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We propose a novel algorithm for voxel-by-voxel compartment model

analysis based on a maximum a posteriori (MAP) algorithm. Voxel-by-

voxel compartment model analysis can derive functional images of

living tissues, but it suffers from high noise statistics in voxel-based PET

data and extended calculation times. We initially set up a feature space

of the target radiopharmaceutical composed of a measured plasma time

activity curve and a set of compartment model parameters, and

measured the noise distribution of the PET data. The dynamic PET

data were projected onto the feature space, and then clustered using the

Mahalanobis distance. Our method was validated using simulation

studies, and compared with ROI-based ordinary kinetic analysis for

FDG. The parametric images exhibited an acceptable linear relation

with the simulations and the ROI-based results, and the calculation time

took about 10 min. We therefore concluded that our proposed MAP-

based algorithm is practical.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

The aim of this study was to develop a novel approach for voxel-

by-voxel compartment model analysis to form parametric images

using positron emission tomography (PET) based on a maximum a

posteriori (MAP) approach.

PET can provide various functionalities of living tissues in the

form of a spatial distribution of an administered radiopharma-

ceutical. If the details of a physiological function are required,

then a history of the radiopharmaceutical concentrations in a tissue

(i.e., the tissue time activity curve, or tTAC) is measured using

multiple PET scans, and a compartment model analysis is applied
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to determine the parameters that describe the behavior of the

administered drugs in a target organ (Huang and Phelps, 1986).

This process is known as kinetic analysis. Furthermore, kinetic

analysis in a voxel-by-voxel fashion provides us with images that

can be used to determine the activity of specific enzymes or

concentrations of neuroreceptors. However, voxel-based kinetic

analysis has two major drawbacks. One is the noise level in a

voxel-based tTAC, and the second is the large number of voxels

involved. The noise level in a voxel-based tTAC leads to an

instability in the estimated parameters. The large number of

voxels, which can reach up to half a million, leads to extensive

calculation times for image formation.

We have proposed a clustering-based algorithm to overcome

this situation, in which voxel-based tTACs are categorized based

on their kinetics. The algorithm, Clustering Analysis for Kinetics

(CAKS), has been reported for a one-tissue-two-compartment

model (Kimura et al., 1999), and a two-tissue-three-compartment

model (Kimura et al., 2002). In the CAKS approach, the clustering

algorithm is a key term. An unsupervised clustering scheme has

also been applied (Kimura, 2004).

This paper introduces MAP approach for a kinetics scheme.

This is proposed to improve a robustness for noise interference.

In the proposed approach, feature surfaces are provided using an

a priori knowledge of the kinetics of the administered radio-

pharmaceutical, and then, the observed data are clustered. Some

simulation studies carried out are discussed to determine the

details of the proposed algorithm, and to evaluate its reliability.

Parametric images of the brain glucose metabolism are discussed

using [18F]fluoro-2-deoxy-d-glucose (FDG).

Method

In the proposed method, the estimated kinetic parameters of

a voxel-based tTAC are determined based on similarities of

shape, when data are compared with noise-free tTACs that are

http://www.sciencedirect.com
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Fig. 1. A semantic diagram for parameter estimation using the proposed

MAP-based algorithm. C is a feature surface, and C1–C4 are the projected

noise-free tTACs. Noisy projections are denoted by the smaller plots, and

the estimated Gaussian is denoted by the superimposed ellipsoid. If a voxel-

based tTAC is projected on A, then the Mahalanobis distance to each noise-

free point can be calculated ð ;AC1�
;
AC4 Þ. Then, A can be classified as

belonging to the nearest point of C1.
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formed from a set of parameters that lie within a physiolog-

ically feasible range. The shape of a noise-free tTAC is

projected onto the feature space, and the noise is expressed as

a statistical distribution of a feature point in the space.

Measurement of glucose metabolism using PET

FDG is a glucose analog, and it has been used tomeasure cerebral

glucose metabolism using PET in glucose transport from plasma to

tissue, in glucose phosphorylation, and to determine the metabolic

rate of glucose.

