m  with translet function G(s). 

We have furlher assum& that the s p t m  is time-invariant , tha$isl its 
dynamics do not change witb time. The weighting function is then the s h e  
as the r q o n s t  of the system ru a unit impulse. 3 

Except for &qle forms of input, the convolution integral of q n  I2.l) is 
difficult FQ evaiuate analytically and use is then made of the corrkponding 
Lapiace transform relationship: 

where %{s) and U b) are the Laplace: transforms of x(r ) and u[r j mpecri yet: 
q d  G(& @e Lapiace trarfsfarm of g(t) ,  is called the [laplace) 
faretian of the ~*em (Fig. 2.2). 

!3ee AppenBi 1 far an exposition ai Laphe t r a n s h s .  

For a first-order, linear, time-invariant spem,  the input and o 
related by the d i n a r y  d-ntial equation: 

T - J ( t ) + x ( r J  = K . u ( r )  

where K is t h  ~readpstate gain of the sg$tem (i.e. the proportion 
between x and u in the steady state), T is the rime cornrant of the system 

i ( t )  ~ 9 .  The general solution of q n  (2.31 h giwn by the rum of 
dl 

romplemenrary function and particular integral: 

K 
~(t l=e- '%(O-)+ 1; C - U - ~ ~ -  T ~ ~ ~ a .  

The L a p l a  tsmsbrm oi eqn (2.3) is 

(ST+ I)X(s)- T-x(O')= K .U (s) 

which, on rearrangement, gives 



Assuming that ~ ( 0 ' )  is zero, or has baen subtracted from all ~ubscquent 
values of x ( t ) ,  eqns (2.4) and (2~51 becbme 

Comparing these with eqns (2.1) llnd (2.31, if may be sen that the weighling 
function is @ven by 

and that the transfer hnction is given by 

If n unit impulse is apptied to the system ai t = 0, then U ( s )  = 1, 
Xis) = GIs) and x(r )  - g( t ) .  The unit i m p u h  response of a ht-wder 
system is sham In Fig. 2.3. At time I - T, the value of the response has 
fallen tn 

-23  Unit impn& gtrsrpons 8T6& system M W  by tqn a.3). 

maximum value (at r = 0). The response MIS to I % OF its maximum galw 
When 

0.01 = e"~' 
E&. 

i.e. = T lo& I q =  4.6Q5T' t2-12) i 
In the medical and trbological literature, the half-life., t,,,, k more often 
quoled thm the time constant. The half-life is the time taken For the raponse I 
to t l l  to 50 % of its maximum value and so is related to the time consaint 

0.5 = e''l dr 
. - 

unit step ibl t b  d t k e  unit impulse and the unil-stbp 

h v 

which ir illustrated in Fig. 2.4. The unit-step raponre may ako be-found 1 



COMPARTMENTAL MODELS 

Taking p ~ i d  fmcti~as istx Appndix 11, 

E l  EL. 1 J(s )  =-.- --a- 

I 

R s R s L + R  

Taking partial fractions (see Appendix I ) ,  

and using  he Table of Laplace transfarms in Appendix 1, 

x ( t ) = K - K e - ' " .  1 3 0  (2.17) 

which is the same as eqn (2.14). The question of units for an impulsiw input sometimes gives rb to 
confusion. The Grac delta function is defined by I S  

Example 2.1. A resistor R and inducrtlr L nre ro)lnecred i r l  series us shotvn i t )  

F i g .  2 .5 .  The currenr is zero when, ar rime r = 0. rhe svirrh is  clo.s~ii. Find rllr 
(-urrent i ( r  ) ,for r 2 0. 

Solutiotr. The volt age drops v~ and v, across the resislor and inductor are: 
Gan~ider the pulee function f 8 shown in Fig. 2.6. of height ;, width e and - I 

di 
v R = i . R  and v L = L -  

d l  
s 

unit area. The delta imction is given by 

~ ~ ~ 1 ~ i n ~ ' ~ i r r h h o f T ' s  Voltage Law (that the sum of voltage drops around a 
circuit equals the applied voltage). 

