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3 The Method of Least Squares
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Examples

The intuitive appeal of the method of least squares may be illustrated by two
simple examples,

Suppose that x,, x,,. .., x, isa random sample from a distribution on the line
and that we are interested in estimating the mean, 6, of this distribution. We
may write

X, = O+g¢,

where ¢, is the deviation or error of the observation x, from the mean of the
underlying distribution. A reasonably oplimistic attitude here is 10 assume
that the observations are trying to give us information about 6 and that the
deviations g, ¢,, . . ., &, are in some sense small, Therefore a plausible method
of estimating 6 is to choose as estimate a number for which these deviations
are small, and one way of doing so is to choose 4s estimate a value of # for

LJ
which 3 &f is as small as possible: that is, to estimate 0 by the number

i=|
B(x,, x,, ..., x,) which minimizes Y (x;—0)% regarded as a function of 6.
i=1

If we do this, then of course

1
0x;xzy ... x) = ;(x,+x2+ o fe )

the mean of the observations, so that our plausible method leads to an
intuitively appealing result in this case.

As another example, suppose that observations x i+ Xav ..o v, are made at
different valuesa,, a,, . .. , a,, respectively, of a ‘concomitant varihle' « The
xs are random variables and the as are known. non-random numbers Fuor
instance the a;s might be different levels of 4 fertiizer and the s correspond-
ing yields of a crop. The as are then controlled by the observer but there are
factors affecting the xs outwith the observer’s control — weather for instance.
Suppose we know that ‘the mean of x varies linearly with a', but we do not
know the exact form of this relationship. In other words we know that
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E(x,) = o+ fla,, though a and f# are unknown, Then we may write

X = a+fla,+¢,

and, acting on the same optimistic principle as previously, estimate a and f}
by these numbers which minimize

o
F=

(x,—a—fla,)*.
1

E
1 i

This method is again appealing provided that the deviations ¢, €5, . . . , &,
all have ‘the same chance of being small’, but if some have more chance of
being small than others it might seem more sensible to estimate o and f by
minimizing some weighted sum of squares

Mx
nM;

Z w;(x,—x—fa,)?,

i=1

the ws being weights which are large for those is for wh_ich & is liable to_be
small and small for &s liable to be large. Another complicating factor which
might lead us to think again about this method of estimalign is the possib!lity
of interdependencies among the gs. It is not then so c_rbvlous how we rfughl
adjust the method. However a mathematical investigation of the properties of
this method will suggest an appropriate adjustment.

Normal equations

These two examples are particular cases of the following general situation. A
random vector x = (x,, X, ..., x,) is such that

x = Afi+e,

where A is a known matrix of order nxpwithp < n, f = (,,6,,...,B,) is
a vector of unknown parameters and & = (g,, ¢, . . ., £,)" is a vector of ‘devia-
tions from the mean’ or ‘errors’, that is, a vector whose expected value is zero.
In this general situation we may apply the principle used in the examples above
and estimate # by minimizing the sum of squares

Y & = ¢e = (x—AB) (x—Ap).

i=1

This method of estimation is called the method of least squares, for obvious
reasons, and any minimizing value f(x) is called a least-square estimate of B.
The function f, a function from R” (Euclidean n-space) into R?, is a least-
squares estimator. However we shall not maintain the notational distinction
between fi(x) and f# and we shall use the latter for both. The context will make

clear the sense in which it is used. . .
Determination of a least-squares estimate is not a difficult problem. We
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have to choose f to minimize the quadratic form
(x—ABY(x—Ap)

in the components f,, f,, ..., B, of §. Differentiation of this quadratic form
with respect to f#,, fi,, . . ., i, leads to the so-called normal equations satisfied
by a least-squares estimate, namely

A'Afl = A'x,

and any solution of these equations does in fact minimize (x—AB)Y (x—Aff)
and so is a least-squares estimate (see Appendix A). If rank A = p. then A’A,
which has the same rank as A (see Appendix A), is non-singular and there is a
unique least-squares estimate

B =(AA)'Ax
Ifrank A < p,then A'A is singular, the normal equations do not have a unique
solution, and there is a family of least-squares estimates which may be deter-

mined in any particular case by the usual methods for solving a system of
linear equations,

Geometric interpretation

The intuitive appreciation of linear algebra is greatly aided by a geometrical
interpretation in which vectors are represented by points and matrices are
regarded as representations of linear transformations or functions (Hohn,
1964, p. 182). This applies equally to the linear statistical model, x = Afi+¢,
which we are investigating.

The sample space here is R” and there is a true distribution on this space
which we do not know. We do have some knowledge about the mean vector
or centre 6 of this distribution, for we know that 0 = E(x) can be expressed in
the form Af; in other words that @ lies in a subspace @ of R", the subspace
spanned by the columns of A, which we shall refer to as the range of A. Given
an observation x, we estimate 0 by § = AB.

Now x—8 is orthogonal 10 w, since A’(x— @) = A'x—A'Af = 0, so that
x—@is orthogonal to every vector of the form Af. This means that we estimate
@ by the projection of x on w, or by the point of w nearest 1o x : and this seems
reasonable on the grounds that x is probably near the centre of the distri-
bution. Here we have the geometric essence of the method of Jeast squares.

Of course 8, the projection of x on e, is always unique whatever the rank
of the matrix A. On the other hand, any point of R? which is mapped by A into
8 is a least-squares estimate of 4. If A has rank p it establishes a one-10-one
correspondence between points in R? and points in @ and then f is unique.
In this case 8 = A(A'A)"'A’'x. The matrix A(A’A)"'A’ is symmetric and
idempotent and it represents the orthogonal projection of R" on 10 the ran ge
w of A (see Appendix A). If rank A < p, then A establishes a many-to-one
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correspondence between points f# of R” and points 0 of w, whose dimension is
rank A, so that while 8 is still unique, § is not. There is not then a simple

matrix representation for the projection of R" on . ' : .
For the case n = 3, p = 2, we can actually draw pictures for this geometric

interpretation.

fha

Figure 1 The matrix A of order 3 x 2 and rank 2 maps R? onto a
two-dimensional subspace of R’

Figure | gives a geometric picture of the case where the observation vector
x has dimension 3, f has dimension 2 and the matrix A (which then has order
3Ix 2)is of rank 2. A may be regarded as representing a linear transformation
from R? into R*, and, because its rank is 2, its range is represented by a plane
in R* (see Hohn, 1964, p. 182). # is the projection of x oh this plane. and there

is a unique f# mapped by A onto .

fh
A

N

Figure 2 The matrix A of order 3 x2 and rank | maps R? onto a
one-dimensional subspace of R*?

Geomatric Intarpretation
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Figure 2 illustrates the same case except that now, A has rank 1. Its range
then is represented by a line through the origin. @ is the projection of x on this

line. But now there is not a unique A mapped by A onto #, and the set of / such
that Al = 0 is represented by a line in R? as indicated.

Identifiability

The case where rank A < p in the linear model x = Af +¢ raises for the first
time an issue which will be of concern later. If we are given a distribution for &,
the distribution on the sample space depends on f, as this distribution is
centred on Af, However when rank A < p, different values of f§ yield the same
distribution on the sample space because different values of § correspond to
the same value of Af. It is clear that in this case, while an observation x may
give us some information about Af, it can give no discriminatory information
whatsoever between different values of f§ corresponding to the same value of
AB. The parameter f is said to be unidentifiable. More generally, if different
values of some parameter give the same distribution on the sample space, this
parameter is not identifiable.

When a parameter is not identifiable we may say that two values of it are
equivalent if and only if they yield the same distribution on the sample space.
This defines an equivalence relation which partitions the parameter space into
equivalence classes. Usually then an observation will give information about
which equivalence class the true parameter belongs to but no information
about which member of this equivalence class the true parameter is. This
difficulty really arises because of our specification of the statistical model
describing the situation in which observations are made, and it can be avoided
by a different specification of the model. For instance, in the above linear
model if rank A = g < p, then p—g of the columns of A, say the last p—g,
are linear combinations of the remaining g. It follows that, il a, is the ith
column of A, then

E(x) = pia,+ ... +f,a,
can be expressed in the form
E(x) = y,a,+ ... +7,8, = Ay,

where A, is the sub-matrix of A consisting of the first ¢ columns of A, Now A,
has rank g and y, a g-vector, is then identifiable. Had we specified the model
in this way there would have been no identifiability problem; but the para-
meter § may have some significance in the practical situation which the
statistical model is describing, whereas the parameter y is not so easy to
interpret. ‘Natural® parametrization in the model set up may lead to non-
identifiability, which is more in the nature of an irritant than a source of deep
problems.
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The Gauss-Markov theorem

The method of least squares has been introduced on the purely intuitive basis
that if we estimate the mean of a distribution by the parameter nearest the
observation made, this estimate should be quite good, since the observation is
probably near the true mean. Some stronger justification of the method is
really desirable and such a justification is provided by the celebrated theorem
which we shall discuss in this section.

