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The value of parametric images that represent both
spatial distribution and quantification of the physio-
logical parameters of tracer kinetics has long been
recognized. However, the inherent high noise level of
pixel kinetics of dynamic PET makes it unsuitable to
generate parametric images of the microparameters of
tracer kinetic model by conventional weighted nonlin-
ear least squares (WNLYS) fitting. Based on the concept
that both spatial and temporal information should be
integrated to improve parametric image quality, a
nonlinear ridge regression with spatial constraint
(NLRRSC) parametric imaging algorithm was pro-
posed in this study. For NLRRSC, a term that penal-
izes local spatial variation of parameters was added to
the cost function of WNLS fitting. The initial estimates
and spatial constraint were estimated by component
representation model (CRM) with cluster analysis. A
hierarchical cluster with average linkage method was
used to extract components. The ridge parameter was
determined by linear ridge regression theory at each
iteration, and a modified Gauss-Newton algorithm
was used for minimizing the cost function. Results
from a computer simulation showed that the percent
mean square error of estimates obtained by NLRRSC
can be decreased by 60-80% compared to that of
WNLS. The parametric images estimated by NLRRSC
are significantly better than the ones generated by
WNLS. A highly correlated linear relationship was
found between the ROI values calculated from the
microparametric images generated by NLRRSC and
estimates from ROI kinetic fitting. NLRRSC provided
a reliable estimate of glucose metabolite uptake rate
with a comparable image quality compared to Patlak
analysis. In conclusion, NLRRSC is a reliable and ro-
bust parametric imaging algorithm for dynamic PET
studies. o 2002 Elsevier Science (USA)

INTRODUCTION

The analysis of dynamic positron emission tomogra-
phy (PET) studies utilizing a compartmental tracer
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kinetic model is an established technique for measur-
ing biological function in vivo. The quantification of
individual model parameters (termed microparam-
eters) can improve the understanding of the relative
contribution of delivery, transport, and biochemical
transformation of molecules within the body. We have
been interested particularly in determining the trans-
port and phosphorylation rates of [F-18]fluorodeoxy-
glucose (FDG) in the brain in order to better under-
stand the marked changes in the cerebral glucose
metabolism acutely following traumatic brain injury
(Bergsneider et al., 1997). These microparameters typ-
ically are estimated by fitting the model to the tissue
time activity curve (TAC) obtained from the dynamic
PET study. The ability to derive the “true” representa-
tive fitted curve is dependent upon the quality of the
TAC. In many pathological states, including traumatic
brain injury, reduced or altered tracer uptake during
PET studies can result in highly noisy TACs assessed
for individual pixels, and therefore, lead to inaccurate
or invalid estimates of the microparameters due to
poor fitting or nonconvergence.

A simple method used to circumvent the problem of
noise in TACs in estimating microparameters is to
draw a large region-of-interest (ROIl) and apply it to
the dynamic image set. The averaging of pixel values
enclosed within each ROI reduces the noise level in the
TAC thereby improving the accuracy and efficiency of
the curve-fitting regression procedure. Using this so-
called “ROI method,” either general linear regression
or nonlinear regression can be easily and reliably ap-
plied to estimate model parameters defined in the ki-
netic model. One drawback of this approach is that the
ROIs must be drawn in advance without an indication
of the regional variability of the microparameters in
guestion. As a result, identifying regional patterns us-
ing the ROI method may be a labor intensive trial-and-
error process. In addition, a high heterogeneity of ki-
netics within an ROI may introduce significant errors
into the estimates. (Herscovitch and Raichle, 1983;
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Herholz and Patlak, 1987; Blomqgvist et al., 1995; Wu et
al., 1995; Zhou et al., 1997).

