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Abstract

Due to its simplicity, computational efficiency, and
reliability, weighted linear regression (WLR) is widely used
for generation of parametric imaging in positron emission
tomography (PET) studies, but parametric images estimated
by WLR usually have high image noise level. To improve the
stability and signal-to-noise ratio of the estimated parametric
images, we have added ridge regression, a statistical technique
that reduces estimation variability at the expense of a small
bias. To minimize the bias, spatially smoothed images
obtained with WLR are used as a constraint for ridge
regression. This new algorithm consists of two steps. First,
parametric images are generated by WLR and are spatially
smoothed.  Ridge regression is then applied using the
smoothed parametric images obtained in the first step as the
constraint.  Since both “generalized” ridge regression and
“simple” ridge regression are used in statistical applications,
we evaluated specifically in this study the relative advantages
of the two when incorporated for generating parametric
images from dynamic O-15 water PET studies. Computer
simulations of a dynamic PET study with the spatial
configuration of Hoffman’s brain phantom and a real human
PET study were used as the data for the evaluation. Results
reveal ridge regressions improve image quality of parametric
images for studies with high or middle noise level, as
compared to WLR. Use of generalized ridge regression offers
little advantage over that of simple ridge regression.

1. INTRODUCTION

The quantification of a physiological activity based on
dynamically acquired PET studies typically requires curve
fitting of the measured tissue time-activity curve (TAC).
Several strategies have been developed to reduce the random
fluctuations in the TAC. One standard method is to draw a
large region-of-interest (ROI) and to apply it to the dynamic
image set. The averaging of pixel values enclosed within each
ROI reduces the noise level in the TAC and therefore
improves the accuracy and efficiency of the curve-fitting
regression procedure. Using this so-called “ROI method”,
either Weighted Linear Regression (WLR) or nonlinear
regression can be easily and reliably used to estimate model
paramcters (called micro-parameters) defined in the kinetic
model. The inherent drawback to such an approach is that the
ROIs must be drawn in advance, a process that may become
labor intensive. WLR has been used to estimate micro-
parameters in O-15 water dynamic PET studies [1-4] and for

the analysis of spatial heterogeneity of Ga-68 EDTA Kinetics
[5]. For fast generation of myocardial blood flow parametric
images with N-13 ammonia PET, a Generalized Linear Least
Squares (GLLS) method has also been developed [6].

An often-desired alternative to the above ROI method is
the generation of a parametric image representing a given
parameter based on modeling the tracer Kinetics in tissue for
each individual pixel in the image plane. However, applying a
model-dependent regression analysis to the pixel-based TAC
is franght with curve-fitting difficulties and with errors
secondary to high noise levels. Some of the methodologies
developed to overcome these problems have included
multiple-time graphical analysis (i.e., “Patlak plot”) [7-8] and
model-independent linear regression [9]. These techniques,
however, are limited to estimating only the macro-parameter
(a combination of the micro-parameters of a tracer kinetic
model). If micro-parameter estimations are desired, one
technique to reduce the pixel value variation is to apply spatial
smoothing either to the dynamic images prior to curve-fitting
or to the parametric images after the curve-fitting. Spatial
smoothing, however, often results in an unacceptable loss in
image resolution as well as in enhancing bias errors.

Ridge regression has been used in statistics to reduce
estimation variability of linear regressions at the expense of a
small bias in the resulted estimates, with the amount of bias
dependent on the noise level of the data [10-11]. Also,
depending on whether the magnitudes of different parameters
are scaled to the same level or not, there are “generalized” and
“simple” ridge regressions [12]. We have recently explored
the use of ridge regression for generating parametric image
from dynamic PET studies. In order to minimize the bias
introduced by ridge regression, we used spatially smoothed
parametric images obtained from regular WLR as a constraint,
So, the procedure consists of two steps. First, parametric
images are generated by WLR and are spatially smoothed. In
the second step, ridge regression (simple or generalized) is
applied using the spatially smoothed parametric images
obtained from the first step as the constraint. If simple ridge
regression is used, the method is referred to as simple ridge
regression with spatial constraint (SRRSC). If generalized
ridge regression is used, the method is referred to as
generalized ridge regression with spatial constraint (GRRSC).
In the present study, we specifically evaluated the relative
performance of SRRSC and GRRSC for generation of pixel-
based parametric images from dynamic O-15 water PET data.
Computer simulations and real PET data were used for the
evaluation.
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II. THEORY AND METHODS

