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Abstract

Evaluating medications in animal laboratory paradigms can reveal whether the compound is effective

in an established alcoholism model, at clinically relevant doses and exposure conditions, when

administered orally (or transdermally) and without serious limiting side effects. Positive outcomes

constitute a possible discovery for relevance to alcoholism and, under favorable marketing conditions,

encourage further development. Medication testing using animal models of alcoholism might also

guide clinical testing by discriminating clinically effective from clinically ineffective compounds. This

ability rests on whether there are tests or, more reasonably, batteries of tests having this discriminative

ability. The present paper examines this possibility. Effects of naltrexone and acamprosate in animal

paradigms which model behavioral aspects of alcoholism are reviewed and compared with the effects of

compounds which have limited effects in alcoholics. It is not clear at present whether any single

paradigm or combination of paradigms differentiates clinically effective from clinically limited

compounds. Steps are suggested to improve the use of preclinical laboratory tests to predict which

compounds are likely to be effective medications for reducing drinking and sustaining abstinence in

human alcoholics.

Introduction

Medication tests in animal behavioral paradigms have the

potential to guide decisions about whether lengthier, more

expensive, clinical tests in human alcoholics are warranted.

This depends, however, on the availability of laboratory

paradigms which adequately model aspects of alcoholism and

which have the ability to identify agents that subsequently

alleviate targeted features of alcoholism in a significant

number of patients.

Alcoholism is heterogeneous in its etiology and expression.

It is a dynamic disorder, with many potential therapeutic

targets. A single laboratory paradigm does not capture

adequately the spectrum of clinical conditions associated with

alcoholism. Yet many models used successfully as basic

research tools are being adapted to assess the dose effects,

time-course, specificity and toxicity of test medications.

Ideally, these tests would also allow us to predict the

medication’s effects in more expensive clinical trials. The

ability of animal behavioral paradigms used widely in

alcoholism research to discriminate clinically effective from

clinically ineffective medications is considered in the present

review.

Can animal laboratory behavioral paradigms identify

clinically effective medications for alcoholism?

Clinically effective and ineffective reference compounds

Evaluating the validity of pre-clinical medication testing

paradigms requires assessing the concordance between pre-

clinical and outpatient studies. Several drugs have demon-

strated clinical efficacy for alcoholism under some conditions.

Of these, naltrexone and acamprosate are approved by the

United States Food and Drug Administration to treat

alcoholism through their purported ability to reduce the

desire to drink. Both drugs have been tested in a variety of

non-human laboratory paradigms.

Naltrexone and acamprosate effects can be compared to the

effects of medications having limited therapeutic efficacy.

There are no formal criteria for concluding that a medication
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is clinically ineffective for alcoholism. Even medications such

as naltrexone, which show clinical efficacy in the preponder-

ance of double-blind, placebo-controlled trials, have failed to

show efficacy in some studies (see Fuller & Gordis, 2001;

Krystal et al., 2001). Because clinical trials are expensive, an

early failure to show clinical efficacy is unlikely to be followed

by further extensive clinical testing. Therefore, concluding

that a medication is ineffective in the absence of extensive

testing is risky, and such medications may improve adjunct

symptoms associated with alcohol abuse without influencing

drinking and relapse. Nevertheless, for the purpose of the

present review, it is necessary to identify medications for

which there is little evidence for clinical efficacy for alcohol

drinking, craving and relapse.

Serotonin-specific reuptake inhibitors (SSRIs) have been

tested sufficiently often to conclude that they are not

therapeutically effective for non-depressed alcoholics (Garbutt

et al., 1999; Torrens et al., 2005). In addition, alcoholics have

reduced dopamine D2 receptor levels in striatal regions of the

brain, which has been hypothesized to predispose alcohol use

as compensation for decreased dopaminergic neuronal activa-

tion (Volkow et al., 1996). Nevertheless, the D2 receptor

agonist bromocriptine has failed consistently to perform better

than placebo on alcohol use measures in clinical studies (see

Kosten et al., 2002), even in individuals having the D2

receptor A1 allele (see Goldman, 1995; Lawford et al. 1995).

The 5-HT2 antagonist ritanseron activates midbrain dopa-

mine neurons by blocking serotonergic inhibition (Ugedo

et al., 1989). Ritanserin failed to reduce craving, drinking and

relapse more than placebo in a large multi-center clinical trial

(Johnson et al., 1996; Wiesbeck et al., 1999) and failed to

reduce drinking in a smaller double-blind, placebo-controlled

study of heavy drinkers (Naranjo et al., 1995).