Whereas in chapter 2 we were dealing with real-valued parameters and
estimates of these, we are concerned here with a vector-valued parameter .
Our criterion for choosing among unbiased estimates of a real parameter was
that of minimum variance; in other words if & and & were two unbiased
estimates, f was regarded as better than @ if vary(f)— vare(#) were greater
than 0. What is the analogue of this criterion for a vector-valued parameter?
It is that if # and § are unbiased estimates of the vector f8 and their variance
matrices are vary(B) = E4(B—p)(B~BY and var(f), similarly defined, then
f is a better estimate than f if the matrix var, (ff)— var,(f) is positive semi-
definite for all §. The dispersion of the random vector f about its mean f is
then smaller than that of f. Another way of putting this is to say that the
variance of any linear combination of the components of f is no larger than
that of the same linear combination of the components of 1; symbolically that,
for every p-vector ¢,

var,l('ﬂ] = var,(:*'ﬁ).
Now. in the identifiable case at least, the least-squares estimate f} of f is a

linear estimate in the sense that f,(x) is a linear combination of the components
of the observation x. It is also unbiased, since

Es(B) = E;{(AA) 'A'x} = (A'A) 'A’E,(x) = (A'A)TA'AB = B.

The Gauss-Markov theorem proves that subject 1o certain conditions on the
error-vector ¢ the least squares estimate f is better in the above sense than
any other unbiased linear estimate. This of course is a weaker result than one
which states that an estimator is best in the class of all unbiased estimates, but
the input in the way of assumptions concerning the error vector is weak as we
shall see, and as a general rule in the theory of inference, the weaker the
assumnptions, or the wider the family of possible distributions is allowed to be,
the weaker are the results which can be obtained.

The examples in section 3.1 suggest that in order that the least-squares
cstimate be best, it may be necessary 1o require that the components of the
error vector be independent and identically distributed. In fact the Gauss-
Markov theorem requires less than this - only that these components have the
same variance and are uncorrelated. Since the possibility of non-identifiability
of fi complicates matters considerably, we give first a proof for the case where
rank A = pso that f§ is identifiable and the least-squares estimate is unique
and equal to (A'A)” 'A'x.

The GaussnMarkév Theorem.



35.1

352

62

The case where f8 is identifiable

Let x be a random n-vector expressible in the form x = Afi+¢ where A is u
known n x p matrix of rank p, f is an unknown p-vector and ¢ is an error vector
with £(e) = 0 and var () = o°l, where a? is unknown., that is the components
of & have the same unknown variance o and are uncorrelated. Let } be the unique
least-squares estimator of f and let ¢ = ¢'B be a linear paramerric function,
Then ¢’} is an unbiased estimator of & and, if ¢ is uny other linear unbiased
estimator of ¢, we have var,(c'ﬁ] < vary(g).

Proof. Ey(cf) = ¢'Ey(B) = ¢'f = ¢ so that '} is unbiased.
Since ¢ is a linear estimator it is expressible in the form b'x and since @ is
an unbiased estimator of ¢, we have
bAB = ' {Ey(x)) = Eg(b'x) = Ey(¢) = ¢'f for every p.
Hence b'A =,
Now vary(@) = var,(b'x) = b'(vargx)b = a’b'h,
and similarly '
vary () = var, {(A'A)"'A'x) = (A'A)"'A’ varg(x) A(A'A)"" = a*(A’'A)" .
[t follows that  var,(¢'R) = a*c(A'A)" e = o?hA(A'A)'A'D.
To prove the theorem we must therefore show that
b'h =2 BA(A'A)TTA'S,

or that I — A(A’A)"'A’ is positive semi-definite. This follows from the easily
verifiable fact that this matrix is idempotent. (Incidentally it represents the
arthogonal projection of R” on to the orthogonal complement of the range of
A and b'{I ~A(A’A)" 'A"} b is the square of the distance of the vector b from
the range of A.)

This completes the proof.

The general case

Ifrank A < p, two complications arise in the above proof. The more obvious
of these is that A’A is then singular and we do not have the previous simple
expression for a least-squares estimate f. It remains true however that any
least-squares estimate satisfies the equation

A'AB = A'x.
We note, for subsequent use, that this implies that if a is a vector in the range

of A, that is, a vector which can be expressed as a linear combination of the
columns of A,

then a'Af = a'x.
The second and less obvious complication is the fact that when rank A < p,
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not every linear parametric function possesses an unbiased linear csti.mator.
for in order that b'x should be an unbiased estimator of ¢'f we require (see
Theorem 3.5.1) that ¢’ = h'A or that ¢’ should be expressible as a linear com-
bination of the rows of A, When rank A = p, the rows of A span R” and every
p-vector ¢’ can be expressed as a linear combination of these rows. This is not
so when rank A < p. In considering the general case therefore, we must
restrict attention to linear parametric functions ¢'ff which have unbiased linear
estimators or are estintahble . . _
Suppose then that ¢ = ¢'ff is an estimable parametric funclllon. We ‘.!vlsh 0
<how that f f1s any least-squares estimate of f, ¢'f} is an unbiased estimator

ol ¢ and that

varylcfir < vari@)

for any other unbiased linear estimator ¢ of ¢: this being subject.to th.c con-
ditions of Theorem 3.5.1 apart from that on rank A. Now since ¢ 1s estimable
there exists a b e R such that ¢’ = b'A. Let a be the projection of b on the
range of A so that b—a is orthogona! to the range of A, or (b—a)A = 0.Then
a'x also is an unbiased estimator of ¢ since

Efa'x) = Eglla—byx+b'x} = (a—b)AB+¢ = ¢.

Moreover a is the only vector in range A such that a'x is an unbiased estimator
of . For suppose there is another such vector a*. Then we have for every f,

Ey{la—a®)x} =0
e (a~a®*YAR =0
andso (a—a*)A = 0.

This means that a— a* is orthogonal to range A, but since @ and a* are both
in range A, 5o is a—a*. Therefore a—a* = 0,i.e.a = a*. '
Now vary(a'x) < vary(b'x), where b'x is any other unbiased estimator of ¢,

since vary(a'x) = o’a'a, e
while vary(b'x) = o’b'h = o*{d'a+(b—a)(b—a} > o*a'a.

We now complete the proof of the fact that
vary(¢) < vary(d)

by showing that var,(c'B) = vars(a'x).. \ ,
Since a'x is an unbiased estimator of ¢, we have a’'A = ¢

Therefore ¢'f = a'Af = a'x,
since a is in range A and f satisfies the normal equations. It follows that
vary(c') = o’a’a.

It remains true in the general case, that any least-squares estimate is better
than any other unbiased linear estimator in this special sense that it leads to

53 The Gauss—Markov Theorem
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unbiased estimators of estimable linear functions with smaller variance.

Remarks

There are many statements and proofs of this celebrated theorem with various
degrees of generality. The proof given in section 3.5.2, which incidentally is
valid also when rank A = p, is essentially the same as that given by Scheffé
(1960).

It will be seen that in the general proof (contrary to the proof of section
3.5.1) we have never explicitly stated that any least-squares estimator fi of ff is
unbiased. The reason for this is as follows. We may regard any component of
B, say its first component i, as a linear parametric function - the function
c'f where ¢’ = (1,0, 0, ..., 0). It may be that this is not estimable. In the
unlikely event that the first column of A consists entirely of zeros, it is
immediately obvious that no observation gives any information about fi, and
that f#, is not estimable. So in this case, as there exists no unbiased estimator
of B, a fortiori there exists none of . However it is true that if a component
f; of fis estimable, the corresponding component of any least-squares estimate
of f# is an unbiased estimator of f§, - this follows from the fact established in
section 3.5.2 that ¢’fl = a'x, in the notation of that section.

Weighted least squares

In the last paragraph of section 3.1 we anticipated the possibility that least-
squares estimators might not be ‘best’ when the components of the error
vector ¢ did not all *have the same chance of being small’, and indeed a crucial
part is played in the above proofs by the assumption that the variances matrix
of the error vector is o1, that is, that its components have the same variance
and are uncorrelated. The algebra of the Gauss-Markov theorem suggests the
appropriate modification to the method of least squares when cither the errors
have different variances or when they are correlated.

Suppose then that we consider the linecar model
x = Afl+¢e
with the same assumptions as belore except that now, instead of having
var & = ¢?l, we assume that var ¢ = ¢”Z, where £ is a known positive definite
matrix. This allows for the possibility of differing variances among the ¢, s and
for correlation between them. By a non-singular linear transformation we can
transforin this model to that previously investugated by the Gauss-Markov
theorem. For since £ is positive definite, it can be expressed in the form PP
where P is non-singular. Now let n = P '¢ and y = P~ 'x. Then we may
write the model in the form

Py = Af+Pn
or y=P 'AB+n = Bfi+n, say.
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Also varn = P '(vare)P' "' = a*P 'PP'P' "' = ¢?l, so that in terms of y,
B and 1 the model is just that already discussed. We therefore obtain a ‘best’
estimator of ff (that is, an unbiased estimator with minimum dispersion, in the
sense of the Gauss-Markov theorem, among the class of linear unbiased
estimators) by minimizing the sum of squares

(y—Bf) (v—Bf).

Now (y—BB)(y—Bf) = (x—AB)(PP')” (x—AB)
= (x—ABZ ' (x—Ap).

Hence in the case where the error components have variance matrix a’Z, we
obtain best estimators by minimizing this quadratic form rather than the
straight sum of squares. In particular, suppose that the components of the
error vector are uncorrelated, but have unequal variances so that

T = diaglol, a3, ..., 02}, say.
The expression which we minimize may be written

i (xi=a Pr=da ba= ... a0 by
izt

af

In other words we weight each square in the sum by the inverse of the variance
of the corresponding error component. In this way, as anticipated, we give
more weight to the errors which are liable to be small.