A. Theory and Algorithm

1) Brief Review of Ridge Regression

Ridge regression was introduced by Hoerl and Kennard
[10-11] as a method to limit the impact of spurious data in a
regression calculation by applying a variable penalty that is
dependent on the deviation of data points from the regression
line. Starting with the standard linear regression equation:

Y= XB+e (D

where Y is an nx! observation matrix, X is an nxm matrix
defining the model, e is the measurement noise with E(e)=0

is an mx1 parameter vector to be estimated. Ridge regression
is usually performed in a transformed space by applying an
orthogonal transformation T, such that T'T=TT'=l and T'X'XT
= A is diagonal with its diagonal elements A, A, ..., A, equal
to the characteristic root of X'X. By letting

a=Tf (2)
and

Z=XT 3)
Eq. (1) may be written as

Y=Za+e. 4

Generalized ridge regression finds a parameter vector oy (Eq.
(5) below) and a diagonal H matrix (Eq. (6)) that minimizes
the expected mean square error (MSE) of the estimates.

o= (ZZ+H)'2Y= (A+I)'ZY (5
where H is a diagonal matrix with non-negative diagonal
elements h,, hy, ..., h,. A sufficient condition for H to
minimize the expected MSE of estimates is:
1<i <m. (6)
If we let all diagonal elements of H to be identical, then we
have the so-called simple ridge regression estimates:

o= (Z'Z +hl )2Z'Y =(A +hl)Z'Y.

The variable h is usuvally selected as
h=mc?/(o'oy). (8)
In fact, h estimated by Eq. (8) can be viewed as the harmonic
mean of the diagonal elements of H in Eq. (6) [12]. Since the
true values of ¢ and o are not known, they are in practice
estimated from Eq. (4) by WLR. With H estimated in

advance, the ridge regression result can be viewed as the
parameter vector that minimizes the following cost function

Qoy [H) =(Y-Zow)' (Y-Zow) +onHoy.  (9)

N

2) Ridge Regression with Spatial Constraint

The GRRSC/SRRSC procedure consists of two steps. In
the first step, regular WLR is applied to the kinetics of each
pixel. The resulted parametric image B is spatially smoothed
with a filter S, and the smoothed [ i denoted as 3;. The noise
variance of the data (6°) for each pixel is estimated from the
residuals of the WLR. Based on the estimated ¢” and B, the
diagonal ridge matrix H is calculated as

)

h = /(B;-B)2, 1<i <m for GRRSC, and
b =mo/(B-B,)PB-By). 1< i <mfor SRRSC.
h; is then also smoothed spatially by filter S.

The second step applies the ridge regression. As shown in
the above subsection, ridge regression is equivalent to
minimizing a cost function (Eq. (9)). For GRRSC/SRRSC,
we seek to minimize the following cost function.

(10)
where Y is a measured tissue time activity vector, X is
regression coefficient matrix determined by the tracer kinetic
model, W is diagonal matrix and its diagonal element w; is
equal to the duration of i frame of a PET dynamic scanning
(i.e., W = diag(w;)). Compared to WLR, the cost function of
GRRSC or SRRSC expressed in Eq. (10) includes an
additional penalty term. Since the H matrix is proportional to
the noise variance of the measured data, the penalty term
automatically adjusts for the noise level of the pixel kinetics.

If Eq. (10) is converted to a centralized form by letting [3,
=B-B,, Y, =W,Y,and X, =W, X with W, = diag(w;"*), then
the cost function to be minimized becomes

QBiH) = (Y)-X,B)' (Yi-X,B)) +B,'HB,. 1
and the solution that minimizes the above cost function can
be determined to be

B(H)= (X'WX+H)"(X‘WY +HBY (12)
For SRRSC, it can be further simplified to
B(h) = (X'WX +hL, Y (X'WY +hp), (13)

where m is dimension of parameter vector B and 1, is an m-
dimensional identity matrix. It can be seen from the above
equations that as H or h tends to zero, GRRSC/SRRSC
becomes regular WLR. As h or the minimum of the diagonal
elements of H tends to infinity, the results of GRRSC/SRRSC
will be B, and the bias introduced by GRRSC/SRRSC is
limited by the spatial constraint .