The behavior of FDG is described by Eq. (1) (Huang et al.,

1980):

Co tð Þ ¼ k1

a2 � a1
k3 þ k4�a1ð Þe�a1tþ a2�k3�k4ð Þe�a2 tf g‘Cp tð Þ;

ð1Þ

where

a1;a2 ¼
k2 þ k3 þ k4 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k3 þ k4ð Þ2 � 4k2k4

q
2

; ð2Þ

and Co(t) and Cp(t) denote the concentration of administered FDG

in a target tissue and arterial plasma, respectively. ‘ denotes a

convolution. Glucose transportation from a capillary to a tissue

and the reverse process are described by the terms k1 and k2,

respectively, and k3 and k4 denote the rate of phosphorylation and

dephosphorylation of FDG. The term Co(t) is derived as a

dynamic image from the PET data, and Cp(t) is measured via

arterial blood sampling. The term k4 is ignored in our discussion,

because we used scan durations of 60 min (Lucignani et al.,

1993).

First, Co(t) was normalized using its integral to reduce the

dimensionality by ignoring k1, because k1 appears in both the

denominator and numerator of Eq. (3) from Eq. (1), and so

cancels out.

C tð Þ ¼ Co tð ÞR TE

0
Co sð Þds

; ð3Þ

where TE denotes the time of the last frame.

Definition of the feature surface

The shape of C(t) is represented mathematically as a surface

in a feature space, in which a shape is represented by a position

(Duda et al., 2001). To define a feature space, dynamic PET

data are considered as a vector in n-dimensional space:

C u C t1ð Þ;N ;C tnð Þ½ 	T ð4Þ

where n is the number of frames. In a feature space, Cs are

located at different points that have different shapes from each

other.

In reality, the location of the noise-free tTACs in a feature

space is identified before parameter estimation using the

following steps. When the data from a measured plasma time

activity curve (pTAC) are inputted into Eq. (1), a set of

tTACs is derived by varying k2 and k3 in a suitable range

based on physiological considerations: either 0.01 or values

between 0.02 and 0.40 with a 0.02 step size for k2, and

values between 0.01 and 0.30 with a step size of 0.01 for k3,
where k1 is fixed to 0.1. Then, all the generated tTACs are

composed as a matrix CA:

CA u C1 N CM½ 	; ð5Þ

and the principal components are calculated to generate a

feature space.

If the noise-free tTACs are projected onto this space, shown as

the C1–C4 in Fig. 1, a curved surface on the noise-free tTACs will

be drawn, C in Fig. 1. Note that first only some principal

components are used. This approach decreases the dimensionality

and simplifies further data analysis. The optimal dimensionality is

discussed later in the text.

Parameter estimation

The noise distribution in a feature space, the likelihood for

parameter estimation, is evaluated using the following procedure. To

obtain the statistical properties of the noise in the measured tTACs,

noisy tTACs are mimicked to add the simulated noise to the noise-

free tTACs, assuming that a Gaussian distribution exists with a mean

equal to that of the measured tTAC and a variance proportional to

that of the tTAC (Kimura et al., 2002). This step means that a

multidimensional Gaussianwas assumed for the noise distribution in

the projected tTAC onto the space. These values are used to

determine the noise amplitude such that the simulated tTACs have

the same noise level as those of the measured voxel-based tTACs.

The semantic diagram is available in Fig. 1. Noise-free

tTACs are projected onto a point in the space defined by Eq. (4)

(C1–C4 in Fig. 1). The noise perturbs the shape of the noise-

free tTAC, and causes a fluctuation in the projected point. This

fluctuation is assumed to be a multidimensional Gaussian,

centered at its noise-free position of C1–C4. The covariances

at each noise-free point are calculated using 500 realizations of

noisy tTACs. To determine the associated cluster of the

projected tTACs of A, the Mahalanobis distance between the

point and each noise-free point is calculated, and then, the

nearest point is selected. In our example, this is C1. Finally, the
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Fig. 2. Example of a feature surface generated in a three-dimensional space.

Each axis denotes the first three principal components calculated from a

given set of noise-free tTACs. Noise-free tTACs are projected onto this

space and form a surface, as shown in the figure. The increase in the values

of k2 and k3 is denoted by the black and gray arrows, respectively.
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corresponding values of k2 and k3 to the point are taken to be

the estimates of the voxel-based tTAC. The ratio of the integral

of the voxel-based tTAC to that of the corresponding noise-free

tTAC determines the value of k1.