8(1) - lim f (a) (2.i9) 
*--0 

* : 
PO that the ddta function is a function of infinitely large height acting for an 
infinitely short time. Sucb an idealid function cannot be realized in 
practice, but its shape i s  approximated in a number af practiral  instance^^;, 
For example, an impulsive blow of magnitude P can be regarded as a fore& ! 
P . b o )  while a rapidly-administered dose of size D can be regarded as an 
input rate of D.d(tJ. Note the urn of 'late", because 6(r) has units of 

L I 
Comparing this with eqn (2.3), i r  may be seen [hat T = - and K = - so that R R 
substituting into eqn (2.14). 

A' * 

E 
, i(f) = - ( I  - ehmfL). 

'. . R 

Altcmatiirely, Laplace transformation of the ciifl'crentntial equation above gives 

E 
(st + R)l (s) = - so that I ($1 - E 

s dsL + R J  
' 

(time)-'. The ddta funetim is clearly the derivative of the unit srep tuncti 
HCr), i.e. 

d 
6[t ) = - H(t). 

dr (2. 
C 

To comptctt the discussion of the use of the delta function, 1c1 us return t 
the circuit of Fig. .2.5, but suppose that, i a a t d  of a step E being applied a 

I 
I , .  

l?guw 2,b A p u l ~  funaim of unit area, 
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(b) 4 = 1. The term o$(l - IJ) is ZWD afld the sy~missaid  to  Bs td#lcally 
dampd, The unit step respon* is the inkrse transform of 

The denominator or eqn (2.22) consists of a repeated real root (s = - w,). 
The step raponire is no longer ascfikory (a& Fig. 2.7). 

(c)  4 > 3 .  F k  term d(1 - 5') is negative imd the system is said to be 
wg~ds~~pkd.  Thtitlnit step responm is <h& iWrse iran$orrn of: - 

The rooks of eqn (2.22) are real and disdm and it may bc seen from Fig. 2.7 
t h s ~  the unit st* response iisagajrr nwt~oscilIa.toq, and gas progfessively 

. , slower as (; gers larger. . 
t 

. L .  
# 

Example 2.2 A ~ e s i s ~ r  ft, inductor L artd rupucithr C Qre ct~ttnecrd irr $&pies 
n ~ .  &own in Fig, 2.8. The $went  i and cdpaciror charge q are zero dm, at 

. ' r - 0, tk ~ w a c h  is closed. Find the 
I .  

Solurion. There are two storage elements (the inductor and the capacitor) so 
a second-order difkrenlial equation is rxpecred. The vollage drops across the 
elements of the circuit are: 

so that, applying Kirchhoff's Voltage Law, 

Comparing tbis with eqn .(2.21), it may be wa that 

whence . E = - 
1 

- L -t (RILjs + 1pC) 
' 

d4 3t11 i = - SD tbat, with g[Q') = 0, I (s). - 5 t&(s)+ giving 
-dl 

w dm\ E 1 

IT L -'- La ur cmuider one case only, with circuit values so fiat TIT) 
, , 

which, from the foregoing. will y i e ~  an underdam* system, since ;" I 



and I R1 
ma = 4(1- p, 

. - 1  

2.2 Tbe Hate variabIs of a dynamic system 

Much otthe recent literature on timedomain malysis of e system utiliaes the 
concept of the state d a system. Tfie state is s set of numbs such thst 
the knowledge of these numbers and the input functions will, together with 
the equations describidg Lhc dyaahlics, give the hmte state and output of the 
system. The state uariabk representation of a multi-input , multi-output 
system is: 

i = A x t B s .  (2.28) 

In this srarc equation, the vector x repments the state or the system. In some 
applications, it is diE~uI1 to choose variables of direct physical significance 
(and the state variable set is not necessarily unique) but in compartmental 
modelling this problem does not exist &use all the di~ercntial quaiions 
are first-order and the state variables are compartmental quantities or 
comnf rations. 

Equation (2.28) indicates that the first derivatjvc aC state variable x, is a 
linear function of the p state variables and m inputs: 

where the a5 and B's are conaants for a h ~ i n v a r i a s l t  system, Equations a l  
the form of (2.29) may be written lor all the sfstw: 
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as in eqn (2.28). The ourputs (ur observaiions ) are not necessarily the state 
variables themselves, b u ~  may be linear combinatjons or them: 

yi  = c , , x ,  + ci,x, + . . . + c,,x, (2.31) 

that is y =  Cx. (2 .32)  

Note that the obseruarion equalion (2.32) is  a norr-dynarnic relationship. 
being an algebraic, rather than differential. equation. 