B. Evaluation by Computer Simulation

The following 2-compartment 3-parameter model was
used to generate measured O-15 water tracer kinetics in brain
tissue [2, 13, 14]:

Cror = Clt) + ViCo(t) (14)
dc, (t
%=K1Ca(t)-kgcb(t) (15)

where Cy(t) is brain tissue radioactivity, C,,, corresponds to the
measured tissue time activity from the PET scanner, Ca is
arterial whole blood O-15 water time activity, K, is cerebral
blood flow, k, is clearance rate constant. The vascular volume
and dispersion constant are lumped as one parameter V. To
apply linear regression algorithm for model parameter
estimation, the unobservable Cy(t) in Eq. (15) can be
eliminated by taking the derivative on both sides of Eq. (14)
and substituting the derivative of Cy(t) with that in Eq. (15).
The result is shown in Eq. (16) below.

dc, (1)

it :(K]+k2VO)Ca(t)——k2Ctm(t)+V0 (16)



By applying boundary condition, C,,(0) = 0, and C,(0) =0, to
Eq. (16), the integral form of Eq. (16) is given as Eq. (17).
Ciol) = (Kytko V)l Cuds —ko[Cuds + VoG (17)
Let B'=[K,+kV, ky Vo], then Eq. (17) can be discretized and
converted to the form of linear regression model of Eq. (1) as

1 3]
jcads - jcmds C, (1)
0

~ - 0
S GY) t ]
Ctm(tz) fcads '_"Ctotds Ca(tz)
0 0
=’ B (8
_Ctol(tn)_

tn in
j.cads - jctotds Ca(ty)
LO 0

Three sets of parameters for gray and white matter were used
to generate tissue kinetics (see Table 1).

Gray Matter White Matter
K, k, Vo K k, Vo
Set_1 | 0.80 | 0.84 0.05 0.20 025 | 0.03
Set 2 | 0.60 | 0.63 0.05 0.20 025 | 0.03
Set 3 | 040 | 0.42 0.05 0.20 025 | 0.03
Table 1: Spatial distribution of parameters used in computer

simulation. The units of K,, k», V, are ml/min/g, 1/min, and mi/g,
respectively.

For the phantom study, an arterial blood O-15 water time
activity curve from a human study was used as the input
function. The simulated dynamic PET scanning sequence was
6x3, 9x10, and 6x30 seconds. The spatial distribution of the
gray and white matter follows that of the Hoffman’s phantom
[15]. Pseudo random noise (normal distributed with variance
proportional to its mean) with three different noise levels
(higher: 1.25x10°, middle: 5x10°, lower: 10x10° total counts
per plane over 5 minutes) was simulated in the sinogram. Fifty
realizations for each noise level were obtained. Dynamic
images were reconstructed by filtered back projection
(Hanning-filter, 128x128 matrix, pixel size 0.125 cm, cut-off
at the Nyquist frequency). 2D linear filters with different sizes
(3x3, 5x5, and 7x7: same weighting for all pixels of the filter)
were used as the spatial smoothing filter. The true parametric
images were reconstructed from a noise-free sinogram. The
variance of each parameter estimate at cach pixel was defined
as percent root MSE,

N 2
_ P-pi)
MSEv% = 100 }Zl:[ i
P N-1

where p; is the parameter estimate, p is the true value
reconstructed from the noise-free sinogram and N is the

(19)
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number of repeated realizations. In addition, the pixel-wise
mean, bias, square of bias, variance, and MSE of the estimated
parametric images were also calculated for each parameter and
for each pixel. The ROI average RMSE%, square of bias, and
variance for gray and white matter were calculated from each
corresponding image for the three methods: WLR, SRRSC,
and GRRSC.

C. Human O-15 Water PET Dynamic Study

A single study obtained on a control subject was utilized
for this analysis. A single bolus of O-15 water (15 mCi) was
injected intravenously. Dynamic PET scans obtained using a
Siemens/CTI EXACT HR+ scanner were obtained using the
following acquisition sequence: 6x5, 9x10, 6x30 sec.(total 5
minutes, 21 frames). The data were collected in 3-D
acquisition mode. The dynamic images were reconstructed
using filtered backprojection with Hanning 0.5 and 0.3 filters
for evaluating the noise level effects on the parametric images
(63 planes, matrix size 128x128, pixel size 0.1446 cm, plane
separation 0.2425 cm). Arterial whole blood was sampled
during the scan and activity measured in a well counter to give
the input function. The Eq. (18) was used to fit the measured
time activity curves by WLR, GRRSC and SRRSC methods.
The smoothing filter used to smooth parametric images
generated by WLR was a 2-D linear filter of 5x5 in size.

The correction of input function delay was performed
before parametric imaging. In dynamic PET study, there is a
time delay between the peripherally sampled input function
and the brain tissue radioactivity measurement due to the
systematic time difference between the tracer arrival times in
the brain relative to the peripheral sampling site. For H,"°0O
dynamic PET study, the delay of the input function may
produce a non-negligible error in the model parameter
estimation. The fast determination of input function delay by
linear regression method [2] was used in the present study to
estimate a global time delay value.