Simulation

A simulation study was designed to determine the appropriate

dimensionality of a feature space based on an estimation perform-

ance, and to validate the estimates using the proposed method. A

clinically measured pTAC was applied to Eq. (1) with a set of k1, k2,

and k3 values varying from 0.01 to 0.19 with a step size of 0.02, from

0.01 to 0.28 with a step size of 0.03, and from 0.01 to 0.1 with a step

size of 0.01, respectively. For each set of the parameters, 27

realizations of noise-free tTACs were generated, and Gaussian noise

was added to simulate a real measurement situation. The proposed

approach was applied, and the performance was evaluated to

compare the data with the real values. Also, Patlak plot was

employed to derive the estimates of k1/k2 (=DV) and the cerebral

metabolic rate of glucose (CMRGlc) computed as:

CMRGlc ¼ Gl

Lc

��
Ki where Ki ¼

k1k3

k2 þ k3
ð6Þ

Gl is glucose content in blood, and Lc is a lamped constant of 0.42.

In Patlak plot, the linear relation is established some minutes later

after the administration:

C tð Þ
Cp tð Þ ¼ Ki

R t

0
Cp uð Þdu
Cp tð Þ þ DVþ Bvð Þ ð7Þ

where Bv denotes a blood volume. Therefore, the gradient and y-

intercept gives us the estimates of CMRGlc and DV (Patlak et al.,

1983).

Dimensionality

A dimensionality of feature space was decided using two

ways: a performance-based approach as described in Simulation

and a theoretical approach. Morgera (1985) proposed a cova-

riance complexity based on an information theory, and it was

calculated using the eigenvalues of an inputted data as defined in

(Watanabe et al., 2003):

rj ¼
k2jXM

k ¼ 1

k2k

; ð8Þ

CM ¼ �

XM
j ¼ 1

rjlog rj

log M
; ð9Þ

where CM denotes the complexity at the dimension of M, and kj

is the jth eigenvalue of the covariance matrix of CA sorted in

descending order. CM ranges on [0 1], and it represents a

uniformity of information derived if M-dimensional feature space

is employed. If all axes defining a feature space have almost the

same amount of information, rj ˚ 1 / M, and CM approaches to

1. Conversely, if only the first few axes have most information,

the corresponding rjs become almost 1, and CM ˚ 0.

To investigate the dimensionality, voxel-based tTACs were

generated the same as that described in Simulation with 500
realizations. k1 was fixed at the typical value, and k2 or k3
varied in the range of their typical values T50%. The values

were 0.102, 0.130, and 0.062, respectively (Huang et al.,

1980). Also, Ki varied in the range of 0.0334 T 50% with the

fixed k1.

Clinical image

The proposed method was applied to clinical PET scans:

five normal volunteers (four males and one female, average

age = 22 T 1.9), and two patients with congenital glucose

transporter-1 deficiency (Pascual et al., 2002) (an 11- and a 7-

year-old boy) to validate the algorithm in normal and higher

than normal cases. The FDG doses injected were 233 T 19

MBq for the normal subjects, and 155 or 121 MBq for the

deficiency patients. The Ethics Committee of the Tokyo

Metropolitan Institute of Gerontology approved the study

protocol, and informed consent was given by all subjects.

The scans were performed using a HEADTOME V apparatus

(Shimadzu Corporation, Kyoto, Japan) with arterial blood

sampling. The PET images were reconstructed at a resolution

of 7.5 mm FWHM, with 128 
 128 voxels and 30 slices

with 2 
 2 
 6.25 mm in a voxel size, using a standard

convolution back-projection algorithm. Corrections were

applied for dead time, detector nonuniformity, and for photon

attenuation. The frame-time sequence was 10 s 
 6, 30 s 

3, 60 s 
 5, and 150 s 
 5, and 300 s 
 8. Besides, the

images obtained from a 57-years-old female Alzheimer patient

were formed using a HEADTOME-IV apparatus (Shimadzu

Corporation, Kyoto, Japan) with 128 
 128 and 7 slices with

2 
 2 
 13 mm in a voxel size. The frame arrangements

were 30 s 
 2, 60 s 
 4, 120 s 
 4, 240 s 
 8. The dose

was 210 MBq. Parametric images of DV, CMRGlc were then

computed. The delay between the tTAC and pTAC data was

estimated using the tTAC averaged over all the regions of

interest (ROIs) in a round-robin fashion (Kimura et al., 2004),

and it was removed from voxel-based tTACs before applying

the proposed method. Eq. (1) was fitted to the tTAC using

the interior-reflective Newton method (Coleman and Branch,
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Fig. 3. An actual example of a feature surface and a projected tTACs. The

projections are denoted by the small points. The surface is viewed from a

low angle to emphasize its curled shape.
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1999) with a nonnegative constraint. The initial estimates of

all the parameters were selected to be 0.10. The blood volume

was fixed at 0.03 (Martine et al., 1987). Before applying the

proposed method to clinical data, blood volume component

was also subtracted from voxel-based tTACs assuming the

fixed blood volume. Additionally, extracranial voxels were

manually excluded before the image formation.