If there are p states, m inputs and n outputs (observations), A is a p x p 
matrix, B i s  a p x m matrix and C is a n x p matrix. 

Berore proceeding Curther, let us see how the first-order and 
SlSO systems considered earlier can be formula!ed in state variable form . i;il 
For thi first-order system, eqn (2.31 can be rearranged as 

1 K 
x ( r ]  = -- x ( t )  + - u( t )  

T T 

which is to te compared with the state variable form 

1 K 
Dirwt cornpadson shows that A = -- and B - - 

T T' 
The second-~rder d . f lwt ia1  ecp (2,211 can be exprwed as lwc ' 

simultaneous fitst-order differential equations. atfine x, A x ,  xz 4 1 so 
li. = A ,  I XI. Then from eqn (2.211, 

R m 22 = - x ~ ~ ~ i ~  - + wau 

= - 2 ( u ~ ~ x ,  - wgx, + dl& 
which mag he rearranged to give 

i1 X1 

J, - -w&, - ~[Qx, + w&. 

. i&. k = A x + h .  ,,,,, ,) , ll 

The approacl~ is mdHy axwnded to bighw-ordm equations. . ,I '#!  C i, _ 

- I 
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The rna~rix eA' is called the rrhsition matrix and is sometimes written as @(r j. 
I t  is the sum of rhe infinite series 

which is usually an inconvenient expression to evaluate in practice because of 
the uncertainty as to how many terms must he computed for acceptable 
accuracy and [he need to cornpule {he powers of .4. I t  is ollen easier to use 
Laplace transforms. Transforming eqn (2.28), 

Y -X(S)  - ~ ( 0 - )  = AX(s) + 8U(s) 

whence (s l  - A)X(s)  = x[O- )  + BU[s) 

giving X(S)  = ( X I  - A ) - ' x ( o - )  + (sl - A)- 'BU(S).  (2.44) 

Inverse transformation gives 

x ( ~ )  = Y - ' [ ( s l  - A ) - ' ~ ( 0 - ) ]  + Y - ' [ l s I  - A)-'BU(J)].  (2.45) 

Comparing eqns (2.41 ) and (2.451, i t  may be seen that 

For a system with zero inirial conditions, we have. from eqns ( 2 . 3 2 )  and 
(2.45 1, 

y(t  ) = Cx(r 1 = C Y - ' [ ( s l  - A)-'BUI.S)] = Y'- '[G(s)U(s)]. 

as expected. 

Example 2 A. Find r h ~  transiticm matrSx(nr the sysiem oJExample 2.3. 
Td5, ,! !& - 

I - 'I' $o)ii;ion.l For rhat sysrem, 

so the transition matrix = S''[(sI - A)"] is given hy 

- 7  

2.3.3 Eigenrtaks and &enwctors ,:, -,;a*( I ,  
, ,L. '.- 

The ebenualua R, of a p x p matrix A are the solutions of t b  equation".,:: - 
-.&. -)  

la -A1 = 0 .  (2.47) ' 

@e the marerial on matrix inversion in Appendix 2). Writing the individual?' .. 
elements of the transfarmed mqtrix as gJ(s), so that 

we note that Is1 - 41 appears in the denominator a i  all the elements K ~ (  

From the dehilion of the eigenvalues, Is1 - A1 has factan s -- 
k = 1.2.. ..,, p companding to the.mots Ah or,eqn (2.47). Thus 

(S - A,)(s - R1)-..{~ - -Ap)  

where alj[s) is a polyrramial in s of degret ( p  - 1) or l 
fractions, assuming the eigenvducs are all different, 

where 4, . . . fl, arc mnstanu. Thus c s h  elcment of the transition matrix 8 
will have the Corn /3, eat' -k B2 ell' i- . . . + #Ip t13. 

If  w consider solution o l  the homogeneous quation x =Ax, the 
kmgoing that we can h d  solutions of the form x = e h ,  where m 
a non-zero constant vet t or. From the system quation, 

I 



- .  
; -.TI,:) 

+ when= Am = Am. 
' a > ,  

;;.r. .. ,..-. - i.e. (U - A)m = 0. 
- - .  