III. RESULTS AND DISCUSSIONS

A. Simulation Results

Table 2 is the average of RMSE% of gray matter, white
matter, and whole brain for 3 data sets and 3 noise levels. The
smoothing filter with 5x5 window was used in SRRSC and
GRRSC. Multivariate analysis of variance (MANOVA)
reveals that the RMSE% for the SRRSC and GRRSC
estimates are significantly lower than those based on WLR
estimates (at p=0.01 level). The improvement of estimate
accuracy by SRRSC or GRRSC decreases as the noise level
lessens. The RMSE% of estimates are about 35% less at high
noise level and 15% less at lower noise level with GRRSC and
SRRSC as compared to those with WLR for all three data sets.
The MANOVA analysis also reveals that there is no essential
difference between SRRSC and GRRSC in terms of the
RMSE%.

The SRRSC and GRRSC methods are not sensitive to the
smoothing filter used on the parameters estimated by WLR.
The average RMSE% as a function of smoothing filter is
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shown in Table 3. There is a nonlinear relationship between
the RMSE% and smoothing filter used. In this limited
analysis, the smoothing filter with a 5x5 window gives the
lowest RMSE%. Fortunately, neither SRRSC nor GRRSC is
sensitive to the smoothing filter used.

The MSE consists of bias and variance components. Table
4 is a summary of MSE analysis for the three methods. Table
4 shows that the magnitude of bias of estimates increases as
noise level increases for WLR, SRRSC, and GRRSC.
Theoretically WLR estimates is not biased while GRRSC and
SRRSC estimates are biased. However, due to model
approximation, measurement errors, the estimates are
generally biased [3]. In the present study, we found that both
SRRSC and GRRSC have more reduction in variance by
increasing a little bias, so MSE is decreased. In fact, the
variance of GRRSC and SRRSC estimates are decreased by
ridge regression while the bias of estimates of SRRSC and
GRRSC i limited by the spatial constraint.

B. Human Study Results

Consistent with the simulation studies, both SRRSC and
GRRSC provided better image quality for O-15 water study.
Figure 1 shows the CBF images estimated by WLR, SRRSC,
and GRRSC for the one control study. The CBF parametric
images generated by SRRSC and GRRSC are comparable
based on visual inspection. The corresponding pixel values of

the parametric images derived from the GRRSC and SRRSC
methods were highly correlated:

GRRSC(K,) = 0.97SRRSC(K,) + 0.0093 (20)
with R? = 0.99. The CBF parametric images for the dynamic
images reconstructed with hanning-0.3 filter is shown at the
bottom of Figure 1. As the noise level is reduced by the use of
a lower cutoff filter (hanning-0.3) in the image reconstruction,
the differences among the three methods become small.

IV. SUMMARY AND CONCLUSION

Computer simulation and human dynamic PET studies
reveal that both SRRSC and GRRSC improved parametric
images quality for studies with high or middle noise level of,
as compared to WLR. GRRSC offers no significant
improvement in the parametric images as compared to
SRRSC. For its lower computational burden and its simplicity,
SRRSC should be considered as a method of choice for
generating parametric images for O-15 dynamic studies.
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Gray matter White matter whole brain
K 1 l(2 v() k‘2 V() I<I k2 V()
high WLR | 435 502 | 2421 | 727 | 1233 | 2962 52.4 76.0 248.8
) SRRSC | 282 321 | 1798 | 447 725 | 218.5 33.0 6.1 1842
ROISE TGRRSC | 29.6 36.2 160.7 | 485 83.4 198.7 353 52.5 166.0
middle | WLR | 22.5 304 | 1234 | 347 615 | 150.0 26.0 409 126.4
set_l | . [SRRSC| 169 230 97.6 24.6 420 | 1162 189 29.1 99.0
i GRRSC | 17.1 25.1 84.9 26.0 6.6 102.9 196 321 86.9
low WLR 16.0 242 87.8 246 435 | 106.1 184 30.4 89.7
oise | SRRSC | 132 20.1 731 18.9 32.5 856 14.6 238 73.6
i GRRSC | 129 213 61.8 195 35.1 741 14.7 255 62.9
high WLR | 435 569 | 2108 | 680 | 1201 | 2692 50.5 784 2211
) SRRSC | 269 352 | 1510 | 408 69.6 | 194.9 30.8 46.7 1594
NOSe  "GRRSC | 289 400 | 1374 | 444 | 801 | 1769 333 53.4 144.7
middle | WLR 21.8 330 | 1069 | 321 596 | 1358 24.6 415 111.9
set2 | . [SRRSC | 152 23.8 80.3 215 387 | 102.1 16.8 283 84.1
‘ GRRSC | 160 264 722 23.1 3.6 912 17.8 316 754
Tow WLR 153 25.8 75.8 334 02 957 172 30.7 791
roise |_SRRSC | 116 204 593 6.0 29.6 745 12.6 228 61.7
GRRSC | 11.8 22.1 524 169 32.7 654 3.1 249 543
high WLR | 443 721 | 1748 | 607 | 113.8 | 234.6 48.1 84.1 187.8
roise  |_SRRSC | 266 30 | 1220 | 357 65.0 1674 28.6 490.1 132.5
GRRSC | 288 390 | 1124 | 387 74.6 1512 30.9 6.2 1209
middle | WLR 21.7 39.7 88.0 292 567 | 1183 234 7.0 94.6
set 3 | o | SRRSC | 4 6.0 63.1 18.5 340 85.0 15.0 284 68.3
GRRSC | 153 30.3 584 19.9 39.6 778 16.2 322 62.5
Tow WLR 154 30.2 62.2 20.5 40.3 839 164 324 67.0
oise | SRRSC | 105 222 4538 134 758 61.7 11.0 223 493
" GRRSC | 113 2477 423 144 29.3 556 s 25.0 45.0