Paradigms and models of alcohol drinking, craving and relapse

Virtually all medical knowledge and treatment involves work

with animal models. Several laboratory paradigms which

model facets of alcoholism are used to study the behavioral

effects of ethanol in mice, rats and monkeys. Some are

isomorphic models, in that they resemble the symptoms and

clinical outcome of human alcoholism, although these

conditions are produced artificially. There are no truly

homologous models of alcoholism, however, in that the disease

state in animals never fully emulates human alcoholism in

etiology, symptoms and prognosis, particularly in cognitive

and psychosocial domains. For evaluating medications,

however, paradigms need only be predictive models which

generate significant discriminative or predictive information,

but which do not necessarily resemble etiology or symptoms

of human alcoholism.

The most widely used method of assessing alcohol drinking

is simply to measure home cage consumption with food and

water present. Operant self-administration requires that

animals emit a specified behavior, typically a bar press, to

obtain brief access to an ethanol solution. Operant studies

assess the motivation to procure alcohol, and reveal medica-

tion effects on within-session ingestion patterns. When

operant response requirements are low, as is usually the case,

medication effects tend to be similar to those in voluntary

drinking paradigms.

Several well-developed laboratory paradigms have been

validated as models for dimensions of alcoholism using these

methods. They include models of inherited susceptibility to

heavy drinking, dependence-driven heavy drinking, alcohol

craving and relapse to drinking. Each paradigm models

different facets of alcoholism, although none can be said to

model one facet exclusively or completely. To be useful for

evaluating medications, collectively they must be able to

reliably predict clinical efficacy. Each model will be discussed

briefly before reviewing the effects of clinically effective and

clinically ineffective medications.

Heavy drinking. Laboratory animals do not typically drink

ethanol in quantities sufficient to produce blood concentra-

tions exceeding 80 mg/dl, the legal limit of intoxication in

most regions of the United States. Rodent models of heavy

voluntary alcohol drinking have been developed through

selective breeding and through inducing ethanol dependence.

Selective breeding increases the frequencies of alleles affecting

alcohol preference and intake and models genetic sus-

ceptibility to alcohol abuse and alcoholism. The selectively

bred alcohol preferring rat strains most commonly

used for testing lead compounds are the AA, P, HAD and

sP lines.

Alcohol drinking increases substantially following an

extended history of intoxication and withdrawal. Dependent

Wistar rats self-administer ethanol during the first 12 hours

post-withdrawal if they have learned to associate alcohol with

the alleviation of acute withdrawal symptoms (Roberts et al.,

1996; Schulteis et al., 1996). Repeated cycles of ethanol vapor

exposure and withdrawal elevate drinking and operant self-

administration which persists months after abstinence symp-

toms subside in some protocols (Rimondini et al., 2002). The

neuroadaptively driven transition to a persistent state of high

alcohol drinking emulates the clinical indications of alcohol-

ism in that patients are most vulnerable to relapse long after

acute withdrawal.

Alcohol deprivation. When a period of alcohol access is

followed by forced alcohol abstention and then access to

ethanol is reintroduced, a transitory period of increased

drinking is observed for a day or two. This ‘alcohol

deprivation effect’ is strengthened and prolonged by repeated

deprivations. When given access to ethanol concentrations

higher than normally preferred, alcohol-preferring P rats drink

approximately 5 g/kg ethanol in 2 hours, and achieve a mean

BAC of 180 mg/dl (Rodd-Henricks et al., 2001). The

paradigm giving rise to the alcohol deprivation effect

resembles some dependence-induced drinking paradigms in

its cycles of ethanol exposure and abstinence. However,

physiological dependence is not required for enhanced

drinking and may involve distinct biological substrates. The

alcohol deprivation paradigm models drinking binges by

human alcohol abusers following a period of abstinence (i.e.

relapse).

Reinstatement. Animals trained to bar-press for alcohol will

eventually cease bar-pressing if alcohol solutions are no longer

presented. The reinstatement paradigm measures the ability

of environmental or pharmacological stimuli to revive bar-

pressing (i.e. alcohol-seeking) when alcohol is no longer
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available. This paradigm does not model conditions leading to

alcohol abstinence in humans, but rather models conditions

which precipitate craving such as acute alcohol action, the

presence of cues predictive of alcohol availability and

stressors. The mechanisms by which drugs prevent reinstate-

ment of alcohol seeking differ from those that reduce drinking.

For example, the nitric oxide synthase inhibitor l-NAME

did not reduce ethanol self-administration, yet significantly

reduced reinstatement of alcohol seeking induced by

cues associated with ethanol reinforcement (Liu & Weiss,

2004).