An alternative to the above ROI method is the gen-
eration of a parametric image representing a given
microparameter based on modeling the tracer kinetics
for each individual pixel in the image volume. Para-
metric images that represent both spatial distribution
and quantitation of the physiological parameters are
highly desirable for data presentation and analysis.
The model independent graphical analysis (Patlak et
al., 1983; Patlak and Blasber, 1985; Logan et al., 1990,
1996; Choi et al., 1991) and spectral analysis (Cunning-
ham and Jones, 1993) were most often used to generate
macroparametric images, a function of micro parame-
ters of tracer kinetic model such as uptake rate con-
stant (K; = K;ks/(k, + k3)) in FDG or irreversible tracer
studies and distribution volumes (DV = (K /k,)(1 +
kas/k,)) in ligand-receptor studies. With approximation
and model simplification, linear parametric imaging
algorithms have been developed for generating micro-
parametric images (Blomqgvist 1984, 1990; Carson et
al., 1986; Frey et al., 1991; Koeppe et al., 1991; Feng et
al., 1996; Gunn et al., 1997; Chen et al., 1998; Zhou et
al., 2001a, 2001c). Traditionally, most parametric map-
ping theories and algorithms for dynamic PET studies
have been based on linear and nonlinear regression.
Linear parametric imaging algorithms offer the great-
est simplicity and computational efficiency. Nonlinear
regression, such as weighted nonlinear least squares
(WNLS) fitting, is a more general method compared to
its linear counterpart. Unfortunately, due to the high
noise level of pixel Kinetics, the parametric images
generated by conventional WNLS method are usually
of poor image quality, i.e., either too noise or too much
resolution loss if spatial smoothing is applied.

To improve the quality of parametric images gener-
ated by WNLS, several strategies were developed to
reduce the random fluctuations in the TAC. One
method involves spatial filtering applied on dynamic
images by local likelihood-type procedures (Herholz,
1987). Although this is effective in lowering the noise
component, the technique requires excessive computa-
tional time for routine use. This type of approach can
be improved by a so called “mixture analysis”
(O’Sullivan 1994), in which the component representa-
tion model (CRM) used is based on the assumption that
each pixel can be expressed linearly in terms of com-
ponents both in the kinetic space and the parameters
space. The parametric images generated by this algo-
rithm are sensitive to the accuracy of the estimated
components and the algorithms for extracting appro-
priate components can become complex and computa-
tionally costly.

As an alternative to applying spatial smoothing to
the dynamic images, we developed a constraint method
to reduce variation in the parameter space during non-
linear regression. Intermediate estimates obtained at
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each iteration during nonlinear regression were spa-
tially smoothed (Huang and Zhou, 1998). This spatial
constraint parametric imaging algorithm was modified
further by the addition of nonlinear simple ridge re-
gression with spatial constraint (NLRRSC) (Zhou et
al., 2001b). NLRRSC theory takes the strategy of min-
imizing the cost function by including a local spatial
constraint (penalty) in the parameter space. In that
algorithm, the same initial estimates and constraints
were estimated by model fitting to the whole brain
tissue average Kkinetics. The spatial constraints were
updated at each iteration, and a Gauss—Newton with
half step algorithm was used.

The purpose of the current study is to decrease the
bias of NLRRSC estimates and to improve convergence
by (a) providing a more accurate initial estimate, (b)
fixing the spatial constraint, and (c) using more effi-
cient step search algorithm during nonlinear regres-
sion. Hierarchical cluster analysis with average link-
age method is used to extract components for the CRM
analysis. The initial estimates are then adjusted by
nonlinear regression with fixed spatial constraint. The
details of the NLRRSC algorithm are described in the
following sections.

MATERIALS AND METHODS

Theory and Algorithm

As described in the Introduction section, there are
three steps to implement NLRRSC: (1) Hierarchical
cluster analysis with average linkage method is ap-
plied to the dynamic image data. Components in the
kinetic space and the parameter space are then ex-
tracted by fitting the tracer kinetic model to the kinet-
ics of each cluster. (2) Images of the initial estimates
and constraints are then obtained by CRM analysis. (3)
Initial estimates are adjusted by minimizing the cost
function using nonlinear regression with spatial con-
straint.

To extract components in the kinetic space, hierar-
chical cluster analysis with average linkage method
(Anderberg, 1973) is used to partition the dynamic PET
image data sets into a preselected number of clusters.
The clusters selected for further analysis must include
an adequate number (depending upon noise level) of
pixels during the clustering process so that the mean
kinetics of each cluster has a high signal-to-noise ratio
for WNLS model fitting. The components in the param-
eter space and the Kinetic space are then obtained by
fitting the model to the kinetics of the cluster means.
Let us assume that N clusters are obtained for a given
data set of dynamic PET images, and its corresponding
cluster means are Z,, Z,,...,Zy, respectively.
Weighted nonlinear regression using the Marquardt
algorithm (Marquart, 1963), a standard WNLS fitting
algorithm, is used to fit model to the cluster means Z,.
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FIG. 1. Linear components representation model. Given compo-

nents {F;} in the kinetic space and the corresponding components {3}
in the parameter space, the linear relationship between the pixel and
components in the kinetic space is also true in the parameter space.
The contributions from each component (m;) could be estimated by
non-negative linear least square fitting in the kinetic space.