To evaluate the consistency between the ordinary ROI-based

model estimation and the estimates derived from the proposed

algorithm, seven ROIs were selected: the frontal, occipital, parietal,

temporal, cerebral, striatum, and the thalamus, and then the
Fig. 4. Performance of the proposed algorithm in a simulation study. The estimate

estimates are plotted with respect to the true values as a boxplot. The lower, middle

shown between the lower and upper ticks is 1.5 times the quartile range, wher

superimposed. CMRGlc estimated by the proposed algorithm and Patlak plot is plo

using the proposed algorithm and Patlak plot is presented in panels (E) and (F).

regression lines are also shown.
nonlinear estimation algorithm was applied to derive the estimates

for the ordinary ROI-based kinetic analysis as described above.
Results

Feature surface

A typical feature surface is shown in Fig. 2, in which the

generated tTACs are projected into three-dimensional space. It can

be seen that the surface is highly curved as denoted by the black

and gray arrows. The noise-free tTAC is represented by the lattice

points on this surface, and the (k2, k3) parameter pair corresponds

to one of these points.

Fig. 3 shows a real situation of feature points formed using

measured PET data. The measured voxel-based tTACs are

projected onto the feature surface denoted by the dots. The noise

of the voxel-based tTAC fluctuated widely around the projected

points. However, most of the points were located away from the

surface because of the noise-induced fluctuation.

Simulation-based validation

Simulation-based validations are summarized in Fig. 4. For k1,

the estimated median values were almost identical to the true

values. Moreover, there was an underestimation in this case,

because the lower bars of the boxplots are longer than the upper

bars. For k3, the median value was almost the same as the true

values, but the distribution of the estimates of k3 was more

complicated than that of k1. In the case of smaller values of k3, i.e.,

k3 < 0.03, the estimate tends to be high. For values of k3 larger than

0.08, the estimate was lower than the true value. For k2, a linear
s of k1, k2, and k3 are plotted in panels (A), (B), and (C), respectively. The

, and upper edges denote the 25th, 50th, and 75th percentiles, and the range

e most data exist. Regression lines between the true and the median are

tted in panel (D) with black and gray points, respectively. And estimated DV

For CMRGlc and DV, the estimates are plotted versus the true values. The
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Fig. 5. Courses of a performance and complexity according to dimensionality. The performance comparisons according to the dimensionality of the feature

space are shown in Frame (A), the change in consistency between the estimates and their true values, and in Frame (B), the change in linearity. For both

quantities, the ideal values are 1. The typical change of covariance complexity is displayed in Frame (C).
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relation was maintained, but it was 20% underestimated especially

in large k2 region. For CMRGlc shown in Fig. 4D, both estimates

by Patlak plot and the proposed approach were almost identical

with the true values, and the estimates from the proposed algorithm

presented slightly better estimates. DV estimates showed different

states between the proposed algorithm and Patlak plot in Figs. 4E

and F. The proposed algorithm gave lineally correlated estimates,

on the other hand in Patlak plot, no linear relation with the true DV

could be found. The estimates using the proposed algorithm have

22% underestimation in the range of DV between 0 and 2.

Dimensionality

Performance comparisons against the dimensionality are shown

in Figs. 5A and B. Frame (A) shows the change in slope of the

regression lines between the estimates from the proposed algorithm

derived for various dimensions and true values, where a slope

equal to unity is the ideal case. For the CMRGlc data, there was no

observed dependency on the dimensionality. For k1, a higher

dimensionality leads to an underestimation, and either two or three

dimensions seem to be the optimum choice. For k3, under-

estimation occurred with two dimensions or more than six

dimensions. Frame (B) shows the calculated regression coeffi-

cients. The CMRGlc estimates always correlated well with the true

values. The performance of the k1 and k3 estimates became

gradually worse with increasing dimensionality. Three dimensions

was the optimum choice based on the estimation performance.