Conditioned place preference. In the conditioned place pre-

ference procedure, animals learn to associate the effects of

alcohol with a physically distinct location in a test box. In

subsequent trials, the animal’s preference for this location is

tested. Like cue-induced reinstatement tests, testing medica-

tion effects on conditioned place preferences occur in the

absence of ethanol’s pharmacological actions. Although not

considered to be a model of craving, conditioned place

preference paradigm may have relevance to the environments

which elicit alcohol craving. Place preference conditioning

measures ethanol’s motivational effects which may involve

processes distinct from those involved in the motivation to

self-administer ethanol (Risinger et al., 2002). Using the place

preference paradigm to test medications is limited to mice.

Rats typically show conditioned place aversions and many

mouse strains, including some having a high propensity to

drink alcohol, do not learn robust place conditioning to

ethanol.

Locomotor stimulation and sensitization. Acute ethanol admin-

istration stimulates locomotion in some species. Ethanol-

stimulated locomotion increases progressively with repeated,

intermittent administration. This sensitization is enhanced

further when ethanol effects are paired with a particular

testing environment (Quadros et al., 2003). Ethanol stimu-

lates locomotor activity through the mesolimbic dopamine

(DA) system; sensitization occurs through DA, NMDA, and

GABAergic mechanisms. The sensitization of alcohol’s motor

effects is purported to involve neuroadaptation important to

the early stages of addiction, yielding an additional screening

target.

Medication effects in alcohol paradigms and models

Voluntary alcohol drinking and self-administration:

clinically effective medications

Naltrexone. Naltrexone administration consistently reduced

ethanol drinking by mice and rats under scheduled access and

operant self-administration conditions (Lê et al., 1993;

Stromberg et al., 1998a, b, 2001, 2002a, b; Quintanilla &

Tampier, 2000; Goodwin et al., 2001). These effects are not

always selective to ethanol, however. In monkeys, naltrexone

doses which reduced alcohol self-administration also reduced

self-administration of an orange-flavored drink (Shelton &

Grant, 2001), water (Williams & Woods, 1999), sucrose

(Williams et al., 1998), food and PCP (Carroll et al., 2000).

Continuous ethanol access paradigms are less sensitive to

naltrexone’s effects. Daily naltrexone administration did

not significantly reduce drinking under continuous-access

conditions at doses which reduced alcohol drinking under

scheduled-access conditions (Goodwin et al., 2001).

Effects of repeated naltrexone dosing are inconsistent.

Some report loss of efficacy with repeated opiate antagonist

dosing (Gardell et al., 1997; Boyle et al., 1998; Overstreet

et al., 1999; Shelton & Grant, 2001), although other studies

showed no evidence for tolerance (Gardell et al., 1996; Reid

et al., 1996). In other reports, repeated naltrexone adminis-

tration progressively decreased alcohol drinking (Sinclair,

1989; Stromberg et al., 1998b; Bienkowski et al., 1999). This

latter observation suggests that the subject learns that ethanol

is no longer reinforcing through repeated drinking experiences

in the presence of opioid receptor blockade and, therefore,

drinks less (see Sinclair, 2001). Effects of repeated or chronic

naltrexone administration on continuous-access ethanol

drinking are also inconsistent. Some report transient reduc-

tions (Cowen et al., 1999; Middaugh & Bandy, 2000), pro-

gressive reductions (Parkes & Sinclair, 2000) and even

increased drinking (Phillips et al., 1997).

Acamprosate. Acamprosate, like naltrexone, reduced alcohol

drinking under limited access conditions (Olive et al., 2002).

Acamprosate’s effects were greatly diminished under contin-

uous access conditions (Stromberg et al., 2001) unless rats

screened for high ethanol preference were tested (Boismare

et al., 1984; Daoust et al., 1987). Acamprosate administration

minimally affected operant behavior maintained by ethanol

delivery in Wistar rats with a limited history of alcohol

exposure (Stromberg et al., 2001; Heyser et al., 2003).

Conditions under which acamprosate administration reduced

alcohol self-administration more robustly are discussed below.

A modified paradigm measures the motivation to work for

alcohol as well as ethanol drinking under limited access

conditions (Samson et al., 1998). In this paradigm, animals

are required to bar-press at the beginning of the experimental

session (appetitive component) to obtain access to a drinking

tube for the remainder of the session (consumatory compo-

nent). Administering naltrexone or acamprosate reduced

ethanol drinking in the consumatory component without

significantly changing the appetitive bar pressing (Czachowski

et al., 2001; Sharpe & Samson, 2001). The clinical and

predictive significance of an apparently selective effect on

ethanol consumption, rather than the motivation to procure

alcohol, remains unclear.