(2.50) 
.=..- 

. . The vector m is called an eigenwctor (of A), and there is an eigerr~tor 
*r - 5,: ' d a t e d  with each eigenvaiue. The p eigenvators are linearly independent, 
.I q 

and the general solution or It = Ax may tx w r i t m  as 

1 

, ' h i / ,  

where c, ,  e l ,  . . .. e# are irbi~rary  umrUns which dcpend on the initial 
condi6ons. The dgenvectors form the columns 6f the moBaI matrix M, which 

, * * is used in a n u m b  of approaches to the idcntibabilility problem (see Chapter 
5). For the purposes of this book, the abme discussion d dgenvccton h 
ruEcient, m d  lor s more daailed dwription or lh  use a( the mgdd mmir 
in system dynamic analysis, the d c r  2s referred to Chap* 2 of Power and 
Simpson (1978) or Chapter 1 of Owens (1981). 

- Ermple 2 5  For the s y m  n(Examptq 2.3,Jnd {he rigenwhns nj A andfind 
rhe responses yl(r) and y , { t )  to perfurbarion u ,  ( I )  = a([). UJI) = 0. De~ecminc 

A rhe e i g n w t o r s  @A. 

! 

.,*! i Solurion, The eigenvalues are given by y: 

Y(s) = C(si - A)' 'BUls) 

- - 

2.  LINEAR. TIME-INVARIA~T SYSTEM 
. , : , a =  

; +>: 
- - -  Taking the first eigenvalue (i., = -4 ) .  cqn (2.50) gives h. 

whence - 2 m , ,  - m , ,  = O  

and - 2 m , ,  - n,, = 0.  

Note that the same equation is obtained twice, so that only [he ratio between 
m,  , and m,, is available. This is  evident from eqn ( 2 .51 )  because if any m ,  
satisfies the equation, so does any scalar multiple of m,. 

I 
E 

Thus 

Taking the second eigenvalue. eqn (2.50)  gives 

[-"2 I = 0 

- 2  - 1 + 3  m,, 

Thus Tor this example, the modaI matrix M is given by 

2.4 Dynamics of compartmental  system^.^ 

As noted previously in this chapter, the state variable description i: 
particularly appropriate for compartmental syslcms since these consist of sets 
oifirst-order differential equations (one per compartment) and tbe statcs ere 
the compartmental quantities w concenkarions,-FO~ a lin&r, time-invariant 
compartmental system wirh p compartments, A is p x p and has elements 

a ,  i P j  (2.52) 
I 

a,, = - -f: k,, - k,,. 
f -1  
{ * j  





mmpmment uobsngbg mstcrld only witb'tho itnmediadp p&qg and 
following oclmpytmeas; in BOW apphc41Ttans, exchange is unididional. 

a ,: . Far both mommiUary and catenmy systems, the dgetrvalw must be red 
, b e  at [east one pair of raJe cumants ky and kJ1 mug* be a o ,  tm that 

n : -' bosh, sides of aqlr (259) are zero. Hewbn (197!?) has shown that, for 
, tampgctrnmtal qstMns wixh real Eigcnvalues, in &ich x@-) = 0 and as 
, inngulsive input is in trodW to eqmpartment r at r = O, 'the subseqmt 

- : decay d ~ ( r )  is mmotonis, is. ., . I 

1 ,:A%-A,. 

;*$ mjr does not iiemsarily hold br ry~crmr with cumplu eipnrrlu~- 
  or systems in which three or more compartments are eaiinccled iri a cyck ;k* $ :r.:%J for which eqo (2.59) d m  not hold, complex lu;~issavaluu are possibb. 

, ' - , B-us A is real, all complex cigenaues must occur as complex conjugate . - 

.' " ' mi=: I 

- L*b= -a* jb 

where j - n v n i r  raw positive andpi8 real. T h e g i v e  rise to l c m  of 
the form E eda sin (Bt + &) in the stare raspom x ( r ) .  (Here, E and # ark 
constants. 1 However, such oscillatory terms am in practh heavily damped 
by the s'* term, and as we haw seen abosrc. no stale response (campart- 
mental quantity) may zero. A particular fBfm of compartmental 
system giving rise LQ complex eigenvdues, the unilateraS circulation systm, 
will considwed in more d w l  in Chaptar 4. 