The typical trend of covariance complexity is available in

Frame (C) in cases of k1 = 0.102, k2 = 0.13, and k3 = 0.062. Most
Fig. 6. Comparison between ordinary ROI-based nonlinear estimates and the propo

plotted with different symbols. Regression lines derived from ordinary parameter ra
information concentrated on the 1st dimension because the

complexity was near its minimum of 0, and a large increase was

observed only at the dimension of 2. And, further dimension in the

feature space has approximately a uniform amount of information

because the complexity gradually grew, but no peaks were

observed according to the increase of dimensionality. These results

implied that the information was not gained if higher dimensional

feature space than 4 was utilized. This disposition was common in

all k-parameters.

Clinical image

ROI-based validations are shown in Figs. 6 and 7, and typical

clinical images are available in Fig. 8. For k1, if it was smaller than

0.16 (which is normal range), the regression line was y = 0.97x +

0.04 (r2 = 0.90); this line is plotted in a solid line in Fig. 6A, and

both estimates were almost identical. However, the linear regression

derived from all k1 range was y = 0.73x + 0.03 (r2 = 0.96), the

dashed line in Fig. 6A, and 27% of underestimation was observed.

For k3 shown in Fig. 6C, if k3 < 0.13 (the normal range of k3), y =

0.78x + 0.01 (r2 = 0.92), the solid line, and 22% of underestimation

existed. The linear regression in all k3 range was y = 1.00x � 0.01

(r2 = 0.91); an almost identical relation. k2 is summarized in Fig. 6B.

The relation was y = 0.57x + 0.12 (r2 = 0.88). For CMRGlc and DV,

the comparisons between an ROI-based nonlinear estimation and the

proposed algorithm or Patlak plot are illustrated in Fig. 7. Both

CMRGlc estimates had good linear relations with 10% of under-

estimation as shown in CMRGlc-1 and CMRGlc-2; y = 0.90x +

0.21 (r2 = 0.98) for the proposed algorithm and y = 0.91x � 0.012
sed algorithm. Seven ROIs were placed on seven subjects, and subjects are

nge and from all estimates are plotted in solid and dashed lines, respectively.
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Fig. 7. Comparison between ordinary ROI-based nonlinear estimates and

the proposed algorithm or Patlak plot on CMRGlc in (CMRGlc-1) and

(CMRGlc-2), and on DV in (DV-1) and (DV-2). (CMRGlc-1) and (DV-1)

were derived from the proposed algorithm, and (CMRGlc-2) and (DV-2)

represent the estimates using Patlak plot. Seven ROIs were placed on seven

subjects, and subjects are plotted with different symbols. Regression lines

are superimposed.
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(r2 = 0.97) for Patlak plot. The deviation of CMRGlc estimates with

the proposed algorithm was 8% smaller than that with Patlak plot in

the ROI-based validation. The relation of DV is not good; y = 0.33x

+ 0.44 (r2 = 0.96) for the proposed algorithm and y = 0.39x + 0.28

(r2 = 0.97) for Patlak plot in DV-1 and DV-2. The simulation

showed that k2 and DV had relatively poor linear relation and 20%

of underestimation in Fig. 4, and the same results can be seen in the

clinical results (Figs. 6B and 7DV-1). Also, the bias in DVestimates

was not ignorable. Patlak plot can estimate DV, but it was poor

as the proposed algorithm. The deviation of DV estimates by

the proposed algorithm was around 35% smaller than those by

Patlak plot in the ROI-based validation. However, in Fig. 8, the

gray and white matter can be distinguished in the Alzheimer

case, and also in the normal case because there was a

monotonous relation between the DV estimates by the proposed

algorithm and the ROI-based estimates. The performance of the

proposed algorithm was rather sufficient for DV imaging. For

CMRGlc, both estimates coincided well with each other.

Generally, there is a good linear relation between both estimates

in all parameters, and the CMRGlc and k1 in its normal range

were almost identical with the true values.

In the normal case in Fig. 8, the slices shown include the

cerebellum and the thalamus. The brain structure is clearly

visualized in the CMRGlc image, and in the k1, k3, and DV

images. Some regional differences in glucose metabolism are

observable: the cerebellum has a higher k1 value than the

cerebral cortex, and the k3 value of the cerebellum is smaller

than that in the cerebral cortex. In Alzheimer case, CMRGlc is

clearly defected on the right temporal lobe. k1, k3, and DV are

also lower than those in the left side. For CMRGlc, both
methods give us a good brain structure, and the images with the

proposed algorithm are less noisy than those with Patlak plot.