Clinically ineffective medications

SSRIs. SSRI administration reduced ethanol drinking and

self-adminstration in laboratory animals. Although SSRIs may

decrease alcohol drinking by reducing ingestive behavior more

generally (Gill & Amit, 1989), they also selectively reduce

ethanol’s reinforcing effects (Lamb & Järbe, 2001; Ginsburg

et al., 2005).

Bromocriptine. Bromocriptine effects on voluntary ethanol

drinking and self-administration are mixed. Daily bromocrip-

tine injections reduced ethanol drinking and preference in

C57 mice (Ng & George, 1994) and reduced operant ethanol

self-administration in Wistar rats (Weiss et al., 1990;
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Cohen et al., 1998). Two studies report that bromocriptine

increased ethanol drinking by rats when available continuously,

although baseline drinking levels appeared to have been

modest (Naeger & Martinez, 1990; Nadal et al., 1996).

Ritanserin. Ritanserin was reported to decrease ethanol

drinking by rats under continuous access conditions (Meert

& Janssen, 1991; Panocka & Massi, 1992; Lin & Hubbard,

1994) and produced non-specific reductions in operant self-

administration (Wilson et al., 1998; Gallate & McGregor,

1999). Other studies report no effect of ritanserin adminis-

tration on ethanol preference or intake (Myers & Lankford,

1993; Svensson et al., 1993).

Further considerations. Chronic or repeated naltrexone ad-

ministration has inconsistent effects on voluntary ethanol

drinking with some reporting transient reductions in drinking

over time, whereas others report tolerance, or even increased

drinking. Contrary to studies in animals, repeated adminis-

tration of long-acting naltrexone appears not to lose its

efficacy in humans (Kranzler et al., 1998; Johnson et al.,

2004). The progressive reduction in drinking either within-

session (Hyytı̈a & Sinclair, 1993) or across sessions is

consistent with naltrexone’s purported therapeutic action,

which requires that alcohol’s effects be experienced under the

influence of naltrexone (Sinclair, 2001).

As with the clinically effective medications, clinically

ineffective medications had inconsistent effects on voluntary

alcohol drinking and self-administration. Based on these

findings, voluntary moderate-drinking paradigms do not

appear to be capable of distinguishing clinically effective from

ineffective compounds.

Heavy drinking models: clinically effective medications

Naltrexone. Naltrexone or naloxone reduced ethanol inges-

tion in AA rats (Hyytı̈a & Sinclair, 1993), P rats (Badia-Elder

et al., 1999) and HAD rats (Froehlich et al., 1990). Naloxone

administration decreased alcohol drinking and preference by

dependent rats in an alternating drinking paradigm (Marfaing-

Jallat et al., 1983). Naltrexone and naloxone reduce alcohol

drinking regardless of whether heavy drinking models are used.

To my knowledge, naltrexone effects have not been compared

directly between selectively bred rats and the appropriate

control strain, or between alcohol-dependent and naive

animals. One report suggested that alcohol drinking sup-

pressed by naloxone administration was more persistent in

alcohol-preferring AA rats than in Long – Evans rats (Sinclair,

1989).

Acamprosate. Robust reductions of ethanol drinking follow-

ing acamprosate administration were initially observed in rats

which had been chronically exposed to ethanol. For example,

acamprosate administration selectively reduced ethanol drink-

ing which had been increased by chronic ethanol intoxication,

whereas acamprosate was largely ineffective when tested in

animals which had no prior exposure to ethanol (Le Magnen

et al., 1987). Similarly, chronic acamprosate treatment

initiated during ethanol vapor exposure periods reduced

subsequent ethanol drinking (Gewiss et al., 1991). Seven

weeks of intermittent ethanol vapor exposure doubled alcohol

drinking when ethanol solutions were introduced following a

2-week alcohol-free period. Daily acamprosate administration

initiated during the alcohol-free period completely prevented

the increased ethanol drinking, but did not reduce moderate

drinking levels in rats having no history of ethanol dependence

(Rimondini et al., 2002).

Acute acamprosate administration was recently shown to

reduce voluntary alcohol drinking and operant self-adminis-

tration by alcohol preferring fawn-hooded, iP and AA rats

(Cowen et al., in press). Acamprosate became less effective

with repeated injections, however. Under these conditions,

acamprosate’s efficacy was associated with modulation of the

mesolimbic dopamine system.