An exprimat of practical interest in physiolo@al applications i s  the 
washout mt, in which a oantinuowidusion is made For a lon&timc into one 
compart&at until, the system i s  in a s W y  state. The inlbion is then 
wjthdmwn at it r 0, d the washout curves are tbc ptots of xlt) for I > 0. 
From eqn PA!), the wmhout curves: a* given by 

where ~ ( 0 -  ) are the c o m ~ a n ~ 1  quaatih jut Wore the infusion is 
arithhwn. m r o n  (1%8) has shown th~ for any c a n ~ m m r a l  system, 
~AG* Gasc with curhplex t-vdu&, all tha washout mrves d m y  
monotonically to m o ,  i.c. 

allows for proponions dth same hput to & intmdyd to mare than one 
compartment. Zn almost &fl mmpanmantal applications, wch input is 
introduwd to one compartment only, so that the off-diagpnd elements af 0 
are *a. The w t o r  r in t b  generaf system eqn (2.301 is, for compr~menta1 
system, a vmor of input rshx to the p compartmmts: 

Fur an impul+e wt af m&@tude D, Tor cx~mpl J ,  the input rate would be 
D &(I) ,  where &{I) is the Dirac M t a  iunction, whiIe for a step (coxqtant 
eoatinwus jnfwipm) d mqdtudt  k, ptr unit time, the input rate would be 
k,, t > 0. 

For thedhg~tmat form pf S, which will be assumed in the remainder oft his 
book, the pr- Bq is tbe vector I 

where u, . . . tr, are the inpul: ratw to compnmmts 1 to p and b ,  . . . b, are'. 
the input gains, i.a. tho* fractions of the hputs admiaistcrcd which aispear in- 1 

, 8 the cofapmrnm#l system. For ma1 expmimtnrai situations, b ,  = 6, = 
. . . = b, - I, but am bportant exception m r s  in metabolic systems and 
phmrrcdhetb when a substance is administered via an extravascular 
route. Then, mme of tb dose administered does not at any stage apptar in 
thecompartmentalsystem; the fraction whichdm iscall&l the b&vail- " 1 
ability fraction and is oftm not k m  btforehand. 

Similarly, the mast general tom d C: 

a I t ~ w s  tor proponions of dHercnt stam to k included 
mwuremem. In mwt ~mparmental appIkatiom, web 
(memuremc;nt) is d one state only, so that ,C)r is a vector: 

in any one 
obfvatidn 

An exmption to tL'@ may o ~ c w  1b &rnd SamilIg IS hitkg used; then, ;,j, 



the measurement of radio~ii4ty may indude a portion from more than one 
compartment. In the remainder of this baak though Cx will be taken as the 
vector Form of q n  (2.66). 

2.5 Frequencydomain characterhtioa of system dynamics 

In this chapter. emphasis has deliberately barn placed on the timedomain 
characterization af system dynamics, and the corresponding expmssians in 
the Laplace operator s. There is also a considerable body of theory 
concerning freguency-domain characterization which gives no additional 
information, but which presents the same idormation in a different manner. 
This is sometimes more appropriate, particularly when sinusaidal input 
runctians are ieasibIe. Such functions are not feasible Tor most cornpan- 
mental system applications, for which the inputs are more usually impulse 
and/or step functions. DetaiIs of frequencydomain characterizations will 
therefore not be given in this book, and the i n t e r ~ e d  reader is instead 
r d w s d  10 a standard text, far exnmnle Richards (1979L , 

I +wll *$ R' dEwm!Y 'I, Ly: 

3 Analysis of Systems with 
One and Two Compartments 

? 

In this chapter, the dynamic mp6ase. of linear, timeinvariant cornpart; . 

menial systms with ane atid two cmpnrhents will be cansidered, 

3.1 Oneampamnent system 

In same prwtid sitaatiw, the system being modelled can tw spproxjmated 
by a m&l wk4 M y  oae compartment. I n  physiological systems, ror 
example, tb comprlment would contain the systemic blood and well 
perfused kiss*, and,t-hk effect on the kinetics of lcss &ll perfused tissue would 
be negligible. 

The one-cornpartman t system 
equation for the quanrity x, in t 

i , ( l j =  -koixr(t) + blul(t1 

so that 

X,Is) bl 
- - *  

0,(4 S + k p ,  

The observation is 

h ( 1 )  = c*x,O) 

where c, is rhc observation gain. TS 
c~nantrazion, for example, and x ,  ( 

-34 m p W m m t  model. 