The ith component in the parameter space and the
Kinetic space is determined by minimizing the cost
function below:

Qi = (Zi = F(B)'W(Z; = F(B)), (1)
where ' is mathematical transpose operation, 1 =i =
N. We let F; = F(B"), where B” is estimated by mini-
mizing the cost function Q;. Then the fitted {F;} and
estimated {8} are the components in the kinetic space
and in the parameter space, respectively.

Based on the extracted components (F;, B?, 1 =i =
N), the CRM is used to provide the initial estimates
and parameter constraints. As illustrated in Fig. 1,
CRM assumes that kinetics for each pixel can be rep-
resented by a linear combination of the extracted com-
ponents, i.e.:

(2)

where Y; is the measurement of pixel j, m; = 0 and
>m; = 1. By applying constraint to the linear regres-
sion, the weight m;; is estimated. So the model param-
eter at jth pixel is roughly estimated by:

N

Bi= 2 mp".

i=1

(3)

We let SB; be the spatially smoothed B;. The initial
estimates B, and the constraint 8, for NLRRSC are
both set to equal to SB; for pixel j:

BOj = SBj (4)
st = SBj (5)
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As described below, B, is used as the initial parametric
image for nonlinear regression, and the spatial con-
straint image B, is fixed in the nonlinear regression of
NLRRSC.

In the last step of NLRRSC, the initial estimates are
adjusted by minimizing the following total sum of
squares (TSS) which includes weighted residual sum of
squares in the kinetic space and a term penalizing the
local spatial variation in the parameter space, i.e.,

TSS = (F(B) = Y)W(F(B) = Y) + h(B = By)" (B — By,
(6)

where Y (n X 1) is the vector of n temporal measure-
ments of tissue radioactivity, B (m X 1) is the param-
eter vector to be estimated, F(B) (n X 1) is the predicted
value from the tracer Kinetic model, and W is the
diagonal matrix whose positive diagonal elements w;
usually reflect the accuracy of measurement at the ith
time point. For the following simulation and human
studies, the diagonal elements w; = (duration of ith
frame of PET dynamic scanning) was used. The term
h(B — Bs)'(B — Bs) reflects the penalty on spatial vari-
ation in the parameter space, and h is usually called
the ridge parameter or penalty coefficient. TSS is min-
imized by the conventional nonlinear least squares
optimization procedure. Based on the performance and
computation efficiency, a modified Gauss—Newton al-
gorithm for searching step size was used in the NL-
RRSC for nonlinear regression (Hartley, 1961), and it
was implemented as shown in the following procedure.
At each iteration of the nonlinear regression, starting
with 3, estimated in the previous iteration, and using
the first order approximation of F(B, + ApB),

F(B) + AB) = F(B) + (dF/dB)AB, (7)

where dF/ZdB (n X m) is the gradient of F at 3, on the
parameter space, the step AR is determined by mini-
mizing the cost function below in the current iteration.

Q(AB) = (F(By) + (dF/dB)AB — Y)'W(F(BY)
+ (dF/dB)AB —Y)

+ h(B,+ AB — By)' (B + AB — By).

(8)

To determine AR, the theory of linear simple ridge
regression with spatial constraint is applied for opti-
mization of the ridge parameter h (Zhou et al., 2001a).
That is, based on Eg. (8), an intermediate h, is ob-
tained using Eq. (9) and (10) below.

AB, = ((dF/dB)'W(dF/dp)) “*((dF/dB)'W(Y — F(By)
(9)



700

FDGin K, FDGin ka FDG-6-Fin
Plasma Tissue Tissue
ViS [Tk (Cp) i > (C)

FIG. 2. Compartment model used to simulate tissue FDG kinet-
ics. V,C, is the FDG plasma concentration in vascular space; Cg is
the free FDG concentration in tissue; Cy is phosphorylated FDG
concentration in tissue. V, is the fractional plasma volume in vascu-
lar space, and K,—k, are the rate constants.

ha=m((F(B) + (dF/dB)AB, — Y)'W(F(B,)
+ (dF/dB)AB, — Y)/(n — m))/
((BI + ABa - Bs),(BI + ABa - Bs))

(10)

Afterward, h, is spatially smoothed to give the ridge
parameter h. A modified Gauss—Newton algorithm is
then used to calculated the step AR through its mag-
nitude p and direction 6 (i.e., B,.; = B, + AB = B, + pbh),
for the next iteration (Hartely, 1961), as determined by
Egs. (11) and (12) below:

