1. a) show that $SNR_{\text{voxel}} \propto \Delta x / \sqrt{BW_{\text{voxel}}}$ for constant phase encoding parameters

signal $\propto \Delta x$

$noise \propto \frac{1}{T_s}$

$T_s = N_x \Delta t$

$BW_{\text{read}} = \frac{1}{\Delta t}$

$T_s = \frac{N_x}{BW_{\text{read}}}$

$BW_{\text{voxel}} = \frac{BW_{\text{read}}}{N_x}$

$noise \propto \sqrt{BW_{\text{voxel}}}$

$SNR \propto \frac{\Delta x}{\sqrt{BW_{\text{voxel}}}}$

b) When Δx is halved with a corresponding doubling of G_z

We know that

$BW_{\text{voxel}} = \frac{BW_{\text{read}}}{N_o}$

$BW_{\text{read}} = \frac{1}{\Delta t}$

$BW_{\text{voxel}} = \frac{1}{\Delta t N_o}$

$FOV = L = N_o \Delta x$

For case 7 have N_o and Δt so there is no change in the bandwidth per voxel. For case 8 have $2N_o$ and $\Delta t/2$ so there is again the bandwidth per voxel will stay the same. In both cases, the signal strength from each voxel will be cut in half since Δx is halved. Since the signal is halved but the noise which is proportional to the square root of the bandwidth is unchanged this will result in the signal to noise ratio to be cut in half as well. For case 7 the field of view will be halved since Δx is halved with no change in N_o but in case 8 there will be no change since N_o is doubled and Δx is halved.
c) If Δx is halved by increasing N_s without a corresponding doubling of G_z the bandwidth per voxel will be halved. The voxel signal will also be halved. Since the signal is halved but the noise which is proportional to \sqrt{BW} the SNR/voxel will be reduced by a factor of $\sqrt{2}/2 = 1/\sqrt{2}$.

d) One way to double Δx is to double the field of view while holding N_s constant and keeping the same gradient and doubling the bandwidth. Another way is to double the field of view while holding N_s constant and halving the gradient.

e) Given:

\begin{align*}
 FOV_{\text{read}} &= 256\text{mm} \\
 N_s &= 256 \\
 G_z &= 2.5mT/m \\
 G_{\text{max}} &= 15mT/m \\
 T_s^* &= 20\text{ms}
\end{align*}

Would like to reduce Δx to $\Delta x/2$ while getting optimal SNR/voxel.

\[\Delta x = \frac{L_x}{N_x} = \frac{256\text{mm}}{256} = 1\text{mm} \]

\[BW_{\text{read}} = \frac{4G_zL_x}{T_s} = \frac{(42\text{MHz}/T)(2.5mT/m)(256\text{mm})}{20\text{ms}} = 27\text{kHz} \]

\[\Delta t = \frac{1}{BW_{\text{read}}} = \frac{1}{27\text{kHz}} = 3.7e^{-5}\text{ sec} \]

\[T_s = N_s\Delta t = 9.4\text{ms} \]

know that the signal to noise ratio for a voxel is proportional to

\[\text{SNR/voxel} \propto \Delta x\sqrt{T_s} \]

in order to optimize the signal to noise ratio when halving Δx want to maximize T_s^*. Assuming that $T_s \leq T_s^*$ can optimize T_s by setting it equal to T_s^*. So have

\[T_s = T_s^* = 20\text{ms} \]

\[\frac{\Delta x}{2} = 0.5\text{mm} \]

Are constrained by G_{max}. So must check to see that G is below G_{max}.

\[\Delta t = \frac{1}{BW_{\text{read}}} = \frac{1}{\gamma G_x L_x} \]

\[G_x = \frac{1}{\Delta t \gamma L_x} \]

\[\Delta t = \frac{T_r}{N_x} \]

\[N_x = \frac{2L_x}{\Delta x} \]

since halving \(\Delta t \)
So have

\[G_x = \frac{1}{\frac{\Delta x}{2} T_r \gamma} \]

\[G_x = \frac{1}{(0.5 \text{mm})(20 \text{ms})(42 \text{MHz}/T)} = 2.4 mT/m \]

which is below \(G_{\text{max}} \).