For DV, the brain structure is unclear in the image with Patlak

plot; however, the gray and white matter can be recognized in

the proposed method.

It took about 10 min to generate a parametric image composed

of 128 
 128 voxels and 30 slices using an Ultra-80 Workstation

equipped with a 450 MHz Ultra SPARC-II processor and 4

gigabytes of memory (Sun Microsystems, Santa Clara, CA, USA),

in which around 5 min was taken to generate the feature space and

to calculate the covariances.
Discussion

We have discussed a novel scheme for voxel-based compart-

ment model analysis methodology. Four points are covered in the

discussion: the specificity of the algorithm to form a parametric

image, a comparison with other methods for parametric imaging,

the development of a MAP-based algorithm, and the performance

and usability of the proposed approach.

We now discuss the difficulties encountered in parametric

image formation using PET. PET can measure various function-

alities in living tissues using a compartment model analysis. If

the analysis is applied in a voxel-by-voxel fashion, then a

functional image can be derived. Unfortunately, there are two

serious drawbacks in voxel-based kinetic analysis. One is a high

noise factor in voxel-based tTACs, and the other is the large

calculation time required. The small volumes in voxels cause

the high noise seen in voxel-based tTACs, and this leads to

statistical uncertainties in the estimated kinetic parameters. If a

nonlinear estimation algorithm is applied, then voxel-based

parameter estimations tend to include large estimation variances

and/or erroneous results because of this nonconvergence.

Furthermore, a nonlinear estimation algorithm involves a

considerable calculation time. The algorithm is usually imple-

mented using an iterative approach, and typically, a compart-

ment model analysis requires several dozen iterations.

Additionally, a convolution operation is necessary to calculate

a predicted output using a measured pTAC and interim

parameters in these iterations, which is time-consuming. To

make matters worse, the number of voxels can reach up to half

a million. A PET camera has 128 
 128 voxels per slice, and

can capture over 30 slices, giving a total of 5 
 105 voxels.

For parametric image formation, the model estimation algorithm

should be invoked at each voxel, so a huge calculation time is

required. If it requires 10 s to obtain one voxel-based parameter

estimation, then a couple of months will be required to form a

parametric image. The above considerations make functional

imaging in PET impractical.

The proposed approach is designed to overcome these problems

using MAP algorithm. The model parameters are determined based

on their proximity in the shape of a tTAC between a measured

voxel-based tTAC and tTACs located in the bank of noise-free

tTACs. The proposed approach tries to find most matched noise-

free tTAC for a given feature space. Accordingly, the proposed

approach does not invoke any parameter estimation algorithm, and

the problems regarding parameter estimation and calculation time

are therefore resolved.

The dimensionality of a feature space must be given a priori,

because it defines the experimental space. In this study, an optimal
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dimensionality was decided by using the simulation for validation

method and a covariance complexity based on an information

theory, as shown in Fig. 5. In the result, three dimensions were

chosen as the optimum choice. The number of estimated

parameters used was two: k2 and k3, because k1 was ignored as

shown in Eq. (3). This implies that a dimensionality higher than

two is desirable to consider the noise in a tTAC. Moreover, the

dimensionality must also be decided to take into account the

signal-to-noise ratio. In Fig. 3, the projections were not located

around the feature surface, but were widely scattered. This

situation means that considerable noise was present. If the

dimensionality used were too high, then a defined feature space

would be composed of noise rather than the tTAC.

A covariance complexity denotes a uniformity of information in

a given dimensionality and each axis defining a feature space. If

the complexity is near 0, most information concentrates on first

some axes. The result conveyed that the feature space was

governed by the first some principal axes because the complexity

was low; its maximum was 1.0 because of the definition, and it was

smaller than 0.1 in all range of dimensionality. And, the complexity

was increased at the dimension of two as shown in Fig. 5C, which

represents that a new information can be expected if the 2nd axis is

incorporated. In our performance-based simulation, at higher
Fig. 8. Clinical images of glucose metabolism in a normal young female in panels (

were derived from the proposed algorithm, and panels (B) and (D) were formed
dimensions, the estimates were too low, and the linearity

diminished. On balancing the number of parameters and quality

of the input signal, three dimension remains the optimum choice.