6 = ((dF/dB)'W(dF/dB) + hi)

(11)
X ((dF/dB)'W(Y — F(B) + h(Bs — B)

B 0.75Q(0) — Q(0.50) + 0.25Q(0)
P~ 777Q(0) - 2Q(0.50) + Q(6)

(12)

A relative convergence criterion is used to stop the
iterations. That is, the iterations are considered to
have converged if the total pixel-wise cost function
values (summing over all pixels on the image) changes
less then 0.1%. That is, the iteration terminates, when

> Q(AB) — X Q(0)

< le — 3.
S Q(0) °

Computer Simulation

A 3-compartment 5-parameter model (Phelps et al.,
1979; Huang et al., 1980; Hawkins et al., 1986) is used
to simulate tissue FDG kinetics. As is illustrated in
Fig. 2, the tracer concentrations in the three compart-
ments are Cp, Cg, and Cy, and the rates of changes in
concentration are described by Egs. (13) and (14):

dCe(t)

dt = chp(t) — (kp + k3)Ce(t) + k,Cy(t) (13)
dCpy(t)
gt = KeCelt) — KiCulb). (14)
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Where Cp(t) is the FDG time activity curve in plasma
(the input function), K; (ml/min/g) is the forward trans-
port rate constant of FDG from plasma across the blood
brain barrier (BBB) to brain tissue, k, (1/min) is the
reversed transport across the BBB, k; (1/min) is the
phosphorylation rate constant, and k, (1/min) is the
de-phosphorylation rate constant. The measured radio-
activity by PET scanner (C;) is the total amount of
tracer in tissue and the vascular space:

Cr=Ceg+ Cyu+ V,Cy, (15)
where V, (ml/g) is the fractional plasma volume in
tissue. From Egs. (13), (14), and (15), C; can be ex-
pressed in terms of the input function C, as:

Ky

Cr= [(Ks + K4 = ag)e "t

Qy = 0

+ (ap — kg — Kg)e ] ® Co(t) + V,Cp(t).

(16)

Where ® denotes the convolution operation, and

ay = [Ky + Ky + Ky — \(kp + kg + ko) 2 — 4K,k ]2 (17)

@y = [Ky + Ky + Ky + \(ky + kg + ko) 2 — 4kok,]/2. (18)

Equation (16) was used to simulate brain tissue kinet-
ics. The parameter vector B ([K; k, k; k, V,]') of value
of [0.102 0.13 0.062 0.004 0.05]) for gray matter and
[0.04 0.08 0.029 0.004 0.03]) for white matter was se-
lected from the literature (Phelps et al., 1979; Huang et
al., 1980). A FDG plasma TAC from a human PET
study was used as the input function. Spatial configu-
ration of gray and white matter on the simulated im-
ages followed the Hoffman’s phantom (Hoffman et al.,
1983). The scanning sequence (4 X 0.5,4 X 4,10 X 5
min, total 60 min, over 18 frames) was identical to the
human FDG dynamic PET study (see below). Pseudo
random noise (normally distributed with its variance
proportional to its mean) was added to each simulated
data point in the sinogram. Three different noise levels
(high: 6 X 10°, middle: 10 X 10°, and low: 30 X 10° total
counts per plane over 60 min) were simulated in the
sinogram. For simplification, the processes of attenua-
tion, random, and scatter were not simulated. A Han-
ning filter with a cutoff at Nyquist frequency was used
for image reconstruction (image matrix size 128 X 128,
pixel size 0.125 cm). Twenty realizations for each noise
level were obtained for evaluating the statistical prop-
erties of the estimates or the parametric images. A 2-D
spatial linear smoothing filter (in plane, window size
5 X 5, equal weighting for all pixels of filter) was used
for spatial smoothing in NLRRSC. Parametric images
obtained from dynamic images that are reconstructed
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from noise-free sinogram were used as the “true” im-
ages for error analysis of the images from noisy simu-
lations.

NLRRSC and WNLS were used to generate paramet-
ric images from the simulated FDG images. Paramet-
ric images of the FDG uptake rate K; (= K ks/(k, + k3)
were generated from the estimated images of K, k,,
and k;. The value of the parameter k, was fixed at its
true value (0.004/min used in simulation) during model
fitting because the total scanning time of dynamic
study was only 60 min. Generally, this is not long
enough to provide a reliable estimate of k, (Huang et
al., 1981, 1998; Heiss et al., 1981; Lammertsma et al.,
1987). It has been shown that fixing k, decreases the
k,-related error to that due to the discrepancy between
the actual and the assumed value of k, (Jovkar et al.,
1989).