Clinically ineffective medications

SSRIs. Fluoxetine reduced alcohol drinking by P rats

(Murphy et al., 1985), cAA rats (Maurel et al., 1999) and

HAD rats (Rezvani et al., 2000), without altering food or

water intake, and reduced ethanol drinking by sP rats

(Ciccocioppo et al., 1997) with varying degrees of specificity.

To my knowledge, effects of SSRIs on dependence-induced

drinking have not been published.

Bromocriptine. Bromocriptine selectively reduced operant

ethanol self-administration and preference in P rats (Weiss

et al., 1990) and drinking under continuous access conditions

by selectively bred, alcohol-preferring UChB rats (Mardones

& Quintanilla, 1996).

Ritanserin. Although ritanserin diminished drinking by non-

dependent Wistar and Sprague – Dawley rats, ritanserin had

no effect on ethanol drinking in selectively-bred alcohol-

preferring cAA rats (Maurel et al., 1999) nor in alcohol-

preferring Marchigian sP rats (Panocka et al., 1993).

Further considerations. It might seem reasonable that a less

severe indication should be more responsive to treatment

than a more pronounced and persistent manifestation of that

indication. Using this reasoning, an effective medication

should more effectively reduce moderate drinking by a non-

dependent animal than heavier drinking by dependent or

genetically predisposed animals. This assumption is likely to

be wrong, however. As dependence progresses, genes,

systems and circuitry are recruited to maintain homeostasis.

These may be distinct from those which regulate moderate

drinking.

For example, acamprosate’s therapeutic efficacy is hy-

pothesized to depend, in part, on its ability to restore a

hyper-glutamatergic resulting from prolonged alcohol use.

Acamprosate is predicted to be less effective in animals with

normal glutamatergic function. Other agents for which there

has been little or no testing in human alcoholics also show

increased efficacy in heavy drinking models, presumably

because they act upon relevant dysregulated systems. Thus,

the CRF receptor antagonist d-Phe-CRF reduced ethanol-

reinforced level pressing only in rats with a history of ethanol

dependence (Valdez et al., 2002). Similarly, a NPY Y2

receptor antagonist was more effective at reducing ethanol
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self-administration by Wistar rats with a history of alcohol

dependence than rats with no such history (Rimondini et al.,

2005). Nociceptin, the endogenous ligand of the opioid-

like orphan receptor NOP, reduced ethanol drinking by

genetically selected Marchigian Sardinian alcohol-preferring

rats, but had no effect on ethanol drinking by Wistar rats

(Ciccocioppo et al., 2004; Fedeli et al., 2004). It is interest-

ing that the clinically ineffective medication ritanserin

appears to have the opposite effect, reducing drinking by

rats that are not predisposed to heavy drinking. These

findings suggest that a medication effect selective to heavy

drinking models might predict a positive clinical outcome.

This prediction remains to be confirmed through clinical

testing of CRF, NPY and NOP drugs, and further testing of

clinically ineffective compounds under conditions directly

comparing post-dependent, or genetically predisposed ani-

mals with appropriate control animals.

Alcohol deprivation: clinically effective medications

Naltrexone. Acute naltrexone administration was more effec-

tive in reducing drinking following alcohol reinstatement than

on baseline drinking in monkeys (Kornet et al., 1991) and in

rats (Hölter & Spanagel, 1999). In the latter study,

intermittent naltrexone treatment moderately attenuated the

alcohol deprivation effect when administered following

reinstatement. Chronic naltrexone administration during the

alcohol-free period prevented elevated alcohol drinking

following reinstatement (Heyser et al., 2003).

Acamprosate. Acamprosate administration (alone or in com-

bination with naltrexone) during alcohol-free periods

prevented elevated alcohol drinking following reinstatement

(Heyser et al., 2003). Repeated acamprosate administration

during the first 48 hours of reinstatement reduced drinking in

a dose-dependent manner (Spanagel et al., 1996a).

Further considerations. Clinically effective medications seem

to have more robust effects on drinking following a period of

abstinence than on baseline drinking. Thus, the alcohol

deprivation paradigm, like the heavy drinking models, might

be more likely to detect clinically effective medications.

Medication effects during abstinence may be compared

with those after reintroducing ethanol solutions to elucidate

possible therapeutic mechanisms. Examining repeated

deprivation and reinstatement periods would reveal whether

treatment completely eliminates or merely delays the

escalation of drinking with each reinstatement. Clinically

ineffective compounds await testing in this model.