Table 2: Average RMSE% of gray matter, white matter, and whole brain for 3 data sets and 3 noise levels .The smoothing filter with 5x5

window was used in SRRSC and GRRSC.



Gray matter White matter whole brain

K k, Vo K, & Vo K, K Vo

33 16.9 23.8 96.6 25.8 447 116.8 194 30.6 98.7

SRRSC 5%5 169 23.0 97.6 24.6 42.0 116.2 189 29.1 99.0
7X7 179 23.9 101.7 257 436 119.3 199 30.2 1025

3x3 17.6 25.4 90.8 27.0 476 110.9 203 32.6 932

GRRSC [543 17.1 25.1 84.9 26.0 46.6 102.9 19.6 321 86.9
7x7 17.6 25.7 84.8 26.8 484 1018 20.2 331 R6.4

Table 3: Average of RMSE% for SRRSC and GRRSC using filters with 3x3, 5xS, and 7x7 smoothing windows. RMSE% was based on set_1
simulation data with middle noise level.

Noise Fitting K4 k, Vo

level methods | (bias)” | variance | MSE (bias)” | variance | MSE (bias)* | variance | MSE
WLR | 0.0017 | 0.0641 | 0.06578 | 0.0075 | 0.1127 | 0.1204 | 0.0002 | 0.0099 | 0.0102

High [TSRRSC | 0.0030 | 0.0239 | 0.0270 | 0.0070 | 0.040 | 0.0473 | 0.0003 | 0.0052 [ 0.0056
GRRSC | 0.0019 | 0.0285 | 0.0304 | 0.0076 | 0.0524 | 0.0601 | 0.0002 | 0.0044 | 0.0046
WLR | 0.0007 | 0.0160 | 00167 | 0.0090 | 0.0293 | 0.0386 | 0.0001 | 0.0025 | 0.0026

Middle [SRRSC | 0.0018 | 0.0074 | 0.0092 | 0.0079 | 0.0132 | 0.0213 | 0.0001 | 0.0015 | 0.0016
GRRSC | 0.0011 | 0.0085 | 0.0096 | 0.0087 | 0.0166 | 0.0255 | 0.0000 | 0.0012 | 0.0012
WLR | 0.0006 | 0.0078 | 00085 | 0.0088 | 0.0146 | 0.0237 | 0.0000 | 0.0013 | 0.0013

Low SRRSC | 0.0016 | 0.0041 | 0.0057 | 0.0082 | 0.0075 | 0.0159 | 0.0000 | 0.0005 | 0.0009
GRRSC | 0.0009 | 0.0046 | 0.0055 | 0.0088 | 00091 [ 0.0181 | 0.0000 | 0.0006 | 0.0006

Table 4: Whole brain average of MSE components analysis based on data set_| simulations.

Figure 1. CBF (ml/min/100g) images estimated by WLR (left), SRRSC (middle), and GRRSC (right) from dynamic images reconstructed with

hanning-0.5 (upper row) and hanning-0.3 (lower row) in a human study.
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