While WNLS estimator is unbiased, NLRRSC esti-
mates could be biased. Thus, a useful criterion for
accuracy comparison of the two estimator is the per-
centage of the root mean square error (RMSE%) (Coch-
ran, 1977; O’'Sullivan and Saha, 1999), which is defined
in Eq. (19). To evaluate the cost of variance reduction
for NLRRSC, the percent bias (Bias%) of estimate was
calculated using Eq. (20) for results obtained from com-
puter simulation.

2k (pi—

1 p)?2
RMSE%zB N1 (19)

)

1 N
Bias% = 52 p (20)

In Egs. (19) and (20), p; is the parameter estimate, p is
the “true” value (from noise free simulation), and N is
the number of repeated realizations.

Application to Human FDG Dynamic Study

A FDG-PET study in a normal, healthy young adult
was analyzed. The study was approved by UCLA Hu-
man Subject Protection committee. FDG (~4 mCi) was
injected intravenously as a bolus with dynamic image
acquisition using a sequence of 4 X 0.5,4 X 2,10 X 5
min for a total 60 min (18 frames). A Siemens/CTI
ECAT HR+ scanner in 3-D acquisition mode (septa
out) was used. Arterial blood samples were taken dur-
ing the scan and counted in a gamma well counter to
derive the plasma FDG time activity curve as the input
function. Three blood samples were obtained at equal
intervals over the 60-min study for determination of
the averaged plasma glucose concentration. This value
was used for the calculation of local cerebral metabolic
rate of glucose (LCMRGIc). Dynamic images (128 X
128, pixel size = 0.1446 cm, plane separation 0.2425
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cm, 63 planes for each frame) were reconstructed using
filtered back projection with a Hanning-0.5 filter.
Equation (16) was used to fit tissue Kkinetics (k, was
fixed at 0.004/min during fitting).

The WNLS was employed for ROl and cluster kinetic
fitting. For comparison, NLRRSC and WNLS were ap-
plied to the same data set with the same initial esti-
mates obtained by the CRM with cluster analysis for
generating parametric images. The 2-D spatial linear
smoothing filter (in plane, window size 5 X 5, equal
weighting for all pixels of filter) that was used in the
computer simulation was also used in human study.
For evaluating the reliability of the NLRRSC method
with real data, ROI averages of estimates calculated
from parametric images were compared to those ob-
tained by fitting model to ROI kinetics. The ROIs con-
tained at least 20 pixels and were defined on a set of
planes that included gray matter, white matter, sinus,
and combined regions. The LCMRGIc was calculated
with the following equation:

LCMRGIc = (Cpy/LC)K;, (21)
where C,, is the glucose concentration in plasma (mg/
100 ml) and LC is the lumped constant. Here, a histor-
ical value of LC = 0.42 (Phelps et al., 1979; Huang et
al., 1980) was used for the entire brain. As a compar-
ison, a parametric image of LCMRGIc was also esti-
mated by the Patlak method, which is currently a
common technique for LCMRGIc estimation and is in-
dependent of the specific model structure. Pixel-wise
comparison of LCMRGIc obtained with NLRRSC and
Patlak plot was also examined.

The NLRRSC and WNLS were written in MATLAB
(The MathWorks Inc.) code, and implemented on an
Ultra 5 SPARC workstation (Sun Microsystems, Inc.,
Palo Alto, CA).

RESULTS

Computer Simulation

Figure 3 showed the accuracy of the estimates (whole
brain average RMSE% of K, k,, ks, V,) at the various
noise levels. Both NLRRSC and WNLS parametric im-
aging methods revealed that k,, k;, and V, are more
sensitive to noise level than for K,. The sensitivity
(based on the slope of regression line) of k; was highest
for both WNLS and NLRRSC methods. By comparing
the NLRRSC with WNLS estimates, the whole brain
average RMSE% of NLRRSC estimates is less than
60—-80% of those of WNLS estimates. This improve-
ment in the estimates of K, k,, ks, and V, by NLRRSC
gives an RMSE% reduction for K; (K;ks/(k, + ks3)) of
60—80% as compared to the WNLS estimates. Results
for gray and white matter values were also found to be
similar.
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FIG. 3. Whole brain average RMSE% of WNLS and NLRRSC estimates for three noise levels (the scale is proportional to 1/(total
counts)™?). The same initial estimates were used in WNLS and NLRRSC. The smoothing filter with 5 X 5 pixel window size was used for

NLRRSC.