Reinstatement of alcohol seeking: clinically effective medications

Naltrexone. Naltrexone administration reduced reinstate-

ment of alcohol-seeking precipitated by ethanol injections,

and by cues associated with ethanol administration, but not by

stress (Bienkowski, 1999; Katner et al., 1999; Lê et al., 1999;

Ciccocioppo et al., 2002; Liu & Weiss, 2002). Naltrexone’s

ability to attenuate cue-induced reinstatement was signifi-

cantly reduced in rats having a history of repeated ethanol

vapor exposure and withdrawal (Ciccocioppo et al., 2003).

Acamprosate. Like naltrexone, acamprosate administration

selectively reduced alcohol seeking evoked by environmental

cues predictive of alcohol availability (Bachteler et al., 2005).

It is unclear whether this effect is due to functional NMDA

receptor antagonism, as the NMDA antagonist neramexane

had no effect on cue-induced reinstatement.

Clinically ineffective medications

SSRIs. Both naltrexone and fluoxetine decrease alcohol self-

administration. However, only naltrexone selectively blocked

reinstatement precipitated by a priming injection of ethanol,

but not stress-induced reinstatement, whereas fluoxetine

blocked stress-induced reinstatement, while having less con-

sistent effects on alcohol-induced reinstatement (Lê et al.,

1999).

Further considerations. The isomorphism with conditions

which precipitate human relapse, the selective medication

effects on precipitating events, and the ability to dissociate

naltrexone and acamprosate effects from SSRIs make the

reinstatement paradigm attractive for medications testing.

Many additional drug classes have been tested in the reinstate-

ment paradigm including dopamine antagonists, CRF

antagonists, nociceptin and metabotropic and ionotropic

glutamate receptor agonists and antagonists. The success to

which outcomes using the reinstatement paradigm predict

whether specific clinical indications such as craving or relapse

are amenable to treatment by medications acting at these

receptors is currently unknown.

Conditioned place preference: clinically effective medications

Naltrexone. Naltrexone reduced the expression of place

conditioning in two studies (Middaugh & Bandy, 2000;

Kuzmin et al., 2003). In other studies, naloxone administra-

tion had little effect on the initial expression of place

preference conditioning, but reduced the maintenance of a

conditioned preference following repeated tests (Cunningham

et al., 1995, 1998). Testing medications on repeated

preference tests may prove to be the most sensitive use of

the conditioned place preference paradigm for medications

testing. Opiate receptor blockade does not appear to affect the

acquisition of conditioned place preferences to ethanol.

Acamprosate. In contrast to opiate antagonists, acamprosate

dose-dependently reduced the development of conditioned

place preferences to ethanol and cocaine, but not to morphine

(McGeehan & Olive, 2003).

Clinically ineffective medications. The place-conditioning para-

digm may prove to be useful for evaluating test medications if

testing procedures sensitive to clinically effective medications

are developed further. Unlike in self-administration paradigms,

SSRIs do not affect place conditioning to ethanol (Risinger,

1997). Neither bromocriptine nor ritanserin effects on place
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conditioning to ethanol appear in the literature, although place

preferences conditioned to bromocriptine administration have

been reported (Hoffman et al., 1988).

Locomotor stimulation and sensitization: clinically effective

medications

Naltrexone. Naltrexone pretreatment reliably blocked ethanol-

induced locomotion in mice, as well as the development

of locomotor sensitization (Kiianmaa et al., 1983; Camarini

et al., 2000; Sanchis-Segura et al., 2004).

Acamprosate. Acamprosate administration attenuated the

expression of sensitization to ethanol-induced stimulation in

mice bred selectively for ethanol preference (Chester et al.,

2001). To my knowledge, the effects of acamprosate admin-

istration on the locomotor-stimulant effects of alcohol prior to

sensitization have not been reported.

Clinically ineffective medications

SSRIs. A variety of SSRIs failed to block alcohol-induced

locomotion (Durcan et al., 1988).

Bromocriptine. Bromocriptine blocked the locomotor stimu-

latory effects of 0.5 g/kg ethanol at doses which did not affect

locomotion when administered alone (Uzbay & Kayir, 2003).

The inhibitory effect of bromocriptine on ethanol-induced

locomotion was explained as being mediated by presynaptic

D2 autoreceptors.