It is worth remarking that even when var ¢ cannot be expressed in the form
o1, but has the more general form ¢”Z, an estimator obtained by minimizing
the straight sum of squares (x — Af )Y (x — Afi) is still unbiased. For instance, in
the case where A has rank p, this estimator f is given by

B = (AA) 'Ax

and since Ey(x) = Aff we still have Ej (§) = f. However, in this case

var | = o2 (A’'A) HAZANA'A) .

whereas if f§ is the estimator minimizing

(x—ABYL'(x—Ap) = (y—Bp)(y—BA).

we have

varfi = c*(BB)" ' = ¢} (AT 'A) "

The Gauss-Markov theorem tells us that the matrix

(A'A) "(AZANA'A) ' —(AZ'A)!

is positive semi-definite, so that, in particular, the diagonal elements of this

matrix are all non-negative. This means that the variance of any component
of fis at least as large as that of the corresponding component of ff, and it may

Weighted Least §quares
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wc?l be considerably larger. So while straight least squares yields unbiased
t.zstr.malors of the components of f in this situation, it may be very ineflicient
in thle sense that the variances of these estimators are unnecessarily la

relative to the best we can achieve using linear estimators. kie i

Estimation of o*
In practice when the model
x = Aff+e

with var & = ¢?l,, is appropriate for describing some observational situation
not only will # be unknown, but so also will ¢?. We are then faced with lhe‘
problem olj estimating this unknown quantity as well as f. If § is any least-
squares estimate of § then we might expect that the residual sum of squares

(x—ABy(x—AB)

will on average h!crease and decrease with o®. And indeed it is not difficult to
construct an unbiased estimator of ¢* from this residual sum of squares. We
proceed as follows. .

Wehave &= (x—AM)+AP—f)

pr A(B— p) is a vector in range A, while (x— Af)1s orthogonal to range A
(since A’(x—Ap) = 0). It follows that if we change the basis in R" 1o a new
orlhonorma.l basis whose first r elements are in range A (r = rank A) and
whose remaining n— r elements are orthogonal to range A and if, under this
transformation, ’

(B3, €2, -5 Ex) = (M1s M2+ 4 M)y

then AB—B) = (lzs. s M0 0,0,...,0)
and. fx= ARy (0,0, . ., 0000 Mewgs v oo Mo
Hence (x—ABY(x—Ap) = nl. +nlia+ ... +nk.

If uncorrelated random variables with zero means and common variance o*
are subjected to an orthogonal transformation, the resulting random vanables
have the same properties. (7 = P, where PP* = 1, E(n) = PE@) = 0 and
varn = P var¢P’ = o’PP = o’l,.)

So E(n?) = o for all i.

Hence E,{[x-—AB]’(x—Aﬁ)} = E( i q;'z) = (n-ryag*

I e
so that ;;:—;(x—Aﬂj{a—A{}j

is an unbiased estimator of a*.
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The modification required when var ¢ = o2%. with £ known, instead of
21, is clear In the notation of section 3.6,

1 o oy 1 3 =
—— (y—=BfY(y-Bf) = — (x— AR T (x—Af)
n—r n—r

is then the corresponding unbiased estimator of ¢*.

Variance of least-squares estimators

Another practical consideration which we must take into account is as follows,
There is little point in practice in knowing that an estimator of an unknown
parameter is best in some sense without the additional knowledge of how near
to the parameter our estimate is liable to be. We shall consider this question in
general later and in the meantime we content ourselves with the remark that
the variance of an estimator gives some idea of its reliability or accuracy. Thus
when an estimate is given in practice it is usual to quote also its standard
deviation or an estimate of its standard deviation.

Suppose then that we consider the linear model

x = Afi+e,
where var ¢ = a’l,and A has full rank (= p)so that no identifiability problems
arise. Then the unique least-squares estimate f of § is given by

p = (AA) 'Ax

We can deduce immediately that

var § = (A’A)"'A" var x A(A'A)!

= a2(A'A) . ‘
Now we can calculate an unbiased estimator of o* by the previous section,
namely,
2 1 .
82 = — (x—ABY(x—AB),
=

and it follows that #*(A’A)” " is an unbiased estimator of the variance matrix
of f. If we are interested in estimating a linear parametric function ¢'fl, say,
then ¢'f is a minimum variance unbiased linear estimator of this and
var,c'f = o’ (AA) e

Hence an estimate of the standard deviation of our estimator ¢'pis
aJIC(NA) el

a number which can be calculated from the given observations.

In particular. if we wish 10 estimate a particular component f3, of B, this is

estimated by f, and

Variance of Least-Squares Estimators
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. : var f, = ¢* x (i, i)th element of (A’A)~"
while estimated S.D. B, = 8./{(i, i)th element of (A'A)~'}.

Normal theory
As a general rule_ in ‘slatistical theory, the more we are prepared 1o assume
about the probab:hstfc modf:l underlying observations, the stronger the results
we can prove rcgardmg_ estimators, In the preceding sections of this chapter
we have made assumptions about the first and second moments of the error
vector &, but no further assumptions about the form of its distribution. Then
alfe were ab!e to d_emonstrate that least-squares estimators were best in the
class of unbiased linear estimators. Suppose that we add the assumption that
€ has a normal distribution, so that our model now becomes
x= Af+e,
where ¢ is N(Q, o*1,); A is known, and § and &? are unknown. Can we now
prove something stronger about least-squares estimators? The answer is yes
and we appeal t_ol the Rao-Blackwell theorem to demonstrate this. .
With the additional assumption of normality of errors, we have
1
x; B, 62) = 2y~ 4n Sai .
pix; B, o*) = (2no?) eXP[ 552 (XA (x—AﬂJ]
Xx % B
= CB, aYexp| -5+ ) =L
} P 20_2 e a) Vil
where y = A'x.
Now write r(x) =y, (i=12...,p),
Le1(x) = x'x,
and 1) = (£ (0 12X 1y (20},
Also, reparametrize in terms of 6 = (8,, 0,, . . . s Gps i)
B .
where 8,.:-;% i=12...,p)
1
and 0,,, = ——.
rtli 252

Then p(x; f, a?) can be expressed in the form

+1
C*0) cxp[ ’Z Ot {x;].

=1

It follows from the factorization theorem that t(x)is sufficient for ¢ and from

Theorem 2._’.5.4 on exponential families that the family of distributions of ¢ is
complete, if there are no prior restrictions on ff and ¢, because then the para-
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meter space contains a (p+ 1)-dimensional rectangle.

Now §, is a real function of 6, f; = —40/6,.,, and f, is a function of the
sufficient statistic ¢, since
B = (AA)'Ax = (AA)'y.
Moreover B, is an unbiased estimator of f,. (We assume here that A has full
rank so that f, is estimable.) It follows that B, has minimum variance in the
class of all unbiased estimators of f(i = 1,2,.. ., p), by the argument of
section 2.6. Incidentally, if s* = (x—~Apy(x—AB), then s’/(n-p) is a
minimum-variance unbiased estimator of o* in this case.

Thus by adding the assumption of normality to the linear model we are able
{0 establish that least-squares estimates are optimal in a stronger sense than
they are without this assumption.

Note

It is convenient at this stage 10 prove, for subsequent use, a result concerning
the distributions of # and s? when the assumption of normality of the error &
is added to the linear model assumptions previously adopted.

Since f is linearly related to a normal random vector (B = (A'A) 'A'x,
where x is N(Af, o°1)) we can state immediately that f itself is

N{B. o*(A'A)'}.
Furthermore we have seen in section 3.4 that there exists an orthogonal matrix
P such that ifn = Pe,

then PA(B—B8) = (. n2. .. 1,0.0,....0)

and P(x—AB) = (0,0,....0,m,0p.....M)"
Now since the components of ¢ are independent N (0, ¢*) random variables
and since P is orthogonal, it follows that ny, 1, . .., 1, are also independent

N(0, a*). Therefore B—pand x— AP are independent. Furthermore

x-ABy-AD) = § o
I”"

and so s? = (x—AB) (x—Ap) is distributed as a’yi(n—p).

In other words, with the normal assumption the least-squares estimates
B Ba . By of By B B, respectively are jointly normally distributed
and are independent of the residual sum of squares s* which is distributed as

alzzfn— P

Least squares with side conditions

Until now in this chapter we have considered the linear model with E(x)

Least Squares with Side Conditions



expressed in the form Af. Sometimes the natural expression of the model in
terms of the parameters of interest does not occur in this way. In particular
these parameters may be mathematically related to one another and often the
relationships between them are linear. In the latter case we have a model in
which E(x) is expressed in the form Af with fi;s satisfying certain side con-
ditions, say Hf = 0, where H is a g x p matrix (g < p) of known coefficients.
It must be emphasized straightway that from a theoretical point of view this
new model is not different in essence from that which we have been discussing,
In both cases we are stating that E(x) belongs to a subspace of R”, and indeed
by reparametrization we can throw the new model into the form of the previous
one. Suppose, for instance, that rank H = g.(Ifrank H < g thissimply means
that some of the conditions are redundant, being consequences of the rest, and
we may simply discard these.) By adjoining p — g suitable chosen rows to the
matrix H we can construct a non-singular p x p matrix K with K’ = (H', H*),
say. Now let y = Kf. The side conditions on B are, in terms of y,

)':‘—:}'3-‘—‘...=y'=0‘

Now we have

E(x) = AK™'y = By, say,

= (B, B,) (}‘“'}.
(2)

whete 9’ =y, 390 - o ) and 9P = (g, Y,

Thus E(x) = B, 3"V +B,3? = B, ¥, when y'V = 0. In this expression for
E(x), the side conditions are incorporated, there are no conditions on ¥ and
the model is as previously.