A representative example of pixel-wise comparison
of model fitting is shown in Fig. 4. The single pixel was
selected from a gray matter region in one realization of
a midnoise level simulation. The parameter vector [K,,
ks, ks, V,] from the “true” parametric images recon-
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B
=
=
g 1.0E-03 4*
.o
'E M i +  Simulated
=4 —o— NLRRSC
50E04 4 s WINLS
I True
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FIG. 4. Evaluation of the model fitting at pixel level for WNLS
and NLRRSC. WNLS gave lower residual sum of squares at the cost
of the higher deviation from “true” in parameters space. The radio-
activity unit on the y axis is proportional to pn.Ci/ml.

structed from noise free phantom sinogram was [0.101,
0.131, 0.062, 0.050] for that particular pixel. The pa-
rameters estimated by the NLRRSC and WNLS meth-
ods were [0.101, 0.129, 0.055, 0.050] and [0.196, 0.390,
0.072, 0.003], corresponding to residual sum of squares
0f 8.49 X 10" and 8.31 X 107/, respectively. Generally,
WNLS gave a lower residual sum of squares than that
obtained by NLRRSC, but is more sensitive to the noise
level of pixel kinetics. This example revealed that,
without constraint, the lower residual sum of squares
of WNLS fitting occurs at the cost of higher variation in
the parameter space. This also demonstrated that the
strategy of minimizing the residual sum of squares
with spatial constraint or penalty reduces the variabil-
ity of the estimates.

The average Bias% of estimates decreased as the
noise level became smaller. The Bias% of NLRRSC
estimates (K, k;, ks, V,, K;,) in gray matter was less
than =5% at the high noise level. For white matter, the
average Bias% of the linear parameter estimates K,
and V,, were less than =10% at the high noise level,
while the average Bias% of the nonlinear parameters
k, and k; could be up to 20%. The average Bias% of K;
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FIG. 5. Results of clustering for one slice level from hierarchical
cluster with average method (A) and corresponding initial estimates
and spatial constraint to be used in NLRRSC (B).

was less than 5% at all noise levels. The main factor
contributing to the bias of NLRRSC estimates was due
to the ridge regression (Hoerl and Kennard, 1970a,
1970b; O'Sullivan and Saha, 1999). It should be noted
that (1) the bias of NLRRSC estimates is negligible if
compared to the variance of the estimates; and (2) in
real dynamic PET studies, many other factors in the
real world, such as scatter and attenuation process,
model simplification of tracer kinetic, may cause bias
regardless of the estimators used.

Human Study

The clustering results at one slice level were shown
in Fig. 5A. For 5 clusters, cluster 1 to cluster 5 corre-
spond approximately to the regions of scalp, white mat-
ter, mixture of white matter and gray matter, gray
matter, and sinus, respectively. If 4 clusters were cho-
sen, cluster 3 (mixture of white matter and gray mat-
ter) and cluster 4 (gray matter) were merged as one
cluster. If 3 clusters were selected, cluster 1 (scalp) and
cluster 2 (white matter) further merged together as one
cluster. The five components in the parameter space
estimated from the 5 clusters were shown in Table 1.

Figure 5B was the corresponding initial estimates
and constraints of Ky, k,, ks, and V. It showed that the
linear component representation method was quite ro-
bust to the number of components. This may be due to
the following reasons: (1) hierarchical cluster algo-
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TABLE 1

Components Estimated From 5 Clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4  Cluster 5
K, 0.032 0.030 0.087 0.103 0.030
K, 0.151 0.047 0.321 0.216 0.065
Ks 0.036 0.036 0.146 0.168 0.032
V, 0.031 0.048 0.027 0.056 0.332

rithm was used in clustering dynamic image data, (2)
CRM is a liner regression model, and (3) due to spatial
smoothing on the images generated by CRM, the initial
estimates are less sensitive to the kinetic differences
among clusters.