Further considerations. Testing locomotion is relatively sim-

ple, requiring limited investment in time, equipment or

training. Although the locomotor sensitization paradigm is

often used to study the enhanced incentive salience hypothe-

sized to contribute to stimulant and opioid abuse, its validity as

a model of alcoholism is less clear. Locomotor sensitization to

ethanol is an unreliable phenomenon in alcohol-preferring

mice such as the C57 strain. Nevertheless, ethanol locomotor

sensitization may correlate with selection for ethanol pre-

ference in HAP and LAP mice (Grahame et al., 2000). Further

confirmation of this relationship would recommend testing

medication effects on locomotor sensitization in these mice.

Drug discrimination. Animals or humans trained to discrimi-

nate the effects of alcohol from placebo show a remarkable

ability to distinguish these effects from those of drugs

possessing different pharmacological properties. Ethanol’s

discriminative stimulus effects are largely mediated by

GABAA and NMDA receptors (Grant & Colombo, 1993).

It may seem intuitive that blocking the predominant subjective

effects of ethanol would reduce alcohol drinking. The

relationship between ethanol’s discriminative stimulus effects

and its reinforcing effects are complex, however.

Naltrexone significantly reduced discriminative stimulus effects

associated with ethanol’s excitatory phase (6 minutes post-

injection), but was ineffective in antagonizing cues associated

with ethanol’s sedative effects (Shippenberg & Altshuler, 1985).

Other studies failed to show an effect of naltrexone on ethanol

discrimination under similar conditions, however (Altshuler et al.,

1981; Middaugh et al., 1999). Similarly, acamprosate adminis-

tration did not affect ethanol discrimination (Spanagel et al.,

1996b). The ability to antagonize ethanol’s discriminative

stimulus effects does not appear to be a necessary property of a

clinically effective medication for alcoholism.

Summary and future directions

Table 1 summarizes the effects of the Food and Drug

Administration (FDA) approved medications naltrexone and

acamprosate and the clinically ineffective SSRIs, bromocrip-

tine and ritanserin. Two additional clinically promising

compounds, baclofen and ondansetron, are also shown. It is

clear that no single paradigm clearly differentiates clinically

effective from clinically ineffective compounds.

Several paradigms—voluntary drinking (moderate and high

drinking), alcohol deprivation, cue-induced reinstatement,

conditioned place preference, locomotor sensitization—are

sensitive to the effects of naltrexone (or naloxone) and

acamprosate. Voluntary drinking and operant self-administra-

tion tests also yield false positives in that they are reduced by

SSRIs, bromocriptine and ritanserin under some conditions.

Table 1. Medication Effects in Animal Behavioral Paradigms

NAL ACM BAC ODN SSRIs BRO RIT

Limited Access þ þ þ þ
Continuous Access mixed weak mixed þ mixed mixed
Self-administration þ 7 þ 7 þ þ þ
Selectively Bred: Drinking þ þ þ þ þ 7
Dependence Induced Drinking þ
Alcohol Deprivation þ þ þ
Reinstatement

Priming þ 7
Cue þ þ 7
Stress 7 þ

Conditioned Place Preference þ þ 7 7
Locomotion þ þ 7 þ
Sensitization þ þ þ 7
Discrimination 7 7 7 7

NAL ¼ Naltrexone/Naloxone, ACM ¼ Acamprosate, BAC ¼ Baclofen, ODN ¼ Ondansetron; SSRI ¼ Serotonin Specific Reuptake Inhibitor;
BRO ¼ Bromocriptine; RIT ¼ Ritanserin
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Focusing on relevant phenotypes

Voluntary ethanol drinking, reinforcement, and preference

conditioning in animals with limited alcohol experience are

widely used to study the neurobiological basis of alcohol

drinking and the brain systems underlying ethanol motivation

and reward. They have limited value as pre-clinical medica-

tion evaluations, however. For example, demonstrating

changes in drinking following medication administration

provides virtually no information as to the medication’s

potential clinical efficacy.

When these paradigms focus on features of addiction, such

as the excessive, compulsive and persistent ingestion patterns,

they are more likely to model biological targets relevant to an

alcoholism medication’s therapeutic efficacy. Some paradigms

have been discussed previously, such as the heavy drinking,

alcohol deprivation, reinstatement paradigms and model

characteristics of addiction. Further testing of compounds

possessing or lacking clinical efficacy in these paradigms

would reveal whether these models are more informative

medication screens than those which do not model addiction.

This could be achieved by comparing medication effects in

susceptibility or dependence models of heavy alcohol drinking

with effects in non-susceptible animals having no history of

dependence, and determining whether clinically effective

drugs selectively reduce drinking in the heavy drinking

models. Although existing alcohol drinking paradigms model

aspects of addiction to ensure sufficient mechanistic diversity,

it will also be important to adapt emerging paradigms which

model the transition to addiction-like behavior (e.g. Deroche-

Gamonet et al., 2004; Vanderschuren & Everitt, 2004).