In the proposed algorithm, projected feature points are classified to

multiple categories corresponding to pairs of k2 and k3 laid in a

physiologically possible range. It is a complicated situation, and

both information theory and performance-based indices are

reasonable choices to decide the dimensionality for feature space

definition.

We also compared the proposed method with other algorithms

for voxel-based estimation. Some approaches linearize the com-

partment model to simplify the estimation process. Logan plot

(Logan et al., 1996) and Patlak plot (Patlak et al., 1983) are popular

algorithm choices for this operation, which uses a line estimation

algorithm. RPM (Gunn et al., 1997) is another widely used

algorithm used to visualize the binding potential using a spectrum

approach. These algorithms are computationally simple and are

therefore fast, because they are implemented with a linear

estimation algorithm or a search for a minimal residual point from

a table, and an iteration and convolution are not required. However,

these algorithms can estimate only limited parameters: a distribu-

tion volume, an influx parameter, or a binding potential.

Furthermore, the applicability of these algorithms depends on the
A) and (B), and Alzheimer patient in panels (C) and (D). Panels (A) and (C)

by Patlak plot. All images were processed with a median filter.
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kinetics of an administered radiopharmaceutical. Because FDG is

trapped in a cell, then Logan plot and RPM are not applicable, but

using Patlak plot is feasible. In contrast, the proposed algorithm

can estimate all kinetic parameters, and is applicable to any

compartment model, because the proposed approach is based on a

general compartment model, and there is no assumption involved

in the model kinetics. Likewise, for determination of optimal

estimates, the method searches the nearest feature point instead of

invoking nonlinear optimization algorithm which is usually utilized

for a compartment model estimation. Accordingly, the proposed

algorithm is computationally simple and fast.

We now consider the method based on statistical approach for

medical image processing. An interesting study is the mixture

analysis approach (O’Sullivan, 1993). O’Sullivan assumed tTACs

as a weighted sum of sub-tTACs extracted from a dynamic data

using a clustering algorithm. Clustering for PET data analysis was

summarized in O’Sullivan (1994). Averaging dynamic data in

voxels that belong to the same cluster improves the signal-to-noise

ratio in voxel-based dynamic data, and it is helpful for parametric

image formation (Kimura et al., 1999; Kimura et al., 2002; Kimura,

2004; Bentourkia, 2001; Wong et al., 2002; Bal et al., 2004; Guo et

al., 2003). Additionally, it can reduce the number of data to be

analyzed, and makes parametric image formation practical (Kimura

et al., 1999; Kimura et al., 2002).

In Kimura (2004), an unsupervised clustering approach was

implemented using a Gaussian mixture model. However, because

of the large volume of data, the clustering algorithm used was

rather unstable for convergence. In the proposed algorithm, MAP

approach was introduced. The concept of MAP is that a priori

knowledge is incorporated in order to develop the performance for

parameter estimation. In MAP, an object function to be maximized

for parameter estimation is composed as a sum of a likelihood and

a priori probability (Sparacino et al., 2000). Various ways were

proposed to define a priori knowledge: using maximum-likelihood

estimates for the analysis of glucose contents in the blood

(Sparacino et al., 2000), or using population-based values

(Callegari et al., 2002), applying population-based averaged values

to estimate FDG PET data (Bertoldo et al., 2004), including

physiological constraints as a penalty term in an object function for

model estimation (O’Sullivan and Saha, 1999) which can reduce

estimation variance significantly for FDG imaging, and the

approach was extended to spectral analysis (Trukheimer et al.,

2003). In the method, a flat prior was defined in a parameter space

which means that all parameters have even possibilities, and the

Mahalanobis distance was introduced to realize MAP estimation

using measured likelihoods derived from random sampling

scheme.

The performance and usability of the proposed approach

technique is now discussed. Both simulation and clinical studies

showed that the estimates using the proposed algorithm approach

were very close to, or had a linear relation to either the true

parameters (Fig. 4) or to the ROI-based ordinary kinetic results

(Figs. 6 and 7). The estimated CMRGlc data always coincided with

both the true values and the ROI-based kinetic data, which are

shown in Figs. 4D and Fig. 7CMRGlc-1. In the CMRGlc image

shown in Fig. 8, some cortical structures between the gray and

white matter were well visualized, and the thalamus could be

identified. For the k1 data, the performance depended on the value

used. In the range k1 < 0.16 (the expected normal range of k1), the

estimate was almost identical, shown by the solid line in Fig. 6A.