In practice, while it would be possible to treat the problem of least-squares
estimation with side conditions in the way just described, to determine § and
then 8 = K ', this would be an unnatural approach. The problem we have
is that of minimizing the sum of squares

(x—ABY (x— AB)

subject to the side conditions HB = 0, since it is natural to require that our
least-squares estimates should satisfy the conditions which we know to be
satisfied by the parameters being estimated, The obvious way of going about
this is to introduce Lagrange multipliers and derive the following equations
satisfied by the restricted least-squares estimate B. In these equations, 1 is a
g-vector of Lagrange multipliers, 4, 4,, . . ., A5

A'Af+HA = A'x,
Hp =0,

)

The Method of Least Squares

Il

3.10.1

61

The vector 4 here obviously depends in general on x and so we may regard it as

a random vector. gty
We now consider the question of what we can say about the distribution of

the restricted least-squares estimate f} when we retain the standard assump-
tions regarding the distribution of the error vector &, name!y that IE{E) - 0
and var ¢ = ¢?l, and when E(x) = Aff where Hf e 0. T‘hls question is of
interest per se and it is also relevant in a problem which will concern us later,

rank A = p,rank H = g

The first case which we shall discuss is that in which lhere.altc no identifiability
difficulties regarding fi (rank A = p)and in which no restrictions are redundant
(rank H = q). In this case A'A is positive definite, and the matrix

i 5]

is non-singular (see Appendix A). Moreover, i its inverse, similarly partitioned,

By
o

Also E,[f]=[PA'AB :[ﬂ].
A |QAAp 0
since PAA+QH =1
and QAA+RH = 0,
so that PA’Aff = f—QHf = §,
and QAAB= -RHB =0,
as Hf = 0.
Furthermore var,[f] = o [ PA'AP PA‘AQ]
;| QA'AP  QAAQ

=g*[P gl
0 =R

since in addition to the previous matrix equations we ha\re. HP = 0 and
HQ = |, and therefore PA'’AP = QHP = P, elc. (see Appendix A).
To sum up: With the linear model

fi

x = Af+¢,
where Hf = 0, E{(s) = 0 and var & = ¢?l, rank A = p and rank H = g, the
restricted least-squares estimate f} has mean f§ and variance matrix P, the
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leading p x p sub-matrix of the inverse of {A'A H’' ]
H 0!

It is clear from the argument at the beginni i
is cle inning of section 3. 1 -
melrizes in terms of y that ’ p A

1
n—p+gq

is in this case an unbiased estimator of ¢

(x— ARy (x—AB)

rank A < p,rank H = g

:s we_hnve seen, whf:r? rank .A <p tl::e parameter f§ is not identifiable and the
omain of ,B 1s partitioned into equivalence classes of parameters. Any two
parameters in the same equivalence class yield the same value for E(x), and we
ca.nm_)t h0p¢? to distinguish between these as a result of observation. Indeed in
this linear suqa(ion it is not difficult (o identify these equivalence élasscs All
paramctcfs f# in the null space of A, that is all fs such that A} = 0 are iﬁ the
same ‘cquwalence class and this is a linear subspace of R?. Any equival
class is a ‘hyperplane parallel to this subspace’. ‘ % o
One method of proceeding in this case is to introduce restrictions on f in
order to focue:, attention on exactly one member of each equivalence class and
to bchavfrc as if the true parameter satisfied these restrictions. To take a trivial
illustration, suppose that our model specifies that for i = 1,2
E(x) = fi+Ba, ¥l

ie,that Efx)= [1 1 Bk
b -3 B,
P
A(l)l parameters B such tt}at_ﬁ, + B, has a given value k, say, arc equivalent. If
now we impose the restriction that f, = §,, this restriction serves to pick out

exactly one member of each equivalence class ~ the member [ik] of the
1
. }k
Zzl;;‘f?lﬂ:?cﬁﬁs; defined by 8,4+ fi, = k. Then we may proceed to estimate
it satis the restriction 8, = aj Ima > equi
e sponid B, = f,, and so estimate the equivalence class
In ?encral whc?u A has O{der nxpand rank » < pitis possible to introduce
p—l-r inear restrictions which serve, as in the illustration, to identify a parti-
cular membcr‘of each equivalence class. More specifically, there exists a
(p—r)x p matrix L of rank (p—r) such that the equations
Afl = k;
Lg=20
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have exactly one solution. An obvious necessary and sufficient condition for
these equations to have a unique solution is that

rank [A] =
L

and again obviously we can find many matrices L of order (p—r)xp which
satisfy this condition. Since the conditions Lfi = 0 serve 1o identify p we shall
refer to them as identifiability restraints,

It often happens in practice that the natura
E(x) in a lineur model takes the following form:
E(x) = Aff where Hf = 0:rank A = r < pand rank H = q.

Hf = 0 serve to identify p and the
B. In fact there exists a sub-matrix of

| or symmetric specification of

Moreover some of the side conditions

remainder are ‘genuine’ restrictions on

H, H, say, of order (p— r) % p such thatTA ] has rank p. Again in theory this
(&)

specification of the linear model presents no essentially new difficulty for by

a reparametrization we can clearly revert to the original form of the model

which we have discussed in detail. However we now consider the practical

algebra corresponding to this specification.
We may suppose without any loss of generality that H may be partitioned

into [H, 1,

[
where H, has p—r rows and the equations H,$ = 0 are identifiability con-
straints, so that {A “ has rank p, and A’A+H H, isapxp positive definite

H,_
matrix. As before, the restricted least-squares estimate fl sat

AA HBl=TAXx]
H 0 ]|4 0
But now A’'A is singular and some modification of the argument of section

381 is necessary. This modification is relatively simple. For since Hp = 0,50
that in particular H, 8 = 0, an equivalent set of equations is

o M

positive definite, so that we now have a set of
{ section 3.8.1; and the matrix on the

' 3
isfies the equations

and the matrix AA+H{ H, is
equations similar in structure (0 those of
left hand side is non-singular. Il now we set

[A’A+H'.}-I} H}“: P Q]
H 0 g R
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then we have, as before

B = PA'x
and A= Q'A'x

The matrix relationships used to establish the results of section 3.8.1 were

PAA+QH =1 3.1
QA'A+RH = 0 32
HP = 0 33
HQ = | 3.4

and these are now replaced by the following
PAA+H\H,)+QH =1 3.1a
Q(A'A+H{H)+RH =0 3.2a
HP =1 3.3a
HQ = I 3.4a

From equation 3.3awe have in particular the fact that PH} = 0, so equation
3.1a is equivalent to equation 3.1and the only essential difference between
the second and first set of equations is the term Q'H\ H, in equation 3.2a. As
is easily verified the only difference that this makes to the deductions of section
3.8.1 is that now

vard = —R—Q'H H, Q;
everything else remains unaltered. Since HQ = land p—r < qit follows that

(H,QY(H, Q) =[1,., 0],
0 0

so the only adjustments required by the non-identifiability of f are that
(a) we replace A’A by A’A+H' H,,
(b) var A becomes — R — I,—, 0] instead of, as previously — R.
0 0
While we are not particularly interested in the random variable 1 in the
meantime, these results concerning 4 which emerge here in a natural way, will
be used in a subsequen? problem.

Discussion

There are many variations on the least-squares theme and there are various
questions which we have left unanswered. The method is an extremely useful
one and it is often applied even when the assumptions of the Gauss-Markoy
theorem, which justifies it in terms of minimum-variance unbiasedness, are
not satisfied. It therefore becomes natural to inquire how the properties of the
method are affected by changes in the assumptions regarding the error vector
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ete. Much of econometrics is concerned with this kind of qucsltinn and for a
very full discussion of such points the reader is referred to Malinvaud (1966).

Examples

Assume that observations x,, x5, . .., X, can be expressed in the form

R P L SN B SN

where . d, u, are known values of a concomitant variable and the s
are uncorrelated errors with common variance . Verifly that ff; and ﬁl‘ are
hoth estimable ifand only if the a;s are not all equal and confirm the intuitive

acceptability of this result by imagining a scatter diagram of tl:te points
{a. v,). Show that, when the a5 are not all equal, least-squares estimates fl,
Il e ]

and f§, are given by

X
g S (a—a)*
Bo = x—ap,.

Prove directly from the first expression that var §, = ¢%/3 (a,—a)*. Show that
¥ and f}, have zero covariance and deduce that

fa)cov (fo. f1) = —avar .

Z | a?
(b) var iy = o2 [” + —E—(a—'_—a?‘l
Verify these results by writing the model in the matrix notation
x=Afl+r .
and using the general results of chapter 3,

Observations x, x;, .. .. X, can be expressed in the form

G = Raklrbfsat e (0 =12, nn)

where the g;s are values of a concomitant variable and the s are uncorrciatc;l
errors with commen variance. Establish that i = (f,, fi,, ff,) is identifiable if
and only il there are at least three different values among ay, a;, ..., 4,
Themodel x,= fo+fiacte (i= k2. .. n),

may be expressed in the form

= B+ B a+ (e, —a)teE
=o+f(le,—a)+g, say

4E

Show that this reparametrization in terms of = and ff; rather than fi; and fi,
facilitates calculation of least-squares estimates,

Examples

G



34

35

36

Verify that, in general, the model
x = Afi+e
can always, by reparametrization, be expressed in the form
x = By+eg,

where B is a matrix whose columns are orthogonal, and that the least-squares
estimate of y is easily calculated.