2. a) \[\phi(t) = \int \omega(t) dt = \gamma \int B(t) dt = \gamma \int G_x(t)x(t) dt \]
for constant gradient and stationary spins then
\[\phi(t) = \gamma G_x x \int dt \]

for lobe A, \(G_x = G \)
\[\phi_A(t) = \gamma G_x \int_0^t dt \]
\[\phi_A(t) = \gamma G_x t \]

for lobe B, \(G_x = -2G \)
\[\phi_B(t) = -2\gamma G_x \int_\tau^{2\tau} dt \]
\[\phi_B(t) = -2\gamma G_x (2\tau - \tau) \]
\[\phi_B(t) = -2\gamma G_x \tau \]

for lobe C, \(G_x = G \)
\[\phi_C(t) = \gamma G_x \int_\tau^{2\tau} dt \]
\[\phi_C(t) = \gamma G_x (t - 2\tau) \]
so the phase for $2\tau < t < 4\tau$ is

$\phi = \phi_a(t) + \phi_b(t) + \phi_c(t)$

$\phi = \gamma G x - 2\gamma G \tau + \gamma G x (t - 2\tau)$

$\phi = -3\gamma G x + \gamma G x t$

b) $\phi(t) = \int \omega(t) dt = \gamma \int B(t) dt = \gamma \int G_x(t)x(t) dt$

for constant velocity

$x(t) = x_0 + v_x t$

for constant gradient then

$\phi(t) = \gamma G \int x(t) dt = \gamma G \int (x_0 + v_x t) dt$

for lobe A, $G_x = G$

$\phi_A(t) = \gamma G \int_{0}^{t} (x_0 + v_x t) dt$

$\phi_A(t) = \gamma G \left(x_0 t + \frac{1}{2} v_x t^2 \right)$

$\phi_A(t) = \gamma G \left(x_0 \tau + \frac{1}{2} v_x \tau^2 \right)$

for lobe B, $G_x = -2G$

$\phi_B(t) = -2\gamma G \int_{\tau}^{2\tau} (x_0 + v_x t) dt = -2\gamma G \left(x_0 t + \frac{1}{2} v_x t^2 \right)_{\tau}^{2\tau}$

$\phi_B(t) = -2\gamma G \left(x_0 2\tau + \frac{1}{2} v_x (2\tau)^2 \right) - \left(x_0 \tau + \frac{1}{2} v_x \tau^2 \right)$

$\phi_B(t) = -2\gamma G \left(x_0 2\tau + \frac{1}{2} v_x 4\tau \right) - \left(x_0 \tau + \frac{1}{2} v_x \tau^2 \right)$

$\phi_B(t) = -2\gamma G \left(x_0 \tau + \frac{3}{2} v_x (\tau)^2 \right)$

for lobe C, $G_x = G$

$\phi_C(t) = \gamma G \int_{2\tau}^{t} (x_0 + v_x t) dt$

$\phi_C(t) = \gamma G \left(x_0 t + \frac{1}{2} v_x t^2 \right)_{2\tau}^{t}$

$\phi_C(t) = \gamma G \left(x_0 t + \frac{1}{2} v_x t^2 \right) - \left(x_0 2\tau + \frac{1}{2} v_x (2\tau)^2 \right)$
so the phase for $2\pi < t < 4\pi$ is
\[
\phi = \phi_A(t) + \phi_B(t) + \phi_C(t)
\]
\[
\phi = \gamma G \left(x_o \tau + \frac{1}{2} v_x \tau^2 \right) - 2\gamma G \left(x_o \tau + \frac{3}{2} v_x (\tau)^2 \right) + \gamma G \left(x_o t + \frac{1}{2} v_x t^2 \right) - \left(x_o 2\tau + \frac{1}{2} v_x (2\tau)^2 \right)
\]
\[
\phi = \gamma G \left(x_o \tau - 2 x_o \tau - x_o 2\tau + \frac{1}{2} v_x \tau^2 - \frac{6}{2} v_x (\tau)^2 - \frac{1}{2} v_x (2\tau)^2 \right) + \gamma G \left(x_o t + \frac{1}{2} v_x t^2 \right)
\]
\[
\phi = -3\gamma G \left(x_o \tau - \frac{3}{2} v_x (\tau)^2 \right) + \gamma G \left(x_o t + \frac{1}{2} v_x t^2 \right)
\]