The parametric images of K,, k;, ks, V,, and K; gen-
erated by WNLS and NLRRSC were shown in Fig. 6.
The same input data set and initial estimates based on
4 clusters (see Fig. 5B) were used for both the WNLS
and NLRRSC methods. Consistent with the computer
simulation results, the image quality of the parametric
images generated by NLRRSC was significantly better
than that of WNLS. As shown in Fig. 7, the ROI values
calculated for K, ks, V, directly from the parametric
images generated by NLRRSC (x axis) had a higher
linear correlation (R> > 0.95) with the values esti-
mated from ROI kinetics by WNLS (y axis) compared
to that for k, (R?> > 0.87). For LCMRGIc, the highest
linear correlation was obtained as: Y(ROI method) =
0.931X(NLRRSC image) +0.521 with R? = 0.98. There-
fore, parametric images generated by NLRRSC gave
values of the parameters as reliable as to those by the
“ROI method.”

The pixel-wise comparison between LCMRGlIc calcu-
lated by NLRRSC and Patlak plot methods is shown in
Fig. 8. The correlation of all pixel values was high R* =
0.99 (Fig. 8B) and could be expressed by:

FIG. 6. The parametric images were generated by WNLS (top
row) and NLRRSC (bottom row). The K; (K; ki/(k, + ks)) was calcu-
lated after pixel-wise model fitting. The same initial estimates ob-
tained by component representation model analysis with four clus-
ters (see Fig. 5B) were used for both WNLS and NLRRSC parametric
imaging algorithms.



704

= 012 ¥ =10181=- 00026 ] yo 127685 - 00439
4 o E 020 R=0.8762
| .
5 ooe 5 015
E 004 & 010
F ]
£ om & 00
2 oo 2 o000+
00 002 004 D05 00F 010 012 000 005 010 015 0 03
Kl fromparametric images 12 from parameiric images
059 y=11827x.00168
0257  y=10%x 00067 E 54 R2=09718 .
] 03 .
i 3
g M g2
] [
&
04
&
2 04
000 005 010 015 020 035 A

163 from parametric images

Vp from parametric image

FIG. 7. A highly correlated linear relationship was observed
between estimates from ROI kinetics and estimates from ROl means
of parametric images generated by NLRRSC. 21 ROIs with each
including at least 20 pixels were defined on the parametric images.

NLRRSC (LCMRGIc)
= 1.05Patlak(LCMRGIc) + 0.075.

The LCMRGIc estimated by NLRRSC (with k, fixed at
0.004/min) was significantly higher (~5%) than that
estimated by the Patlak plot method (paired T test,
P < 0.001). This is consistent with previously reported
FDG human studies in which the underestimation of
LCMRGIc was attributed to the exclusion of dephos-
phorylation of FDG in the model (equivalent to the
assumption for using Patlak) (Phelps et al., 1979;
Lammertsma et al., 1987). These results suggest that
NLRRSC provides a reliable estimate of LCMRGIc
with a comparable or better image quality compared to
Patlak analysis. However, it has a much larger com-
putational burden. Thus, if only LCMRGIc is desired,
Patlak analysis is still a more practical method to use.

B
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Inclusion of the penalty term in the cost function
resulted in improved convergence of the modeling. NL-
RRSC usually converged within 6 iterations for both
the computer simulation and human study whereas,
using the same initial estimates and convergence cri-
teria, WNLS usually required more than 20 iterations.
To generate a parametric image, it takes about 15 min
for NLRRSC on an Ultra 5 SPARC workstation.

DISCUSSIONS

This study demonstrates that NLRRSC is a promis-
ing algorithm for the generation of parametric images
of model microparameters derived from FDG dynamic
studies. For NLRRSC, the variance of the estimates
was reduced by ridge regression while the bias of esti-
mates was limited by the constraints. The initial clus-
ter analysis combined with the linear components rep-
resentation model provides good initial estimates and
constraint parameters that are helpful for (1) avoiding
trapped in local minimum, and (2) limiting the bias due
to ridge regression. The component representation
model proved to be an efficiency method to obtain more
accurate constraint and initial estimates for further
analysis even though it is questionable that only a few
of components exist in nature (Ashburner et al., 1996).
We chose hierarchical cluster analysis with average
linkage method, although different techniques of clus-
ter analysis for improving the signal-to-noise ratio of
estimates have been used successfully by others
(O’Sullivan, 1994; Kimura et al., 1999; Feng et al.,
2001). In fact, some other cluster algorithm, such as
hierarchical cluster analysis with ward linkage
method, was also tried for the same data set in this
study. It was found that Ward's method tends to join
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FIG. 8. Pixel-wise comparison of a parametric image of LCMRGIc estimated by Patlak plot and NLRRSC.
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clusters with small numbers of observation and is
strongly biased toward producing clusters with
roughly the same number of observations. For exam-
ple, sinus cluster is merged with other clusters by the
ward linkage method. This finding is quite consistent
with one comparison study reported before (Milligam,
1980).