Observations x;(i = 1,2,...,r;f = 1,2,...,n), are such that
X;j= p+ttg,,

where the s are uncorrelated errors with a common variance. Verify that
Ty, T3, ..., T, are not identifiable, but that they are when the restriction
T +7;+ ... +7, = 0 is imposed. Show that the least-squares estimates,
subject to this restriction are

1
HS e o Xijs
i)

= x.—x.,

1
where x, = éZxU § ik B SRRy
;)

Acrial observations x,;, x,, x3, x, are made of the angles 0,,0,, 0,,0, of a
quadrilateral on the ground. If these observations are subject to independent
errors with zero means and common variance ¢?, determine least-squares
estimates of the fs, and obtain an unbiased estimate of ¢?,

Suppose that the quadrilateral is known to be a parallelogram with , = 0,
and 8, = 6, What then are the least-squares estimate of its angles, and how
would you estimate o??

A chemical compound can be produced by a certain process without the help
of a catalyst, but it is hoped that the yield will be increased if a catalyst is
present. To investigate this, five identical containers are used in the following
way.

Container Treatment Yield
1 No catalyst Xy
2 Catalyst A at strength a, X3
3 Catalyst A at strength a, X3
4 Catalyst B at strength a, b
5 Catalyst B at strength 2a, Xs
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Assuming that regression of yield on strength is linear for each catalyst, obtain
least-squares estimates of the ‘unaided’ effect and of the two regression

coefficients.
Derive the variance matrix of these estimators (making the usual assump-

tions about errors) and deduce that, for given a;, the least-squares estimator
of the difference of regression coefficients has minimum variance when

a; = da,.
A deterministic process yo, ¥y, - - . , ¥ 18 governed by the relation
Vigq =y =01 n=1)

where a is a known constant. The y;s cannot be observed without error and

observations x,, x;,. . ., X, are such that
Xi=y4e ({=01...,n)
where the ;s are uncorrelated errors with common variance. Determine least-
squares estimates of yo, ¥y, ..., Vu
If @ were unknown, how then would you estimate yo, yy, ..., ¥,’

In each case obtain an unbiased estimate of the error variance.

In example 3.4, take r = 3 and verify directly the general results of section
LI

Examples



4 The Method of Maximum

4.1

Likelihood

The likelihood function

The justification of the method of least squares requires no knowledge of the
form of the distribution of the error vector apart from its mean and variance
matrix, and the method can be applied without this further knowledge. The
method of maximum likelihood, on the other hand, is applicable mainly in
situations where the true distribution on the sample space is known apart from
the values of a finite number of unknown real parameters. So maximum
likelihood is usually applied when the family of possible distributions on the
sample space can be labelled by a parameter @ taking values in a finite-
dimensional Euclidean space. In addition, its application is generally restricted
to the case where this family {P,:00 e @} (© a subsel of R', say) possesses
density functions {p,; # € ® } with respect to some ‘natural” measure on the
sample space, such as counting measure if the sample space 1s discrete or
Lebesgue measure when it is not; in the discrete case p,(x) is ‘the probability
of the point x when @ is the true parameter’; in the continuous case py(x) 1s
‘the probability density at x when @ is the true parameter’

It is convenient now to change our notation and write p(x, f) instead of
pelx); and we make a distinction between the function p(-, f}) which is a
density function on the sample space, and the function p(x,-) which is a
function on the parameter space. The latter function, p(x,-). is called the
likelthood function corresponding to the observation x, or simply the likelihood
funcuion. It expresses the plausibilities of different parameters after we have
observed x, in the absence of any other information we may have about these
different values. (This last sentence might well be the subject of some contro-
versy, but we shall return to this point later.)

The method of maximum likelihood has a strong intuitive appeal and
according to it, we estimate the true parameter 8 by any parameter which
maximizes the likelihood [unction p(x, +}; such a parameter belongs to the
set most plausible after we have observed x. Often there is a unique maximizing
parameter which is the most plausible and this is then the maximum-likelihood
estimate.

Definition

A maximum-likelihood estimate ((x) is any clement of © such that

The Meathod of Maximum Likelihood

;.):x. ﬂ'(.\:]: = max p{x. .
fed

Of course il is possible, if. for instance, © is an open set, that no maximum-
likelihood estimate cxists. However in practice this does not often cause

trouble.
Again formally at this stage we make the distinction between the estimate

f1(x) and the estimator A, but we shall not maintain this distinction consistently,
leaving the context to make it clear whether we are thinking of#(x)asa function
or as a particular value of a function.

Example

The results of n independent trials in each of which the probability of success
isl are x = (x,, X5 ....x,), where as usual each x; is either 0 or 1. Find the
maximum-likelihood estimate of .

The likelihood function, defined on the interval (0, 1), is given by

plx, 0) = 01 -0 =,
and its maximum occurs at

o Y x,  number of successes
Xy =
] n number of trials

So in this case the maximum-likelihood estimator coincides with the M.V.U E.

Example

Let x = (x,. X3, ..., X,) be a random sample from an N (g, o) distribution
with g and ¢ unknown, Find maximum likelihood estimates of 4 and a? or,
equivalently, the maximum likelihood estimate of @ = (g, @?). In this case the
likelihood function. defined for all real g and all 6* > 0, is

1 1
¢ g B e —)?
plx, s 0%) = S exp[ 37 Z(L ) ]
Maximizing p, which is non-negative, is equivalent to maximizing log p and
I >
log p(x. j, @’) = constant —n log o — 53 Z (= 1)

We find the maximizing values by the standard method for maximizing a
function of two variables, namely equating partial derivatives to zero.

0

]

1
This gives Z (x,— 1)
e

e %
and —=4 = Zit. — u)
q

il

0,
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equations which have the unique solution

ﬁ=i=1z.t- and 0= ) %)’
n i _;Z(xi'_x’-

It is not difficult to verify that these values of i and ¢” yield an absolute (not
only a local) maximum of the log-likelihood, so that they are maximum-

likelihood estimates,

Calculation of maximum-likelihood estimates

In these two examples it was possible to find relatively simple expressions in
closed form for maximum-likelihood estimates, but often this is not possible
and numerical methods are-necessary. It is usually possible to assume that
maximum-likelihood estimates emerge as a solution of the ‘likelihood

equations’, namely
d
‘—__)—él-logp(x,ﬂ) =0, (i=12...,9.

However, these equations often have to be solved numerically.
A standard method of solving the likelihood equations is Newton's method

or an adaptation of it. Symbolically the equations we have 10 solve may be
wrilten

Dyl(x, 8) = 0,

whcrc I(x, 8) =Ilﬂg p(x.6) and D, is the vector differential operator whose
{th component is 0/26,. By exploiting special features of the situation under
investigation, as in the example following this section, we can often obtain a
good initial approximation €’ 10 the solution @ of these equations. Then we
expand by Taylor's theorem as far as terms of first order in 0 —# 10 obtain

0 = Dy Ux, 0) = Dy l(x, 0'°) + (D I(x, '} (D — 8%,

where Dj is the matrix operator

a]

[aa,- 26,
It follows from this that
8 =~ 69— (D} I(x, 6°")} ' D, I{x, 6,
and ‘the right hand side of this equation is a new approximation 0'" o the
maximum-likelihood estimate #.

Now_ we repeat this process, using (! instead of ('°), 10 obtain a new
approximation 02, and so on. Thus we establish an iterative procedure for

obtaining a sequence (6*') which usually converges to 0. This is Newton's
method.
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The laborious aspect of this iterative procedure is the inversion of the
matrix D? [(x. #") at the ith stage. If our initial approximation 6’ is good,
then D7 l(x, 0‘”') will be near D} I(x, 0") in non-pathological conditions, so
that we can often use the former matrix at each stage of the procedure and so
avoid the necessity for a new matrix inversion at every stage. This modified
procedure leads 1o a new sequence of approximations to f, a sequence which
usually converges to (J, though possibly more slowly than the sequence (6"").

A further modification sometimes reduces the total amount of computation
even further. There is sometimes good reason to suppose that the matrix
D2 I{x.0') will be relatively close to its expected value E;” {Dj I(x, 6")};
close enough, that is, 1o ensure that a sequence of approximations to fl, based
on the use of this expected value rather than on D l(x,8®) itself, will still
converge to . Now it often happens that terms awkward to calculate appear
in D? I(x, 0°') but not in its expected value. So again it is sometimes possible
to reduce total caleulation by using E¢* {D I(x,68®)} in place of D I(x, 0'”).

We recall that E; {D3 I(x, 0'®)} is simply, in most instances, — By where
B, is the information matrix (see section 2.13). It follows that the fully modified
iterative procedure is defined as follows:

gt = 0 4 By { Dy I(x, 07,

where 0" is an initial approximation to fl, usually obtained by exploiting
special statistical features of the problem involved.

Example
Suppose that it may be assumed that the probability n(s) that an individual
responds to the level 5 of a stimulus can be expressed, at least approximately,

in the form
5= ulle

=@ s:‘l)= -—]—— J. e ¥4 5
n(s) ( s ) -Jen :

-m

an assumption which may appear somewhat drastic, but which in fact turns
out to be valid in many circumstances. The level s, of the stimulus is applied
to n; individuals (i = 1,2,...,r) and the numbers m; (i = 1,2....,r) of
responses at the different levels are observed. Determine maximum-likelihood
estimates of y and .