Test batteries to reveal effective medications

Alcoholism and alcohol dependence are not unitary disorders

as reflected by ongoing classifications by patient subtypes (e.g.

Type I, Type II, late-onset, early-onset). The variety of

clinical indications associated with alcoholism could be

modified through many of the diverse pathways and systems

affected by alcohol. Given this complexity, no single pre-

clinical test is expected to discriminate clinically effective from

clinically ineffective compounds. In fact, there may be no

definitive pattern of hits on a battery of screens associated with

clinical efficacy overall. Rather, there is likely to be con-

ditionally interrelated clusters of responses and non-responses

on a battery of protocols which predict clinical efficacy for

specific clinical indications, in specific patient subtypes,

through specific mechanisms of action. A compound posses-

sing any of these profiles, or approximations of these profiles,

would be predicted to have clinical efficacy. The challenge

remains to construct such test batteries.

Conversely, it will be important to identify test responses

which predict lack of clinical efficacy. Ultimately, if clinically

ineffective neurochemical profiles have been identified either

through clinical trials or pre-clinical behavioral tests, com-

pounds having these characteristics should be excluded from

behavioral screening.

Rapid preliminary assays

Many paradigms, particularly those having a higher degree of

isomorphism with human alcoholism, require considerable

time and equipment. Pre-clinical assessments are most

valuable when they provide information rapidly and inexpen-

sively. It is possible to identify rapid, inexpensive tests which

yield the same information as the more elaborate models,

although they may be less obvious models of alcoholism. For

example, if medications which block stress-induced reinstate-

ment of alcohol-seeking also block simpler stress responses, it

would not be necessary to use the stress-induced reinstate-

ment paradigm in preliminary drug discovery assays.

Moreover, acamprosate, naloxone and baclofen (Broadbent

& Harless, 1999) reduced ethanol-induced locomotor sensi-

tization. Testing the effects of acamprosate and other

medications purported to have clinical efficacy on ethanol-

stimulated locomotion would reveal whether this simple

paradigm has discriminative properties which recommend

this procedure as a primary screen.

Another emerging opportunity is to screen compounds in

an array of genetically modified mice having a common target

phenotype such as elevated alcohol consumption. NPY

(Thiele et al., 1998), ENT1 (Choi et al., 2004), Per2

(Spanagel et al., 2005), the adenosine A2A receptor (Naassila

et al., 2002) and delta-opioid receptor (Roberts et al., 2001)

are among the targeted gene mutations which elevate alcohol

drinking. Identifying response profiles in genetically modified

mice which predict effects in the more elaborate alcoholism

models (and, ultimately, in the clinic) will facilitate using these

models in a primary screen. In addition to assessing efficacy,

this approach would also confirm a compound’s mechanism

of therapeutic action, and possibly reveal new mechanisms.

Ongoing validation

Validating pre-clinical tests requires an ongoing assessment of

their concordance with outpatient studies. As test protocols

are implemented, methods for assessing the predictive

contribution of each test and a combination of tests could

be developed. Coordinated efforts to improve the tests such

that, in the composite, they reliably predict subsequent clinical

efficacy will facilitate our ability to screen medications.

Progress toward validating these screens would be facilitated

by testing compounds with purported clinical efficacy such as

naltrexone, acamprosate, topiramate, baclofen and ondanse-

tron in alcoholism models. Their effects would then be com-

pared to one another, and to those of clinically ineffective

compounds. The resulting patterns of responses could then

be related to their specific clinical actions. This effort would

be augmented by testing medications currently approved for

human use but which have not been tested in alcoholics.

Those showing positive responses in the preclinical battery—

positive responses being somewhat subjective at this stage—

would be administered in early Phase II clinical trials for

alcoholism. Discontinuing tests and screens having little

predictive value, and introducing and evaluating new tests

and screens would strengthen pre-clinical test development

over time.

Conclusion

Despite their widespread use as basic research tools, experi-

mental paradigms and animal models of alcoholism have not

fulfilled their potential usefulness for discovering clinically
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effective medications for alcoholism. Tests using optimal

combinations of informative alcoholism models have not been

widely implemented. Clinical studies revealing effective

medications and their phenotypic targets are badly needed

to support further model development. Coordinated efforts to

develop and implement medication screening programs for

alcoholism are currently possible, and are likely to contribute

to the discovery of new medications for alcoholism and

alcohol use disorders over the next decade.
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