Based on the theory of hierarchical cluster analysis
with average linkage, the distance between two clus-
ters depends on the magnitude as well as the shape of
the curve of the two clusters—not just on the shape of
the curve as in factor analysis. To ensure the expres-
sion in terms of the components to be unique for each
pixel in the kinetic space and in the parameter space, it
is necessary to choose the components with different
curve shapes, i.e., no two components is parallel in
kinetic space. It is obvious that the distance between
components becomes smaller as the selected number of
components (clusters) is increased. Since a major ob-
jective of CRM analysis in NLRRSC is to provide good
initial estimates, it is not necessary to obtain exact
representation of the pixel kinetics in terms of many
cluster components. Also, to get a near exact represen-
tation is very time consuming as demonstrated by the
cross validation procedure used by O'Sullivan (1994).
The constraints on the weightings of the components
() ensures that the initial estimate is a convex linear
combination of the components, and will thus be less
sensitive to the noise level of the pixel Kkinetics. In
addition, the use of the spatially smoothed CRM solu-
tion as the initial estimate further reduces its sensitiv-
ity to the number of components (clusters) used. Figure
5 shows that the initial estimates or spatial constraints
(both are the same) were in fact quite robust to the
selected number of clusters. In general, 4 or 5 clusters
were found to be appropriate for FDG study in normal
subjects. Based on results shown in Fig. 5, an alterna-
tive way to extract components may be the conven-
tional ROI approach, i.e., to obtain TACs of clusters by
drawing the ROIs of gray, white, sinuous, scalp, and
other possible regions if necessary, directly on PET or
MRI images.

It is difficult to directly compare NLRRSC with con-
ventional methods using smoothing techniques that
apply linear spatial filters to the dynamic or paramet-
ric images. With NLRRSC, spatial constraint is incor-
porated into the parametric images via ridge regres-
sion. Ridge regression is less stringent in that the
constraint in the parameter space is automatically ad-
justed by the noise level of the tracer kinetics. As a
result, the “smoothing” of parametric images by NL-
RRSC is minimal but nonuniform.

In the computer simulation, we also tried two other
filters (3 X 3, 7 X 7 windows, equal weighting for all
pixels of filter). The results showed that the NLRRSC
estimates using the three different filters are compa-
rable in terms of RMSE% and parametric image qual-
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ity. The filter (equal weighting over all pixels within
given window) selected in the current study and our
previous study was originated from the criterion of
local variation in parametric image. In fact, any filter
could be used in NLRRSC, and selection is always
dependent on the noise level of the dynamic images.

In the human studies including normal control and
trauma patients, we also tried k, values fixed in the
range of 0 to 0.01/min, it seems that k, values between
0.004 and 0.006/min give acceptable results in terms of
image quality and accuracy of the estimates.

The NLRRSC method used in this study has the
same penalty weighting for all model parameters, and
the same spatial filter was used for all mico-parametric
images and ridge parameter image. The method can be
easily extended to general NLRRSC with different pen-
alty coefficients or different spatial filters for different
microparameters. For general NLRRSC, the corre-
sponding general linear ridge regression with spatial
constraint (Zhou et al., 2001a) can be used to determine
the ridge parameters. Based on trade-off consider-
ations between improvement in parametric image
guality and computational burden, simple NLRRSC is
likely to be a good compromise for dynamic studies that
can be represented by a simple configuration tracer
kinetic model (Zhou et al., 2001a).

The NLRRSC algorithm utilized in this study was
assessed exclusively using the FDG kinetic model. The-
oretically, the algorithm could be applied directly to
other dynamic PET studies as well as to dynamic sin-
gle photon emission computed tomography (SPECT)
studies. It is likely that as the tracer kinetic models
become more complex or the number of parameters
increase, the accuracy of the estimates may be im-
proved more by NLRRSC when compared with conven-
tional nonlinear regression algorithms.

In summary, the parametric images generated by
the NLRRSC algorithm are superior to those created
by conventional nonlinear regression methods. In the
simulated FDG-PET studies, the RMSE% of NLRRSC
estimates is 60—80% smaller compared to WNLS at a
wide range of noise levels. For NLRRSC, since the
mean square error was dominated by the variance
term, the effect of bias on the reliability of the NLRRSC
estimates was negligible. Results from a human FDG-
PET study showed that NLRRSC gave parameter es-
timates that were as reliable as those obtained by the
conventional ROI approach and by Patlak method.
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