In this particular case we have, in our general notation,

x = (my,my...,m) 0 = (4, 0)

and p(x,0) = [] ("‘) (r(s)™ (1= m(s}™ ™,
i=1

assuming, of course, that individuals respond independently of one another.

Calculation of Maximum-Likelihopd Estimates



Hence, writing =, in place of n(s;) for symmetry of notation, we have

I(x,8) = constanl+>: {m; log m,+ (n,—m,) log (1 — )},

and the likelihood equations, D, I(x, #) = 0, are

é m,—nmn, én
—Ix0)= ) ——— -2 =
u } : w(l—n) du 9

and _‘i I(x, 0) = Ll (jf_' =
da —~ 7;(1 —n;) 8o

It will be appreciated that these equations are not susceptible to methods of
solllftion which are other than numerical, and our first problem is 1o obtain
initial approximations yu, and o, to their solution.

® is a monotonic increasing function. Let ® ' denote the inverse function
defined on (0, 1). If we knew the s, then when we plotted the points
(5o @~ '(m,)), according to our assumption regarding m, these points would lie
on the straight line

o tm = U4
a

of course we do not know the ;s but we do have estimates of them since
mi/n; is an estimate of m (i = 1,2,..., 7). Consequently if we plot the points
(s, ®' {my/n;) ), and if our assumption regarding = is justified, these points
should be scattered around a straight line. Plotting these points therefore gives
us at the same time a check on the validity of our assumption about & (if they
are gbviously non-linear the assumption is not justified), and a means of
obla_ming initial approximations 1o the solution of the likelihood equations.
Fpr il we fit a straight line to this set of points, the parameters of the fitted line
yield estimates of the true parameters 1 and o, estimates which approximate
to the maximum»?ikelihood estimates, the solution of the likelihood equations.

We now illustrate the point of replacing Df I(x, 0) by its expected value. In
our example a typical element of the former matrix is

&

'aru: ,(.‘l, 9),

which is rather a complicated expression. Note however that all but one of the
Ief'ms which arise under the summation sign when we differentiate dl(x, 8)/iu
with respect o u, contain as a factor m, —n, x,, whose expectation is zero. It
follows that

e : ~n on,\?
g4 =L S A VN
'[ﬁn’ o H’] ,Zn.u —x,) (au) ;
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and similarly that the information matrix By is given by

By = Z " (ﬂn,)’ Z 4 on, !_3_7!-1
e m(l—m)\ du r n(l —n,) du do

Z_”-_%% Zﬁ_,(f’i)
~ (1 =n) & Co — (1~ m) \ 0o

With our assumption regarding the form of m, we have

an 1 (s— on; 5 — 5, —
on_ L y(a) I s g(aor)
o a a Ja o o

d
where ¢(y) = d‘_,dl(,rl.

The calculations involved in the iterative procedure for evaluating ji and
# are still not trivial. but they are not prohibitive. For further details of the
organization of these calculations, and for numerical examples, the reader
may refer to Finney (1947): this is an example of an important practical

technique called probir unalysis.

Optimal properties of maximum-likelihood estimators

The Gauss—Markov theorem provides a justification for the method of least-
squares in terms of the concept of minimum-variance unbiasedness, and it is
natural 1o inquire whether a similar justification for the method of maximum
likelihood can be found. Unfortunately it is not generally true that maximum-
likelihood estimators are unbiased; for instance if x,, X5, ..., X, is a random
sample from an N (i, ¢?) distribution with yand o? unknown,'the maximum-
likelihood estimator of 0 = (u, ¢*) is (%, $%)

1 l -
where s = - le_-—x]l.
n

and while it is true that E4(¥) = u, for all 8, it is not true that Ey(s?) = o’
In fact E,(s) = (n—1)n""'a?, for all 6. (Of course whether we use this as a
criticism of the method of maximum likelihood or as a criticism of the concept
of unbiasedness i1s 2 moot point.)

We can make one or two fairly obvious statements which provide a very
partial justification of the method.

Firstly in a ‘regular’ situation where there exists an unbiased estimator
whose variance attains the Cramér-Rao lower bound, the maximum-likeli-
hood estimator coincides with this. For then (section 2.10.1) @ log p(x, 8)/c0
can be expressed in the form a(th{B(x)—8)}, and the only solution of the
likelihood equation @ log plx, 0)/30 = 0is 6 = B{x ), which gives an absolute
maximum of log p(x.#) and thercfore (x) is the maximum-likelihood
estimate.
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Secondly it is often possible to show that a maximum-likelihood estimator
has high efficiency (section 2.11) in the Fisherian sense. This of course provides
a justification only in particular cases. 3

Thirdly we can say that the maximum-likelihood estimator is a function of
a minimal-sufficient statistic. This follows directly from the factorization
theorem (section 2.3.3) and it means that the maximum-likelihood estimator
depends only on relevant information contained in an observation. It does not
mean necessarily that it makes the *best use’ of this information according to
some specified definition of ‘best use’. The main justification of the method
of maximum likelihood is a ‘large-sample’ one, which shows that when an
observation provides lots of information about an unknown parameter, the
method utilizes essentially all of this information. We expand this rather
vague statement in the following sections.

Large-sample properties

When we talk about a large sample we mean that the observation x takes the
form x = (x,, x5, ..., x,), where n is large, and the x;s are independent and
identically distributed.

In this case p(x, 0) = l:[ p*(x, 8),
i=1

where p*(-, 0) is‘lhc density function, corresponding to the parameter value 8,
on the space of a ‘single observation’.

Also I(x, 8) = log p(x, 8) = i log p*(x;, 0),
i=1

regarded as a random variable, is the sum of the independent identically
distributed random variables log p*(x,, ®)(i = 1,2, ..., n).

Now let us fix attention on one particular distribution on the sample space,
say that corresponding to the parameter 8,, which we will think of as the true
parameter. For any fixed 6, /(x, 0) is a random variable whose distribution is
determined by the ‘true’ distribution on the sample space.

1
Let z(8) = Eo[; I(x, G}] = E,{log p*(x, 0)},

where the subscript on the expectation operator is used to emphasize the fact
that we are taking expectations relative to the distribution corresponding to f,,.

This function z(f) has a property which is, in a sense, the key to the study of
large-sample properties of maximum-likelihood estimators: z(8) artains its
maximum value at 04, and if distributions on the sample space corresponding to
different parameters are essentially different, then for no other 8 is z(0) equal to
z{ty). This important result is a particular case of the following general result
derived from Jensen's inequality.
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Theorem

Let q and r be density functions of two different probability distributions on the
same probability space Y of points y, these distributions being different in the
sense that there exists a set of positive g-probability on which g(y) # r(y); and
let C be any continuous convex function of a non-negative variable,

Then E,[C(;H > C(1),

with strict inequality if C is strictly convex.
Proof. By Jensen's inequality we have

£[<(3) ]2 =)

and the inequality is strict if C is strictly convex, since r/q is not constant with
g-probability 1 by assumption.
This simple proof is now completed by the remark that

E,(f)— 5D i)y, - symbalicaily

a)  Jyay
= f riy)dy = 1,
4

and so E,[C(é)J G,
In the above theorem, let C = — log, let Y be the space of a ‘single observation’
and let ¢ = p*(+, 8,), r = p*(-, 0).

oL p(s, 9)]
Th es Eg| —1 2 —logl =0

= glv 'o[ os P'{" G»] g

ie. z(0,)—z(8) =0, or z(0,) 2 z(0),

and the inequality is strict if the distributions corresponding to @, and @ are
essentially different.

So far we have assumed no structure on the parameter space ©. Typically
this space will have a mathematical structure; in particular, if it is a Euclidean
space, it has a metric, and then it is usually the case that when @ is near ,,
z(0y)—z(f) is small and when 8 is far away from 6, 2(0,) is considerably
larger than z(6).

Also in the large sample case the law of large numbers ensures that when
nis large, n~ ' I(x, B) is, for most x and each particular 6, near z(f). Suppose
that we assume sufficient regularity to enable us to demonstrate that, for large
n and most x, n~ ' I(x, 0) is uniformly (with respect to 0) near z(#). Then the

Large-Sample Properties
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follov_ving picture emerges for the case where 0 is a real parameter, a case of
sufficient generality to illustrate the general case also.

Figure 3 Proximity of the graphs of z(f) (unbroken line) and EZ(x, th)
n

(broken line) ensures that § is near 0,

In Figure 3, the unbroken curve is the graph of z and the dotted curve is the
graph of n™" I{x, 8) for a typical x. The fact that z assumes its maximum value
at o, and that n™' I(x, 0) is uniformly near 2(6) ensures that n~ ' l(x, &)
assumes its maximum value at a point near ,, that is, d(x) is near .

Consistency

In section 4.4 we have outlined the ideas underlying a proof of the fact that the
;nclhod of maximum likelihood has a property called consistency, defined as
ollows.

Definition

Let [ﬂ',,l) be a sequence of estimators of a parameter 6 belonging to a metric space
©. This sequence is said to be weakly consistent if 8, tends in 6-probabilit ytofl;
strongly consistent if , converges with O-probability one to 6, for all 6 € ©.

The reader who is unfamiliar with general metric spaces may think of the
paramelter space © as being the real line, without losing anything essential
from the statistical idea here. This idea arises from the following consideration :

Suppose that we continue repeating an experiment which, we feel, is in some
sense providing information about an unknown real parameter 8 involved
in a probabilistic model of the experiment, If the repetitions are independent,
then, as their number increases, we feel that we ought to be obtaining more
and more information about 0; that, if we are estimating 6, our estimates
should get closer and closer to the true value, whatever this may be; and that
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finally, when the number of repetitions is very, very large, we ought to be
fairly certain about what the true value of the parameter is.