In addition, there was a 27% underestimation for larger k1 values,
shown by the dashed line in Fig. 6A. However, it can be said that

the estimates are linearly correlated with the ROI-based kinetic

results for all ranges of k1. The performance of k3 was worse than

that of k1. In the expected normal range of k3, i.e., k3 < 0.13, the

estimate was 27% underestimated from the results of the ROI-

based kinetic analysis. For higher values of k3, the estimates had

almost identical values with the ROI-kinetics. Moreover, for all

ranges of k3, a linear relation existed.

CMRGlc and DV were compared with Patlak plot in Figs. 4 and

7. Patlak plot is a well-established graphical approach which enables

voxel-based calculation of both quantities. For CMRGlc, these two

methods can offer good estimates and they were almost identical

with an ordinal ROI-based kinetic analysis.While for DV, a situation

was worse. The DV by the proposed algorithm was largely

underestimated and only weak linear relation could be found. In

clinical images of CMRGlc and DV in Fig. 8, the images derived

from the proposed algorithm were less noisy than those made by

Patlak plot especially in DV images; the estimation deviations

derived from the proposed algorithm were 8% and 35% smaller than

those of Patlak plot for CMRGlc and DV, respectively. Patlak plot

calculates DV as a y-intercept, and it is sensitive for an estimation

variance in a gradient of the plot. In the proposed approach, noise

propagation in a voxel-based tTAC is considered as a likelihood

function on the feature surface, and it might contribute an image

quality developed.

Usually in FDG PET study, only CMRGlc is utilized for

clinical purposes because a CMRGlc image contains some

information for brain pathophysiology and it is easy to measure.

Some previous works concluded that glucose transporters

(Kalaria and Harik, 1989) and a clearance rate of glucose

(Feinendegen et al., 2001) were affected by Alzheimer disease or

cerebral infarction. Kalaria (Kalaria and Harik, 1989) reported

that the hexose transporter located in the brain capillary was

significantly decreased in Alzheimer patients. Also, k1 images in

Alzheimer patients have lower parts in the temporal lobe as

shown in Fig. 8. They suggested that there is potential usefulness

for the study of cerebral metabolism, and the method for voxel-

by-voxel compartment model analysis should be developed. In

the images in Fig. 8, the brain structure was well visualized, and

a defect part in Alzheimer case is available. Fig. 8 showed that

the glucose transportation was not homogeneous, and that it was

higher in the cerebellum than in the cerebral images. Moreover,

the images on cerebral glucose metabolism have different

appearance between normal and Alzheimer case. This supports

potential for more clinical application.

The overestimation and underestimation values speculated to

originate from the distorted shape of the feature surface are shown

in Fig. 2. The surface has a topologically quadrangular shape, but it

is mostly curved. In the case of large k3 values, the surface

becomes narrow, and the projections of the measured voxel-based

tTACs fluctuate in a wider range of parameter values than those of

smaller k3 values. This local difference in shape probably

influences the different performances in the estimates. Further-

more, k1 was a constant during generating noisy tTACs to calculate

covariances on the feature surface, see Fig. 1, and a variance of

tTAC was assumed to be proportional to the true tTAC value. The

current algorithm ignores the dependency of noise distribution on

an amplitude of tTAC. It would be needed to develop the algorithm

in which tTAC amplitudes is considered. Using the proposed

method, the noise propagation from the measured tTAC to the

kinetic parameters was modeled in a statistical fashion, and it was
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successful in realizing reliable estimates. More complicated

statistical modeling is possible, but the proposed multivariate

Gaussian scheme is a reasonable choice.

In summary, the proposed algorithm provides good CMRGlc

images, which are identical to those from ordinary ROI-based

kinetic analysis. The k1 images are almost identical for values in

the normal range. Images show underestimated k3 and DV;

however, the contrast is well maintained. The proposed scheme

is theoretically expandable to the compartment model analysis for

receptor kinetics because of no assumption for compartment model

estimation. However, it causes an increase of the number of

parameters, and the shape of feature surface becomes presumably

more complex. More robust algorithm will be required.
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