Precise mathematical content is given to this notion by the statement that
consistent estimation should be possible in the circumstances described. It
then becomes important to demonstrate that any method of esumation which
we employ does have this property of consistency.

Now if (x,) is a sequence of random variables whose joint distributions
depend on an unknown parameter € in a metric space ©, we may define a
sequence (0,) of maximum-likelihood estimators of @, a, being the maximum-
likelihood estimator based on x,, x5, . . ., x,. Section 4.4 outlines the main
ideas underlying a proof of the fact that if the x;s are independent and identi-
cally distributed, the sequence (f,) is consistent: weakly consistent if a weak
law of large numbers is employed ; strongly consistent if a strong law is used. Of
course analytic details are required and regularity conditions must be intro-
duced, for a complete proof, which is quite complicated. The reader is referred
to Wald (1949) for such a complete proof.

Large-sample efficiency

The main justification of the method of maximum likelihood in terms of the
criterion of minimum-variance unbiasedness is that it is possible to show that
for large samples, subject to regularity conditions, maximum-likelihood
estimators are nearly unbiased and have variances nearly equal to the Cramér-
Rao lower bound. Again a full proof of this result is hedged around with
analytic details and regularity conditions and we content ourselves with a
heuristic argument. We consider the case where there is an unknown real
parameter (), a case of sufficient generality to illustrate the probabilistic content

of the argument.
Suppose then that (x,) is a sequence of independent identically distributed

random variables, the distribution of each being known apart from the value
of a single real parameter @ and let , be the maximum-likelihood estimator
(which we assume unique) of # derived from x,, x,, ..., x,. We shall now
assume that n is large and we shall omit the subscript n for typographical
brevity. We assume also that f) emerges as a solution of the likelihood equation

Dyl(x. 0) = 0,
Where o= {xpeds, %80

I(x, 0) = log p(x, () = Y log p*(x, 0)
=1

and D, is the differential operator d/é6, as before.
Section 4.4 tells us that with @-probability near 1, 0 is near 8. We therefore
have

0 = Dyl(x, 0) = Dyl{x, 0)+ (0= 0)D3 I(x, 0)+R(x, 0, ),

Large-Sample Efficiency
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where R(x, 6, 0) is a remainder térm involving (# — ), which may be shown
to be of smaller order than the first-order term, (B—0)D} I(x, 0), if regularity
conditions are satisfied. We can therefore say that, with 0-probability near 1,

oy Dyl(x, 6)
Dii(x, 6)
or J/n(B-8) ~ n"tDMx, @)

n 1D} l(x, 0)

1 I 5
Now j; Dyl(x, 8) = %ZI Dy log p*(x;, 0),

and each random variable in the sum on the right hand side has zero mean
and variance i;, Fisher's measure of information from a single observation
(section 29). Consequently by the central limit theorem, n ¥D,l(x, 0) is
approximately N (0, i,).

| 1
Moreover ;D}:‘{x, 8) = k Z D} log p*(x,, 0)
=

and, by Lemma 2.11.2,
E'{ —Dg Iog p‘{xh 6)} = l‘"

Therefore, by a law of large numbers, —n~"'Dj l(x, ) is approximately equal
to iy,

It follows that \/n(ﬂ —40) is approximately i, 'x (an N(0, i) random
variable), so that @ is approximately N {0, (niy) ™'}, i.e, N (6, I; ') where I ' is
the inverse of Fisher’s measure of information from x,, x,,..., x,, or the
Cramér-Rao lower bound for the variance of an unbiased estimator of 0
based on x, x,, .. ., X,.

So we have ‘proved’ that maximum-likelihood estimators are efficient for
large samples and in addition that @ is approximately normally distributed,
in this case where there is a single unknown real parameter. For a complete
proof of this result the reader is referred to Cramér (1946), p. 500.

This property generalizes to the case where # is a vector-valued parameter
The basic results used in the above proof are -

(a) Taylor’s theorem in the expansion of D, /{x, f1);

(b) a central limit theorem applied ton *D I(x, ),

(c) a law of large numbers applied to n ' D? I(x, 6).

Each of these results has a multivariate version and the vector-parameter
argument is simply a straight generalization of that above, yielding the result
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that in this case, for large samples,  is approximately N (6, (1Bg)~') where
B, is the information matrix (section 2.12) for a single observation.

Restricted maximum-likelihood estimates

On cerfain occasions, when a family of distributions on a sample space is
labelled by a vector-valued parameter 0, we have additional knowledge about
the true parameter and we know that it satisfies certain restrictions. Then the
parameter space © is expressed in the form

@ = {#:0e R, h(B) = 0},

where h(6) = [h,(0). h;(0), ... h,(6)] is a vector-valued function mapping
R* into R”. Of course we wish an estimate of the true parameter to belong to @
so that, as far as the method of maximum likelihood is concerned, we wish a
restricted maximum-likelihood estimate, that is an estimate which maximizes
the likelihood function subject to the restriction h(6) = 0.

As far as the theory of such restricted maximum-likelihood estimates is con-
cerned, the natural mathematical approach is to reduce this case to that studied
in section 4.6.1 by an initial re-parametrization. We ‘fill out’ the restricting
functions h,, hy, ..., h,toasethy, hy, ..., hoh,yy,--.,hyinsuch a way that
the function h* = (hy, h,, . ... h,) is a one-to-one function from R* onto itself.

Then by setting @, = hi(0,,0,,....8) (i=12...,9)

we obtain a new labelling of the family of possible distributions by the para-
meter ¢ = (0,0....,0,¢,.y,..., ¢, whose first r components we may
ignore, since they are all zero. Thus from a theoretical point of view this new
problem is essentially the same as that of estimating an unrestricted parameter
belonging to R* " and the properties established for the method of maximum
likelihood in the latter case, asymptotic minimum-variance unbiasedness etc.
will apply to restricted estimates also. Again only the bones of a rigorous
argument are given here and these would require to be supplemented by
regularity conditions and more details to complete the discussion,

The natural practical approach to the problem of finding restricted maximun
likelihood estimates is a direct attack by the method of Lagrange multipliers
which leads to the restricted likelihood equations
Dyl(x,0)—Hyd = 0
M) = 0,

where 1 = (i, 43, ..., 4,) is a column-vector of Lagrange multipliers an
H, is the s x r matrix of partial derivatives dh;(0)/06,. With sufficient regularity
the restricted maximum-likelihood estimate @(x) emerges as a solution ¢
these cquations along with an appropriate Lagrange multiplier 4(x).

It is not possible to say much in general about this estimate f(x). Howeve
if we know that, with f-probability near 1, { is very near 0, then the aboy
restricted likelihood equations are approximately linear and by the sam

Rastricted Maximum-Likelihood Estimates



kind of argument as in section 4.6.1 we can obtain approximations to the
distribution of 0. In particular, if we are dealing with a large samplz then,
subject to what is mild regularity from a practical point of view, it is true that
fl is very probably very near the true parameter ff - the argument of section 4.4
carries over with little modification, as the reader may verify. Let us suppose
then that we are dealing with a sample of n, where n is large, so that

Xl « ey x,) and the x;s are independent and identically distributed.
Wehave Dyl(x,0)-H,A =0
h(8) = 0,

and using Taylor's theorem to linearize about the true parameter ¢ (which we
recall satisfies h(0) = 0), we have approximately

Dyl(x, 0)+ {D21(x, 0} {0—60) —H;i = 0
Hy(0—0) = 0,

]

The fact that the term H;A can simply be replaced by H,4 requires some
explanation, This is because when ¢ is near @, it is also near the element fl of R
at which /(x, 8) takes its absolute maximum, so that 4 is relatively small; hence
when Hj is expanded about ¢, the first-order terms in the expansion involve
0—0 and 4 and so are of smaller order than those which we have included.
Shight manipulation of these cquations yields

el 3 b |
[—; D? I(x, 0]]Jn(i]—0]+ H, ;/_r1 A= j*-l Dy x, )

Hy /n(0—0) = @

or, in maltrix notation,

I 2 1
-—;D‘ lx,0) H, Jn@-0) | = 5z D, lix, 0) |
¥

~
! £
e L
Jn
We now apply the law of large numbers to —n" ' D? [(x, 0) and find, as
before, that this is approximately B, (the information matrix for a single
observation). The central limit theorem applied to n ! D, I(x, §)) shows that
it 1s approximately an N (0, By) random variable. Carrying our approximation
this one stage further shows, therefore. that approximately

B Jnd-0y| =| z

1 ]
H; 0 ﬁl‘

H, 0 0

0

where Z is N(0, By).
This is virtually the same set of equations as we had when dealing with the
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linear model subject to restrictions - which is not surprising since we arrived
at this point by linearizing a non-linear set of equations. We can therefore
carry over the results of section 3.10, simply by replacing A'A by B, and H by
H, and we find that, when B, has rank s,

i Jn(@—0)

— A
| Vn
is approximately normally distributed with zero mean and variance matrix

‘_p’ 0 ]. where I:B’ H‘jl_ ' = I:P‘ Q‘]
L0 —Ra_ Hi 0 Qa Re

Non-identifiahility and singularity of the information matrix

There is a connexion between non-identifiability of a vector-valued parameter
0 and singularity of the information matrix By, which becomes clearer if we
examine the function z(0) introduced in section 4.4.

Suppose that a family of distributions is labelled by a parameter  which
ranges over an s-dimensional subset © of R, that is, © contains an s-dimen-
sional rectangle. Let 0, be a particular element of © and @ a neighbouring
point, and as in section 4.4.1,

let z(0) = Eq{log p(x.0)},

where p(-, 0) is the density function on the sample space defining the distribu-
tion corresponding to the parameter . Let us suppose further that there is
enough regularity in the family {p(-,0):0€ @] of density functions to permit
the following operations, which we have already encountered.

2(0) = Eyllog p(x, M)}
= Eyllog pix. 0,)+ [ Dy log p(x, 85)] (8—8,)+
+(0—8,) [ D7 log pix. 8,)](8 —8,)} + terms of third order
= z(lg)— (0 —f,) My, (01— 04)+ small terms,

where M, is the information matrix for x. We know from our previous study
of the function z. that if @ is identifiable. (that is, if different #s corresponding
to different distributions) then z(0) is an absolute maximum of z. This usually
means in practice that the second-order terms in the expansion of z(f}) about
2{fo) are negative. that is. that My, is positive definite. Of course this is not
nccessarily so. [t is possible that (6 —fly) Mg, (01— fg) is zero and that higher
order terms ensure that z(f,) > z(f). However this is unusual in practice, and
usually identifiability of 0, together with the kind of regularity which permits
the expunsion of z(0) indicated above, ensures that M, is positive definite, at
least when 0, is an interior point of ©.

Restricted Maximum-Likelihood Estimates
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Conversely, if M,, is singular and so indefinite, this in practice usually means
that there are parameters 8 % 0, such that z(f) = z(fy) and this in turn
means that there are different parameters yielding essentially the same distri-
bution on the sample space, so that 8 is not identifiable.

It is quite clear that any formal result connecting non-identifiability of §
and singularity of the information matrix which we might try to state would
have to be hedged around by so many conditions that its content would be
obscured. So we leave the discussion in this informal state, noting that usually
lack of identifiability of & implies singularity of the information matrix and
vice versa.

For the linear model we discussed the possibility (section 3.4) of non-identifi-
ability and the adjustment necessary to the technique for finding restricted
estimates in this case. A similar adjustment is often possible in the above large-
sample theory for restricted maximum-likelihood estimates in the case where
the information matrix is singular. For, as indicated in section 4.7.4, this
often means that @ is not identifiable without restrictions. However a number
of the restrictions

hi(0) =0 (203 o M | S

say the first 1 of these, are just enough to ensure identifiability (as in the linear
case); and this usually ensures that the matrix By+ H,,H, is positive definite,
where H, is the leading s x ¢ submatrix of H,. The adjustment is now similar
to that in the linear case. We replace B, by B,+ H,, H', wherever it appears,
and now ,/n(fl—6) is approximately normally distributed with zero mean and
variance matrix Py, the leading s x s submatrix in

Bs+H,H)s H.]‘ 2
H; 0
For further details see Silvey (1959).

Example

In an experiment for measuring the DNA content of a particular type of cell,
there is a chance of mistaking two cells for one, so that the experimental
result may be a measurement of the DNA content of a single cell or of the
sum of the contents of two cells. From the results x = (x, x;,...,x,) of a
large number n of independent repetitions of this experiment, it is desired 10
estimate the mean and standard deviation of the DNA content of single cells.

In order that it should be possible to apply the method of maximum
likelihood to this problem it is necessary to set up a model which involves
only a finite number of unknown parameters. Now in this situation it is fairly
realistic to assume that the DNA content of a single cell is normally distributed
with unknown mean g and unknown variance o, There is an unknown
probability « of mistaking two cells for one. If we further assume that when
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two cells are mistaken for one, these two cells may be regarded as independent
of one another, then measurements resulting from the observation of two cells
are normally distributed with mean 2p and variance 202, With these assn.!mp-
tions, the probability density on the line to describe the result of a single

replicate of the experiment is

I 3 . cxp[_[.flg"_)i]
P 0) = (1-a) Jen P " 20t T J2eJiem 2x20*

and the probability density on the sample space for n repetitions, R", is

p(x,0) = [] p*(x; ).
i=1

Here f) = (a, u, o) and we have a family of distributions on the sample space
parametrized by a 3-vector, 5o that the method of maximum likelihood may
be applied, in the same kind of way as in section 4.2.1. :

Another way of setting up a model for this example is less sensible rom a
computational point of view but yields an illustration of the applicat?on of the
method of computing restricted estimates. So we consider it for this reason.
As before we assume that the DNA content of single cells is normally distri-
buted, with unknown mean and variance which we now denote by y, and o}
respectively. Again there is an unknown probability « of mistaking two cells
for one. However we now assume that a measurement resulting from the
observation of two cells is normally distributed with mean g, and variance o3,
so that the probability density on the line to describe the result of a single

replicate of the experiment is now

= ) { 1 [t_#l)z]_‘_q 1 Exp[—(t—'ﬂﬂz]
P = | _G}E.Jifﬁ R 201 03/(27) 205 )

where 0 = (a, u,. 0y, py, a3), a S-vector.

Correspondingly p(x. ) = [] p*(x, 0).
i=1

and this density also involves five unknown parameters. If we are prepared
to make the assumption that two cells mistaken for one are independent

then p;—2u;, =0

and a3-201 =10,

and we may consider maximizing p(x, -) subject to these restrictions by the
Lagrange multiplier technique of section 4.7.3. This of course is equivalent to
the previous ‘unrestricted maximization’, but the reader may find it instructive
1o follow the theory for each case through in terms of this particular example.

Restricted Maximum-Likelihood Estimates
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Examples

Let x;, x5,...,x, be a random sample from a distribution with density
p(x, 0) depending on an unknown real parameter #. Find the maximum-
likelihood estimate of & in the following cases.

(a) p(+, 8 is the density function of a Poisson distribution with mean #;
(b) p(-, 8) is the density function of an exponential distribution,

plx, 8) = e (x > 0);
{c) p(-, B) is the density function of the uniform distribution on (0, #).
In each case determine the distribution of the maximum-likelihood estimator.
For cases (a) and (b) verify the large sample theory of chapter 4. Show that
this theory is not applicable in case (c) and explain why.

On the Aegean island of Kalythos, the inhabitants suffer from a congenital
eye disease whose effects become more marked with increasing age. Samples of
fifty people were taken at five different ages and the numbers of blind people
counted :

Age 20 35 45 55 70
Number of blind 6 17 26 37 44.

It is conjectured that the probability of blindness at age x, P(x), can be
expressed in the form

Boo)l={Taenrma

Comment on whether this hypothesis is reasonable, by constructing a suitable
graph. Estimate a and § from the graph and then obtain maximum-likelihood
estimates. Estimate also the age at which it is just more likely than not that an
islander is blind.

A certain type of electrical component is manufactured in a large number of
factories. The proportion p of defective components varies from faclory to
factory, and over factories p has approximately a B-distribution with density
P py

Ble, )
where « and f§ are unknown parameters. Suppose that s factories are chosen
at random and that n components produced by each are inspected. Given that
m, of the inspected components of the ith factory are defective (i = 1,2,...,3),
explain in detail how to calculate maximum-likelihood estimates of o and f.
Show that if n = |, 2 and £ are not identifiable.

Suppose that one has n pairs of measurements (x, y;), (x2, ¥2). . - ., (%, ¥.) the
2n values being distributed normally and independently with variance 0%, The
mean of x; is &, that of y; is n; and the n pairs (&, ;) lie on a circle centre
(£, ) and radius p. [t is required to estimate ¢, n and p. Obtain a maximum-
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likelihood solution of this problem, and elaborate the computational details.
(Camb. Dip.)

In an experiment to measure the resistance of a crystal, independent pairs of
observations {(x;, y,)(i = 1, 2,...,n) of current x and voltage y are obtained.
These are subject to errors (g, 1;). so that

Xy =it b Y= bt

where i, and v, are the true values of current and voltage on the ith occasion
and v, = ay,, a being the resistance of the crystal.

On the assumption that the errors are independently and normally distri-
buted with zero means and variances, varg = of, varn = o3 = Ao},
where /4 is known, show that &, the maximum-likelihood estimator of « is a
solution of the equation

&9, Hal8 =5, ) =48, =0,

| 1 1
where S, = ;Z Xi Vi AT ;Z %2, By 55 ;Z y?

Show that, if ) ul/n tends to a limit as n — oo, then & is a consistent
estimator of a.

Show that the method of maximum likelihood gives unsatisfactory results
when A 18 not assumed known. Explain why the standard theorems for
maximum-likelihood estimators do not apply to this problem. (Camb. Dip.)

A radioactive sample emits particles randomly at a rate which decays with
time, the rate being Ae ~*' after time t. The first n particles emitted are observed
al successive times t,, t,,..., !, Set up equations for maximum-likelihood
estimates 4 and £, and show that £ satisfies the equation

it
e
Ra__ |

e

n

' 1
where T = — Z t.
n

i=1
Find a simple approximation for £ when £t, is small. (Camb. Dip.)

A cell contains granules which may be regarded as spheres of equal but
unknown radius r, and which may be assumed to be distributed randomly
throughout the cell. In order to estimate r, a section of the cell is observed
under a microscope and this section contains circular sections of n granules.
If the radii of these sections are x,, x;, ..., x,, determine the maximum-
likelihood estimate of r. What is its distribution, for large n?

Examples



